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Abstract 

Diabetes mellitus has been identified as a keen disease which affects the human at any age. Predicting the disease at 

earlier would help the person in preventing and maintaining it. Towards predicting diabetes there are number of 

approaches available like Support Vector Machine (SVM), KNN, Genetic Algorithm (GA), Pattern mining and 

Decision Trees. The methods use clinical, lifestyle, professional, and other features in predicting the possibility of 

disease, but suffer to achieve higher prediction accuracy.  This work proposes a method of Hybrid pruning tree with 

Manhattan Metric measures which is used to find for early diagnosis of diabetes. To start with, the method reads the 

PIMA data set and applies feature level normalization technique to remove noisy records and normalize the data set. 

Further, the features of the data set have been extracted and generate the tree according to the features extracted. 

Once the tree has been generated, then the method applies tree pruning and trims the tree to a simplified form. With 

the test sample, the features of the test sample are extracted and measures Multi Feature Manhattan Similarity 

(MFMS) against the tree available. According to the value of Manhattan distance, the method predicts the chance of 

person to get affect by diabetes and classifies the sample.  The HPMMM model introduces higher prediction 

accuracy with less time complexity. 
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1. Introduction 

The human society faces number of challenges and diseases in their lifetime. Some of the diseases produce 

permanent illness and some of them are curable. Also, some of the diseases are chronic and the person can only 

manage the disease for their lifetime. Diabetes is the one which is having higher impact in the human society. 

According to the statistics, the major population have been affected by diabetes and the rate of infection is getting 

increased every year. Such growing rate should be monitored and reduced for the improvement of public health. 

Towards this, decisive support systems are developed to support the prediction of diabetes with set of symptoms.  

The decisive support systems are designed to assist the medical practitioner in making decision. The 
medical practitioner would have certain experience and there will be human error and they cannot mind 
everything to consider variety of factors in making decision about predicting the disease. The human population 
is getting increased and the decisive support system must use huge number of data sets with number of features 
[1].  The performance of decisive support systems is greatly depending on the set of features considered. Also, 
the performance of prediction can be improved by adapting different machine learning and artificial intelligence 
methods [2]. By incorporating such intelligence techniques, the quality of patient’s life can be improved.  

 
The growth of information technology has been adapted to various medical problems. For example, the 

medical practitioners of specific medical organization, who are geographically distributed would communicate 
with each other and share variety of information about the patient’s history and kind of disease and symptoms 
they are identifying. Also, they share the kind of treatment given to different patients between them and their 
success rate. Further, the medical practitioners provide treatment through online like phone calls and E-mails [3]. 
Also, voice over call and video calls are used in providing telemedicine to provide better service [4].  
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 Apart from predicting the disease, finding the type of diabetes is most important. There exist different 
types of diabetes namely, type-I, type-2, gestational, and other forms [8].  The young adults in the age of 30-40 
suffer with Type-I diabetes, where the patient must inject insulin for their life time. But, in case of Type-2 diabetes, 
the patients at the age above 40 get into this type of disease.  Also, it depends on the weight of the person [9].  The 
machine learning algorithms have great impact in variety of medical problems. In this way, there are number of 
methods available towards predicting diabetes with Support Vector Machine (SVM), Decision Tree, Genetic 
Algorithm, Artificial neural network, Bayesian Classification, KNN, and so on. Each method has its own merits and 
differ with each other in measuring similarity and set of features considered. The method of measuring similarity 
plays vital role in identifying the class of person. The SVM algorithm measures support value against various class 
to identify the class of person. Similarly, KNN algorithm computes Euclidean distance between various class of 
samples towards predicting the disease. The Decision tree algorithm computes the similarity according to the node 
similarity where genetic Bayesian classification algorithm computes similarity according to the rules available. 
Similarly, there exist numerous techniques to support the prediction of diabetes.   

               

 

 

 

 

 

 

 Figure 1: Attributes involved in Diagnosis of Diabetes [1] 
The problem of diabetes prediction has been approached with various approaches like ensemble learning, which 
maintains number of ensembles of diabetes persons and by measuring the similarity among ensembles, the disease 
prediction is performed. Similarly, genetic algorithm and support vector machines are used towards diabetes 
prediction according to fitness and support values. The Bayesian classifiers are used to support diabetes prediction 
which works according to the rule available. Similarly, there are number of approaches available towards the 
problem and they suffer to achieve expected performance. By considering all these, this article proposes a hybrid 
pruning tree based diabetes prediction model with Manhattan distance metric. The model performs disease 
prediction according to different features of PIMA data set and the detailed approach is presented in this section. 

