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Abstract 

 

The utilization of the Bayesian method in drug development offers several advantages. One of these is the ability to 

continuously update knowledge instead of restricting modifications to research design to major, isolated stages assessed in 

trials or phases. Additionally, the Bayesian approach is closely tied to decision-making within individual trials, drug 

development programs, and the broader context of developing a company's portfolio of medications. The future is expected 

to bring rapid advancement in clinical trial designs and analytics utilizing Bayesian methods. With political organizations 

and consumer advocacy groups calling for faster, safer, and more effective drug development, there is a risk of neglecting 

fundamental scientific concepts. However, adopting a Bayesian strategy can accelerate medication development and save 

money while maintaining sound research practices.  The Bayesian approach is already gaining popularity in drug research 

and several therapeutic areas of medical device development, with variations influenced by the personalities involved. 

Notably, therapeutic areas where the clinical endpoint is detected early stand to benefit the most. Cancer and other diseases 

that have an increasing number of biomarkers available for modeling disease progression could benefit from the Bayesian 

approach. These biomarkers allow for more accurate tracking of a patient's progress and outcome determination. The use of 

Bayesian modeling is particularly useful in treatment areas where early signs of therapeutic effectiveness are evident. 

Introduction: The trend in oncology treatment is shifting towards personalized medicine, where patients are matched with 

the most suitable treatments based on their prognostic factors [1,2]. This personalized approach has the potential to be highly 

beneficial for both patients and drug development. The initial step in evaluating the efficacy of a novel medication for a 

particular patient population in early Phase II trials is to determine whether the appropriate degree of efficacy has been 

achieved. In oncology, it is common to conduct a series of small screening trials in different patient subgroups, based on 

factors such as histology or a biomarker signature. However, these trials are often conducted independently of one another, 

without considering the possibility that some patient subpopulations may have similar therapeutic responses. The results of 

the trials in different subpopulations can provide insight into the treatment outcomes in other subpopulations. In Phase II 

cancer trials where a novel medication is being tested on various patient populations, Bayesian hierarchical models are used. 

Hierarchical modeling allows for the "borrowing" of information about the treatment effect in one group when predicting the 

treatment impact in another group [3]. Essentially, the estimated treatment effect for each group is reduced towards the 

average [4]. The degree of shrinkage is determined by the results, including the relative accuracy of the estimations in the 

various groups. 
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Novelty 

 

When conducting research on adverse events (AEs), it is 

important to consider whether all three forms of AEs 

should be flagged. To answer this question, four factors 

need to be taken into account, including significance 

levels, overall number of AE kinds, rates for AEs not 

being considered, and biological links between different 

AEs. The frequentist approach to multiple comparisons 

only takes into account the first two factors. 

 

A Bayesian approach considers all the aforementioned 

factors, and it matters if the three AEs with high drug-

related rates are present in the same bodily system. The 

Bayesian approach is less concerned with type I error 

rates and is focused on determining the likelihood that 

the medicine may result in an AE using all available 

data. Bayesian methods may be more promising for 

safety evaluation. The simultaneous treatment of 

multiple AE kinds that are divided into body systems is 

addressed using a three-stage hierarchical mixture model. 

 

This model offers a clear procedure for sharing data 

among various AE types, and regression is a result of the 

model's hierarchical structure. Various body systems 

exhibit a variety of AEs that are recorded in clinical 

studies, and a hierarchical model permits borrowing 

between AEs within the same body system. 

 

A sensitivity analysis can be performed to show how 

crucial it might be to assign AEs to certain body systems. 

The assignment of AEs to body systems is based on 

biological or regulatory considerations, and if this 

assignment is ambiguous, the model can still be used for 

a variety of other plausible assignments. 

 

2.  Methodology  

 

Bayesian Clinical Trials 

The use of Bayesian statistical methods in clinical 

research has been on the rise, as they are well-suited to 

adapt to the information that accrues during a trial. This 

can potentially result in smaller, more informative trials 

and better treatment for patients. With Bayesian 

analyses, results can be assessed at any time, including 

continually, allowing for modifications to the trial 

design, such as slowing or stopping accrual, imbalancing 

randomization in favor of better-performing therapies, 

dropping or adding treatment arms, and changing the 

trial population to focus on patient subsets that respond 

better to experimental therapies. These analyses use 

available patient-outcome information, including 

biomarkers that may be related to clinical outcome, and 

can also incorporate historical data and trial data from 

relevant studies. In this article, we will explore the logic 

behind Bayesian clinical trials and how they could 

enhance the efficiency of drug development. 

