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Abstract 

 

Aim: To enhance accuracy in predicting bone age from x-ray image to that of chronological ages using novel 

Convolutional Neural Network technique in comparison with C4.5 Classifier.  

Materials and methods: Classification is performed by a Convolutional Neural Network (N=10) over a C4.5 

classifier (N=10). The sample size is calculated using Gpower with pretest power as 0.8 and alpha 0.05.  

Results: Mean accuracy of the convolutional neural network (82.36%) is high compared to the C4.5 classifier 

(67.18%). The significance value for accuracy and loss is 0.263 (p>0.005).  

Conclusion: The mean accuracy of bone age prediction using Convolutional Neural Network is better than the 

C4.5 classifier. 
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1. Introduction  

 

The skeletal and biological maturity of an 

individual is determined by a child's bone age. The 

most widely used clinical procedures for Bone Age 

Assessment (BAA) are based on a visual evaluation 

of individual bone ossification in radiographs of the 

left hand and wrist and a comparison to a standard 

hand atlas (Gilsanz and Ratib 2011), (Bouxsein 

2016). Based on the discrepancy between the 

reading of the bone age and the chronological age, 

physicians can make a more accurate diagnosis of 

abnormal development in children. Currently, the 

left-hand X-ray image is widely used for assessing 

bone age as it can render the subtle bone/cartilage 

development pattern with minimum radiation 

exposure. (Wang et al. 2016; Dufau et al. 2019);. 

Although x-ray radiographs are widely available in 

many clinical sites, the reading of the bone age is 

non-trivial in radiology practice. (Mahayossanunt, 

Thannamitsomboon, and Keatmanee 2019). Bone 

age prediction using x-ray images is an important 

application. Some of the applications of bone age 

prediction are the study helps doctors estimate the 

maturity of a child's skeletal system. Similar 

applications of  Bone Age Assessment Empowered 

with Deep Learning, Fully Automated Bone Age 

Assessment (Boyde, Elliott, and Jones 1993). 

Nowadays bone age prediction is applied in 

cybercrime departments, diagnosis of orthopedic 

related problems. (Jones, Elliott, and Boyde 1992) 

 

In this research work, Bone Age 

Prediction from X-Ray Image using Convolutional 

Neural Network Technique around 80 Articles in 

Google Scholar Sciencedirect and 40 in Scopus 

(Amasya et al. 2020). Assessment of a child’s 

skeletal maturity is important for the management 

of skeletal disorder during growth. Differences 

between skeletal age and chronological Radiation 

exposure. Therefore BAA is an important tool in 

the monitoring of growth, and to diagnose and 

manage a multitude of endocrine disorders and 

pediatric syndromes (Zulkifley, Abdani, and 

Zulkifley 2020). Bone age has also been used 

Radiation exposure for computing the ultimate 

adult height of youngsters in traditional healthy 

kids and might be employed in determinant age 

where birth records don’t seem to be accessible 

(Mellits, Dorst, and Cheek 1971). The collected 

data is compared against the taken dataset of 

Convolutional Neural Network (Mahayossanunt, 

Thannamitsomboon, and Keatmanee 2019). Bone 

age classification using convolutional neural 

networks (CNN) as a support tool for related 

disciplines in bone age diagnosis in Radiation 

exposure. Although different types of study for 

bone age evaluation using CNN have been 

conducted, the Attention mechanism has not been 

thoroughly compared to standardized atlas 

collection of hand radiography for bone age 

assessment Radiation exposure (Tanner 1983). The 

regressor network, which is used to predict the 

bone age has utilized three-layer residual separable 

convolution units to produce a deep network but 

maintains an acceptable model size, which is 

around 20,000,000 parameters. The network has 

also been trained using variable learning rates 

where its value is linearly decreasing concerning 

the training epoch (Jhang and Cho 2019) (Jhang, 

Kang, and Kwon 2020). 

 

Our institution is passionate about high quality 

evidence based  research and has excelled in 

various domains (Vickram et al. 2022; Bharathiraja 

et al. 2022; Kale et al. 2022; Sumathy et al. 2022; 

Thanigaivel et al. 2022; Ram et al. 2022; Jothi et al. 

2022; Anupong et al. 2022; Yaashikaa, Keerthana 

Devi, and Senthil Kumar 2022; Palanisamy et al. 

2022).The existing system of bone age prediction 

has some obstacles in recognizing the difference 

between a child's bone age and his or her 

chronological age that might indicate a growth 

problem. But such differences do not  always mean 

there exists a problem, because perfectly healthy 

kids can have bone ages that differ from their 

chronological ages and Radiation exposure. 

Though much research has been carried out in this 

field there exists a gap to formulate the 

performance when it comes to detecting and 

recognizing bone age automatically. Therefore an 

automatic system is required to predict and 

recognize number plates. This study aims to 

automatically predict and recognize bone age using 

novel convolutional neural networks, thereby 

improving performance and reducing false 

prediction rates. 