 

2. Review of Literature 

There exist numbers of approaches towards predicting diabetes in literature.  A set methods are discussed around the 
problem in this section.   

Towards finding the risk associated with diabetes and predicting risk factors of diabetes, an risk analysis model is 
presented in [4,5] which finds the risks according to the factors and symptoms. On the other side, a early prediction 
model with economic burden is presented in [6], to support the public health and clinical practice [7].   

A high complex screening model is presented in [8], which finds a sub set of population have higher risk and support 
preventing diabetes. A prevention strategy is presented in [9,10] which consider the quality of life and present a 
prevention strategy.  A lifestyle-based diabetes prediction and recommends a modification scheme in preventing the 
disease [11]. 

 

Towards predicting gestational diabetes, a risk analysis model is presented in [6, 7, 12], which consider 
lifestyle, history, food habits, aging, ethnic group, and so on. An efficient approach is presented in [13,14], which 
consider BMI, age, gender, metabolic status in predicting the disease.  

An attribute score-based prediction model and risk analysis model is presented in [14], [15].  The method considers 

various risk factors of individuals and enforces effective feature extraction method to support efficient diabetes 
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prediction.  A symptom orient prediction and risk analysis model is presented in [15], which consider various 

symptoms in predicting the risk.  An efficient diabetes prediction model is presented in [18], which consider 

different categorical features to improve the performance.  The complexity of the model in predicting diabetes is 

reduced by reducing input factors in [19].   

The performance of disease prediction is greatly depending on the kind of similarity measures used. The diabetes 

prediction is performed by using Hamming, Euclidean, Manhattan distance, and Minkowski distance [20], [21].  The 

application of jacquard coefficient and Euclidean distance in classification and noise prediction is presented in [22]. 

Towards performing image classification, a weighted Chebyshev distance-based model is presented in [23]. The 

objective distance is used in different personalized learning in [24], which has been used to measure the distance 

between the current competency of a student and the expected level to attain learning expectation.  To handle the 

outlier problem, an optimized approach to support healthcare is presented in [25], which handles the 

outlier problem and improves classification performance.   

3. Methodology 

The proposed hybrid pruning tree with Manhattan similarity-based diabetes prediction model (HPMMM) predict the 

disease according to the data set given and the set of symptoms available. Initially, the method applies pre-

processing using feature level normalizing technique. The pre-processing algorithm eliminates the noisy data points 

and normalizes the   feature values. The pre-processed data set has been used towards feature extraction and 

generates the diabetes tree (DT) with number of branches and leafs. A single branch in the tree denotes the class of 

the diabetes which includes type 1, type 2, gestational, normal and so on. Each branch would have number of 

siblings which denotes each data point. Similarly, each branch has number of siblings and nodes where the nodes 

contain the features and values. Generated tree has been pruned at sibling level to trim the tree to support effective 

disease prediction.  Finally, the method applies Leaf level Diabetes prediction algorithm which uses Manhattan 

distance as a metric for measuring similarity among the data points. The prediction algorithm computes multi feature 

Manhattan Similarity (MFMS) towards various class of diabetes and disease to perform disease prediction. The 

detailed approach is presented in this section.  

 

 

 

 

 

 

 

 

 

 

 

  Figure 1: Architecture of proposed diabetes prediction model (HPMMM) 

The functional architecture of proposed HPMMM model is presented in Figure 1, where the functional components 

are discussed in detail in this section.  
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Feature Level Normalization (FLN) Technique: 

The data set considered for pre-processing would contain number of features and large number of tuples. It would 

contain missing features and values which are considered as noisy records. In order to stimulate the performance of 

disease prediction, the feature level normalization technique reads all the tuples and identifies the set of features 

available in the data set. Further, for each feature in the data set, according to the category like binary, numeric, the 

method computes the value of Adaptive Mean value (AMV) based on the value of the feature in different tuples. 

Using the value of AMV, the method traverse through each tuple and the presence of missing value has been 

adjusted with the concern AMV value and for the binary valued features; the method generates random value and 

replace it. Similarly, the tuples of the data set have been traversed and normalized to support effective disease 

prediction.  