The multitude of medications, doses, and combinations 

can lead to various side effects. Data shows that around 

half of medications cause some degree of increase in the 

incidence of a specific adverse effect, but not all are 

impacted by drugs. Consequently, only a small 

proportion of medications will be statistically shown to 

be harmful in any one comparison. The question is, how 

can researchers distinguish the signal from the noise? 

How can they balance false positives (safe medications 

that are rejected) and false negatives? 

 

Computational Techniques for Bayesian Analysis 

The development of computational methods and the 

widespread usage of high-speed computers have 

contributed to the greater use of Bayesian methods in 

clinical research. Due to computing constraints, Bayesian 

procedures that always appeared right and proper could 

not be applied, but this is no longer the case. Almost any 

Bayesian design or analysis may be created and 

confirmed with the use of contemporary computer tools. 

Yet, frequentist software is far more advanced and 

accessible than Bayesian software. Writing custom 

Bayesian computer programmes is not difficult for 

statisticians, but it takes time. Moreover, the programmes 

will need validation. Online resources include a fantastic 

collection of applications known as WinBUGS 

(Windows version of Bayesian inference Using Gibbs 

Sampling) (see The BUGS Project in Further 

information). Moreover, SAS has some (mostly 

advanced) Bayesian macros and wants to include more 

Bayesian applications. Nevertheless, there is a lack of 

Bayesian software available. The previous distribution 

for the 2 parameter determines the borrowing amount. 

The model can range from assuming all treatments are 

the same to assuming no borrowing thanks to this 

parameter. A previous that we have specified places 

roughly a weight of 0.001 on an anticipated value of 0.1 

for. The quantity of borrowing can be shaped by the data 

because this prior is weak. We demonstrate the 

probability of claiming efficacy and the predicted 

response rate across a number of prior distributions for 

the null and alternative situations in order to demonstrate 

the sensitivity of the results to the chosen prior. We 

display the findings for our same mean (0.1), with more 

weight (0.01), with less weight (0.0001), and with the 

same weight (0.001), but with larger and smaller means, 

respectively (0.01). Every prior still enables the data to 

influence the borrowing amount. As a result, there is 

little variation in the mean estimated likelihood of 

response, and the chance of claiming efficacy is constant 

across all priors. 

As a result, even if the prior on 2 is crucial, we have 

chosen priors that are resistant to changes in the order of 

magnitude. 

 

Bayesian Solution 

It is a multiple testing scenario in the case study with 5 

endpoints where we must test high versus low. Let yi j be 

the vector of the i variables for j treatments and i = 1...5, 

j = 1…2 

 
 

Bayesian Approach:  

Prior probabilities related to the multiplicities are used to 

account for any multiplicity adjustments that may be 

required. Generally, the more hypotheses that can be 
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considered, the lower the prior probabilities that each one 

is assigned. 

 

Three stage hierarchical modelling 

The three-stage hierarchical mixed model. There are B 

body systems. Within body system b there are kb types of 

AE’s labeled Abj, where b = 1,..., B and j= 1…kb Of the 

Nc controls, Xbj experience Abj, and of the Nt patients in 

the treatment group, Y bj experience Abj. The 

probabilities of experiencing Abj are cbj and tbj, for 

control and treatment patients, respectively. We use 

logistic transformations: 

 
and  

 
Three steps of the hierarchical prior are presented. The 

stage 1 priors are listed below. A normal previous 

distribution applies to the's: 

 
for b = 1;…B and j=1; … kb. Parameters bj are the log-

odds ratios. If bj = 0 then the probability that a patient 

experiences Abj is the same for control and treatment; 

that is, cbj = tbj. 

A positive probability is assigned to this possibility using 

the following mixture prior distribution: 

 
for b = 1… B; j = 1 : : : kb. 

The second stage of the prior structure is to assign a prior 

distribution to the hyper-parameters: 

 
for b = 1 : : : B and 

 
 

With early efficacy stopping 

Simon's design does not have an early stopping point 

with a claim of efficacy. Stopping early may be 

preferable for efficacy, saving time and patient resources, 

and hastening the progression of the treatment to the 

following stage of development. In other situations, one 

might want more details about a treatment that seems to 

be working, but single-arm data with tumour response as 

the outcome is of limited use in deciding whether to 

proceed to Phase III. Reconsider the Bayesian 

hierarchical trial examples. With 10 patients in the first 

interim analysis of Example 1, group 2 could have 

ceased early for efficacy, and the other groups may have 

stopped early for efficacy as well at the second interim 

analysis. Despite the additional patients enrolled, the 

implication remained the same. This trial might have 

been stopped early, with the right conclusion, and most 

of the allocated patient resources would have been saved 

if there had been an early efficacy stopping criteria. Here, 

we contrast the three designs' operational traits when the 

Bayesian designs include early halting for both futility 

and efficacy. Early trial termination due to effectiveness 

claims often has no impact on the overall likelihood of 

trial success, but it does reduce the mean sample size. 