 

2. Materials and Methods 

 

This study setting was done in the Data 

Analytics Lab, Department of Information 

Technology, Saveetha School of Engineering, 

Saveetha Institute of Medical and Technical 

Sciences. The sample size taken for this research 

work is 20 (Group 1=10, Group 2=10). In 

predicting the bone age from an x-ray image, to 

modify the problem of low accuracy rate 

convolutional neural network and C4.5 classifier 

exposure. Convolutional neural networks learn 

about the age of the bone approximately. The C4.5 

classifier enables thorough exploration of bone age  

data present. The mean accuracy of convolutional 

neural networks is 82.36%. The mean accuracy of 

the C4.5 classifier is 67.18%. Dataset for this 

instance is collected from                                

https://paperpile.com/c/IBR434/CxqY
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(https://www.kaggle.com/saksham219/bone-age-

prediction-through-x-rays/data?select=boneage-

training-dataset) website with 12,611 instances 

(Safiri and Ayubi 2017).Novel Convolutional 

Neural Networks (CNNs, or ConvNets) are a type 

of artificial neural network used to evaluate visual 

information. Based on the shared-weight 

architecture of the convolution kernels or filters 

that slide along input features and give translation 

equivariant responses known as feature maps as 

explained in Fig. 1. Most Novel Convolutional 

Neural Networks are only equivariant under 

translation, rather than invariant. They are used in 

image and video recognition, recommender 

systems, image classification, image segmentation, 

medical image analysis, and natural language 

processing, among other things. 

The input to a CNN is a tensor with the 

following shape: (number of inputs) x (input 

height) x (input width) x (number of outputs) x 

(number of outputs) x (number of outputs) x 

(number of outputs) x (number of outputs) x 

(number of output (input channels). The image is 

abstracted to a feature map, also known as an 

activation map, after passing through a 

convolutional layer, with the following shape: 

(number of inputs) x (feature map height) x 

(feature map width) x (feature map height) x 

(feature map width) x (number of inputs) x 

(number of inputs) x (number of inputs) x (number 

of inputs) x (number of input (feature map 

channels). The input is convolved by convolutional 

layers, which then pass the result on to the next 

layer. A cell in the visual brain comparably 

responds to a given stimulus. Each convolutional 

neural only processes data for the receptive field in 

which it is located. Although fully linked 

feedforward neural networks can be used to learn 

features and categorize data, there are several 

limitations. Pseudocode for novel convolutional 

neural network described in Table 1.  

The C4.5 algorithm is used in Data 

Mining as a Decision Tree Classifier which can be 

employed to generate a decision, based on a certain 

sample of data. C4.5 is an associate formula used to 

generate a call tree developed by Ross Quinlan. 

C4.5 is an extension of Quinlan's earlier ID3 

formula. The choice trees generated by C4.5 are 

used for classification, and for this reason, C4.5 is 

commonly said as an applied mathematics 

classifier. In 2011, authors of the wood hen 

machine learning code represented the C4.5 

formula as "a landmark call tree program that's 

most likely the machine learning workhorse most 

generally utilized in observe to date". The root of 

the tree is always the variable that has the 

minimum value to a cost function. In this example, 

the probability of Parents Visiting is 50% each, 

leading to easier decision making if you think 

about it. Pseudocode for the C4.5 classifier is 

described in Table 2. 

 

Statistical Analysis 

The analysis was done by IBM SPSS 

version 26. In SPSS, datasets are prepared using 10 

as a sample size for both the algorithm 

convolutional neural network and the C4.5 

classifier. Group id is given as 1 for convolutional 

neural network and 2 for C4.5 classifier, group id is 

given as a grouping variable, and accuracy is given 

as a testing variable.  An independent sample T-test 

was conducted for accuracy. Standard deviation, 

standard mean errors were also calculated using the 

SPSS Software tool. The significance values of 

proposed and existing algorithms contain group 

statistical values of proposed and existing 

algorithms. 

 

3. Results 

 

In statistical tools, the total sample size 

used is 20. This data is used for the analysis of 

convolutional neural networks and C4.5 classifiers. 

Statistical data analysis is done for both the 

prescribed algorithms namely convolutional neural 

networks and C4.5 classifiers. The group and 

accuracy values are being calculated for given 

filtering systems. These 20 data samples used for 

each algorithm along with their loss are also used 

to calculate statistical values that can be used for 

comparison. Table 3, shows that group, accuracy, 

and loss values for two algorithms convolutional 

neural network and C4.5 classifier are denoted. The 

Group statistics table shows the number of samples 

that are collected. Mean and the standard deviation 

is obtained and  accuracies are calculated and 

entered.  

Table 4, shows group statistics values 

along with mean, standard deviation and standard 

error mean for the two algorithms are also 

specified. Independent sample T-test is applied for 

data set fixing confidence interval as 95%. Table 5 

shows independent t sample tests for algorithms. 