Algorithm: 

Given: Data Set Pima 

Obtain: Pre-processed set Prs 

Start 

 Read Pima. 

 Initialize feature set Fs. 

 For each trace Ti 

  Feature list Fl =  

  For each feature f 

   If f  then 

    Fs = fs  

   End 

  End 

 End 

 For each feature f 

  If f.type!=binary then 

   Compute Adaptive mean value AMV =  

  End 

 End 

 For each trace Ti 

  For each feature f 

   If f.type!=binary && f.value==null then 

    Ti(f)=f.Amv 

   Elseif f.type==binary && f.value==null then 

    Ti(f)=Random (0,1) 

   End 

  End 

  Add to pre-processed set Prs =  

 End 

 Stop 

 The feature level normalization algorithm eliminates the noisy data points and normalizes the traces and 

tuples to support disease prediction. 

Diabetes Tree Generation: 

 The proposed model transforms the data set in form of diabetes tree which is hierarchical in nature. The 

method generates three different branches where each belongs and denotes a specific type of diabetes. Also, the 

method generates number of siblings according to deciding factors like age, BMI, insulin, blood pressure, serum 

insulin, glucose tolerance test and so on. According to various factors, the method generates number of siblings and 

at each sibling; the method generates a node to represent the tuple from the data set. The nodes of a sibling have 
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similar feature values and the siblings of a branch represent similar class of diabetes.  Even though the tuples of a 

diabetes class have same label, their feature values and symptoms would be different. This kind of tree generation 

helps the classification and disease prediction to be performed effectively.  

Algorithm: 

Given: Pre-processed data set Pds. 

Obtain: Diabetic Tree DT. 

Start 

 Read Pds. 

 Initialize diabetic tree DT. 

 For each class of diabetes Dc 

  Generate a branch B. 

  Add branch B to DT. 

  Class trace set CTS =  

  Generate random sibling and add to branch B. 

  Random tuples set RTS =  

  For each tuple T 

   If size of sibling ==0 then 

    Add t to sibling s. 

    S =  

   Else 

    Compute Sibling Match Score SMS. 

    SMS =  

    If SMS> Th then 

     Add t to s. 

     S =  

    Else 

     Create new sibling s1. 

     S1 =  

     Add to branch B. 

    End 

   End 

  End 

 End 

Stop 

 The diabetes tree generation algorithm, generates the diabetes tree from the data set given where the tuples 

are indexed in the tree according to the SMS score measured against various siblings and branches. Such generated 

tree has been used to predict the diabetes disease.  

Tree Pruning: 

 Tree pruning is the process of trimming the tree for its shape and dimension. In this stage, the method 

traverses through each branch, sibling and leaves. By analysing the features of the samples indexed in the tree, the 

method computes sibling fitness score (SFS). The value of SFS is measured according to the number features 

present in the leaves of the sibling and number of them have importance in the disease class according to their 

feature and value. According to SFS value, a subset of feature is identified and finds the leaves to prune the tree. 

Such pruned tree has been used to perform disease prediction.   
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Algorithm: 

Given: diabetes Tree DT. 

Obtain: Diabetes Tree DT. 

Start 

 Read DT. 

 For each branch B 

  For each sibling s 

   Identify set of features Fs =  

   For each feature F 

    Compute sibling fitness score (SFS). 

    SFS =   

    If SFS>Th then 

     Trim the sibling for the feature f 

    End 

   End 

  End 

 End 

Stop 

 The tree pruning algorithm estimates the sibling fitness score for any tree. According to the value of SFS, 

the method trims the tree at sibling level to support disease prediction in more efficient manner. 

Disease Prediction: 

 The proposed hybrid pruning with Manhattan metric measure-based approach performs disease prediction 

based on the tree generated. Towards this, the input test sample are read and based on the feature present in the test 

sample, the multi feature Manhattan similarity (MFMS) is measured towards various class of diseases. According to 

MFMS, the class of tuple is identified as result. 

Algorithm: 

Given: Test sample Ts, Diabetes Tree DT. 

Obtain: Class C. 

Start 

 Read TS and DT. 

 For each branch b  

  For each sibling s 

   Compute Multi feature manhattan similarity MFMS. 

   MFMS =  

  End 

  Compute cumulative MFMS value. 

   CMFMS =  

 End 

 Class C = choose the class with maximum CMFMS. 