The mean sample size in each group tends to be smaller 

as a result of the Bayesian designs' addition of early 

efficacy stopping. There is a further reduction in sample 

size if the Bayesian hierarchical design offers a higher 

probability of trial success. The Bayesian hierarchical 

design has a larger mean sample size than the 

Independent Bayesian design in the "All in the Middle" 

scenario because it must reach the maximum sample size 

more frequently before declaring efficacy. Shrinkage in 

this scenario makes early efficacy stopping suitably more 

challenging because early stopping criteria are based on 

pmid for all groups and shrinkage in this scenario is 

towards pmid. 

 

Predictive probabilities and trial design 

The process of Bayesian updating has significant 

implications for the design of trials. One of its most 

valuable outcomes is the ability to predict what will 

happen in a trial from any given point, including the start 

of the trial, based on the currently available data. While 

future results cannot be predicted with certainty, the 

Bayesian approach provides a way to evaluate the future 

with the appropriate level of uncertainty. In the context 

of clinical trials, Bayesian hierarchical modeling has a 

wide range of applications. For instance, in the case of 

cancer research, several drugs that are effective in 

treating breast cancer may also be effective in other solid 

tumors. Traditionally, oncology drug development has 

focused on studying one cancer type at a time. However, 

a better approach would be to include patients with 

various cancer types in a single trial to assess the activity 

across different diseases. In a hierarchical model, one 

level of experimental unit could be cancer type, and 

another level could be patient within cancer type. If 

multiple trials are involved, a third level in the hierarchy 

can be added to include "trial". It is also important to 

model the potential role of biomarkers that may predict 

therapeutic benefits across diseases. Hierarchical 

modeling has several advantages, including providing a 

formal mechanism for adjusting the regression effect or 

"regression to the mean". For instance, some groups may 

have unusually large or small results, particularly for 

modest sample sizes. Additional data usually corrects 

these fluke observations, pulling them back toward the 

mean. Hierarchical modeling explicitly corrects for this 

by modeling the effect in all groups. This approach tends 

to produce more accurate estimates that are closer to the 

true values. The James-Stein estimator and other similar 

shrinkage estimators are more effective than no-

borrowing estimates. It is even better to borrow 

measurements between entities that bear no relationship 

than to let them stand alone. Many authors have 

contributed to the literature on Bayesian hierarchical 

models and their relationships with empirical Bayesian 

methods. When borrowing hierarchically, groups that are 

extreme and those with greater uncertainty (i.e., those 

with smaller sample sizes) tend to experience greater 

shrinkage. The amount of borrowing is not determined in 

advance but rather by the data. If results across groups 

are very similar, there will be more borrowing. If results 

differ, there is less borrowing and greater uncertainty 

associated with the estimates. Three different design 

strategies are compared in this article. The first two 

approaches involve four separate trials, one for each 

patient group. The first approach employs Simon's 

Optimal Two-Stage design, while the second is Bayesian 

and adaptive, with results updated frequently for 

potentially stopping accrual early for futility. Each trial 
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involves many stages. Comparing the two approaches 

addresses the advantage of frequent monitoring versus 

having a single interim analysis. The third approach is a 

modification of the second, where the four groups are 

included in a single trial that employs Bayesian 

hierarchical modeling across the four groups in addition 

to frequent monitoring. Comparing the latter two 

approaches addresses the advantages of hierarchical 

modeling. This article focuses on a non-randomized 

single-arm trial with an endpoint of tumor response, but 

the same general approach can be applied to two-armed 

randomized trials and trials with other types of 

endpoints, including time-to-event endpoints. 

 

Bayesian hierarchical adaptive design 

The four patient groups are taken into account as a 

single, integrated trial in this design, and a Bayesian 

hierarchical model uses information from all four groups. 

In order to achieve this, we model the θi using a normal 

distribution whose mean μ and variance σ2 is unknown. 