The comparative accuracy analysis, mean of loss 

between the two algorithms are specified. Figure 2, 

shows a comparison of the mean of accuracy and 

means loss between the convolutional neural 

network and the C4.5 classifier. 

 

4. Discussion  

 

From the results of this study, 

Convolutional Neural Networks are proved to be 

having better accuracy than the C4.5 classifier. 

Convolutional Neural Network has an accuracy of 

82.36% whereas the C4.5 classifier has an accuracy 

https://paperpile.com/c/IBR434/NHNw
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of 67.18%. The group statistical analysis on the 

two groups shows that Convolutional Neural 

Networks (group 1) have more mean accuracy than 

the C4.5 classifier (group 2) and the standard error 

mean including standard deviation mean is slightly 

less than Convolutional neural networks.  

This research increases prediction for 

recognition systems to find better bone age 

prediction using x-ray images by their data. This 

model has a slow processing rate with better 

accuracy (Rajvanshi and Dhaka 2016; Prateek et al. 

2019). The slow processing rate is due to the usage 

of a large database but in the case of a smaller 

database, both the processing and accuracy are 

faster and better. The above problem's complexity 

will be reduced once a model is built (Moolayil 

2018). Although many researchers have discovered 

various recognized models, many of them cannot 

accurately perform better algorithms (Liu et al. 

2019). Many applications can be developed to 

predict accurately for sensitivity from various 

platforms. 

  The novel Convolutional Neural Network 

algorithm has the drawback of not being user-

friendly and is very time-consuming. This means 

that the novel convolutional neural network 

algorithm is not easy to use and takes a little time 

to process the data(Chen et al. 2021). In  the future, 

this bone age prediction using x-ray images can be 

further improved by developing a novel 

convolutional neural network. 

 

5. Conclusion 

 

  From this study of bone age prediction 

using x-ray images, the mean accuracy of  C4.5 

classifier algorithms is 67.18% whereas novel 

convolutional neural networks have a higher mean 

accuracy of 82.36%. Hence it is inferred that the 

novel convolutional neural network is better in 

accuracy when compared to C4.5 classifier 

algorithms. 
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Table 1. Pseudocode for Novel Convolutional Neural Networks 

// I: Input dataset records 

1. Import the required packages. 

2. Convert the image into machine-readable after the extraction feature. 

3. Assign the image to the output variables. 

4. Using the model function, assign it to the variables. 

5. Compiling the model using metrics as accuracy. 

6. Evaluate the output  

7. Get the accuracy of the model. 

OUTPUT  

//Accuracy 

 

TABLE 2. Pseudocode for C4.5 classifier 

// I: Input dataset image 

INPUT: Capture Image 

Step 1: Pre-process the image of the particular x-ray. 
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Step 2: Segment and normalize the images. 

Step 3: Extract the feature vector of each normalized candidate  

Step 4: Train c4.5 classifier based on a saved sample database.  

Step 5: Recognize the bone age by the set of  c4.5 classifiers trained in advance.  

Step 6: If there are no more unclassified samples, then STOP. 

Step 7: Add these test samples into their corresponding database for further training.  

OUTPUT: Bone age prediction. 

OUTPUT  

//Accuracy 

 

Table 3.  Group, Accuracy, and Loss value uses 8 columns with 8 width data for bone age prediction. 

 

SI.NO 

Name Type Width Decimal Columns Measure Role 

1 Group Numeric 8 2 8 Nominal Input 

2 Accuracy Numeric 8 2 8 Scale Input 

3 Loss Numeric 8 2 8 Scale Input 

 

Table 4. Group Statistical analysis for  Novel convolutional neural network and C4.5 classifier Algorithm Mean, 

Standard Deviation and standard error mean are determined 

 Group N Mean Std Deviation Std.Error Mean 

Accuracy  CNN 10 82.2250 0.10146 0.03208 

  

C4.5 Classifier 10  67.1010  .05744  .01816  

Loss CNN 10 17.7380 .07983   .02525  

C4.5 Classifier 10  32.8990  .05744 .01816 
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Table 5. Independent sample T-test t is performed on two groups for significance and standard error 

determination. the p-value is greater than 0.05 (.263) and it is considered to be statistically insignificant with 

95% confidence interval 

  

 

Levene's 
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variance  

T-Test for equality of mean 
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Fig. 1. Convolutional neural network 
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Fig. 2.  Comparison of Novel Convolutional neural network and C4.5 classifier Algorithm in terms of mean 

accuracy. The mean accuracy of the Novel Convolutional neural network is better; than the C4.5 classifier 

Algorithm. The standard deviation of the Novel Convolutional neural network is slightly better than the C4.5 

classifier Algorithm(Gilsanz and Ratib 2011). X-Axis: Novel Convolutional neural network vs C4.5 classifier.  

Y-Axis: Mean accuracy of detection ± 1 SD. 
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