Stop 
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 Disease prediction algorithm performs disease prediction according to the diabetic tree generated. The 

proposed method computes the value of multi feature Manhattan similarity for various classes of siblings and leafs. 

Based on the value of MFMS, the method computes the value of CMFMS and identifies a class with maximum 

CMFMS value. Identified disease class has been returned as result. 

Results and Discussion: 

 The Hybrid Prune based Manhattan Metric measure (HPMMM) based diabetic prediction has been 

implemented using R language with the PIMA data set. The method is evaluated for its performance on different 

factors and compared with other approaches. Obtained results have been presented in this section in detail. 

Parameter Value 

Data Set PIMA 

Number of Features 11 

Number of tuples 605 

Tool used R-language 

     Table 2: Evaluation Details 

 The evaluation details used towards performance evaluation has been presented in Table 1, which has been 

measured under various parameters and analysed with others.   

               Disease Prediction Accuracy % 

 1000 Tuples 3000 Tuples 5000 Tuples 

CART 78 81 85 

Ensemble Learning  81 84 89 

SVM 83 87 92 

HPMMM 87 91 96 

   Table 3: Performance on Disease Prediction Accuracy % 

 The accuracy in predicting the disease is measured for proposed and other methods and displayed in Table 

3, where the HPMMM approach produces higher accuracy than other approaches.  

  

   Figure 2: Analysis on Disease Prediction Accuracy 
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 The performance in disease prediction produced by various approaches were measured and presented in 

Figure 2. The proposed HPMMM algorithm has produces higher accuracy than other methods.  

               False Prediction Ratio % 

 1000 Tuples 3000 Tuples 5000 Tuples 

CART 22 19 15 

Ensemble Learning  19 16 11 

SVM 17 13 8 

HPMMM 13 9 4 

 Table 4: False Prediction Ratio  

 The false prediction ratio produced by various approaches are measured and presented in Table 4, where 

the proposed HPMMM model has produces less false ratio compare to others.   

  

   Figure 3: Analysis on False Classification Ratio 

 The false prediction ratio introduced by different approaches are measured and compared in Figure 3, 

where the proposed HPMMM algorithm has produced less false ratio compare to other approaches.  

Time Complexity in Disease Prediction  

 1000 Tuples 3000 Tuples 5000 Tuples 

CART 38 61 85 

Ensemble Learning  35 58 79 

SVM 31 52 72 

HPMMM 17 31 46 

   Table 5: Analysis on Time Complexity in seconds  

The time complexity introduced by various approaches in predicting the disease has been measured and presented in 

Table 5, where the proposed HPMMM model has produced less time complexity than other methods.  
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   Figure 4: Analysis on Time Complexity  

 The value of time complexity towards disease prediction has been measured and compared with the result 

of other methods in Figure 4. The proposed HPMMM approach has produced less time complexity compare to other 

methods.  

 

Figure 5. Implementation HPMMM in R - Programming 

 The snapshot of disease prediction with proposed HPMMM algorithm has been presented in Figure 5.  
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5. Conclusion 

This study proposes a hybrid prediction method, called Hybrid Pruning with Manhattan Metric Measures 

(HPMMM), for type 2 diabetes prediction. The proposed Hybrid Pruning tree with Manhattan similarity-based 

diabetes prediction model (HPMMM) predict the disease according to the data set given and the set of symptoms 

available. Initially, the method applies pre-processing using feature level normalizing technique. The pre-processing 

algorithm eliminates the noisy data points and normalizes the   feature values. The pre-processed data set has been 

used towards feature extraction and generates the Diabetes Tree (DT) with number of branches and leaves. A single 

branch in the tree denotes the class of the diabetes which includes type 1, type 2, gestational, normal and so on. Each 

branch would have number of siblings which denotes each data point. Similarly, each branch has number of siblings 

and nodes where the nodes contain the features and values. Generated tree has been pruned at sibling level to trim 

the tree to support effective disease prediction.  Finally, the method applies Leaf level Diabetes prediction algorithm 

which uses Manhattan distance as a metric for measuring similarity among the data points. The prediction algorithm 

computes Multi Feature Manhattan Similarity (MFMS) towards various class of diabetes and disease to perform 

disease prediction.   The open data set named Pima Indians Diabetes dataset were studied for the experiment, which 

contains a greater number of records for each set.   Implementation of this HPMMM using R programming which 

provides 97% accuracy.  Also, the proposed model reduces the false prediction ratio and time complexity as well. 
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