 
Modeling the unidentified mean and variance involves 

using a second level of the distribution (hierarchy). A 

dynamic quantity of borrowing will be created dependent 

on the similarity between groups by the data across the 

groups shaping the posterior distribution for the mean 

and variance across groups. The following prior 

distributions of μ and σ2 are 

 
The parameter σ2 is used to measure the level of diversity 

that exists among the patient groups. If σ2 is 0, there will 

be complete pooling of the results across the patient 

groups, while still making adjustments for the targeted 

p1 rates in each group. On the other hand, if σ2 is almost 

infinite, then no results can be shared across the groups. 

For values between these two extremes, there is some 

level of results sharing that is proportional to the 

variability among groups. The model can handle these 

different levels of diversity, so the selection of the prior 

for σ2 significantly impacts the model results. Our choice 

of prior reflects a small degree of variability across the 

four groups. Assuming a prior estimate of σ=0.1, the 

prior for σ2 is assigned with very little weight, only 0.1% 

of one observation. Considering the four patient groups 

to be observed in the trial, the posterior distribution 

provides only insignificant information to the overall 

posterior. The prior distribution of μ is weakly non-

informative, with a prior mean that is close to the null 

hypothesis. While the model allows learning about μ and 

σ2 as the trial progresses, the information available for 

σ2 is limited when there are only four patient groups, 

even with large sample sizes. Hence, the prior 

distribution of σ2 plays a crucial role in determining the 

level of result sharing across groups, and its careful 

evaluation is essential. The model's sensitivity to the 

prior selection for σ2 is discussed further below. 

The adaptive algorithm, including interim analyses, early 

stopping rules, and the final efficacy criteria, is the same 

as previously described for the independent-group 

Bayesian design. However, for the hierarchical model 

analysis, we apply the same early stopping rules and final 

evaluation criteria separately for each group. For 

instance, group 2 may stop early for futility, while 

groups 1, 3, and 4 continue to the maximum sample size. 

At the end of the trial, the efficacy criteria may be 

satisfied for group 1, but not for groups 3 and 4, enabling 

us to examine the effect of result sharing on error rates 

and mean sample size. For presentation convenience, we 

assume equal accrual to all groups, but in practice, 

accrual to the groups will differ, with some groups 

accruing more rapidly than others. Efforts may be made 

to balance accrual, such as opening additional sites for 

groups that are slower to accrue. 

 

Estimation: 

As previously mentioned, the degree of result sharing in 

the Bayesian hierarchical approach depends on the data: 

the more similar the groups, the greater the sharing. The 

"Null" and "Alternative" scenarios demonstrate that 

group similarity leads to extensive sharing and reduced 

uncertainty. In comparison to the other two designs, the 

standard deviations for the Bayesian hierarchical design 

are smaller in this situation. For example, the response 

rate for group 4 in the null scenario is 20%, but the 

Bayesian hierarchical model has a mean estimate of 

14%. There is little or no bias for the other groups. As 

previously stated, there is a relatively greater amount of 

shrinkage for group 4 in this scenario, resulting in a 

particularly low Type I error rate. 

 

Prior Information 

 If the prior is reliable, the Bayesian approach is 

strong 

 If the prior is appropriate, it is an improvement over 

non-Bayesian methods.  

 If the specification is challenging, the approach may 

be less robust. 

 The posterior may not be resistant to alternative 

priors.  

 One could use a quasi-Bayesian prior that is not 

entirely specified to address this issue. 

 

3.  Results 
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After 10,000 iterations, the convergence pattern for the 

data displays the MCMC outlier points.  

The patient estimation data is modeled hierarchically 

with consideration of the parameters for patient 

observations, including missing data observations. 

 

4.   Conclusions 

 

Bayesian methods offer the advantage of accounting for 

multiplicities, with hierarchical modeling being 

particularly efficient in this regard. Managing adverse 

events (AEs) in clinical trials poses a challenging 

statistical problem, especially when dealing with 

multiple comparisons. It is essential to model the 

available structure and information to conduct good 

science. My methodology shows that relocating an AE to 

a different body system can significantly affect 

conclusions, presenting both positive and negative 

aspects. The model benefits from exploiting information 

across related types of AEs, but it necessitates careful 

assignment of AEs to body systems, which should be 

done based on biological grounds and separate from the 

data. Assignments based on empirical correlations 

violate the modeling's spirit. For uncertain assignments, 

multiple runs of the model with different assignments 

should be performed to provide a sensitivity analysis of 

the conclusions. If an AE is assigned to the wrong body 

system, it can impact the model's conclusions, but we 

have not addressed how to make reparations. Any post-

hoc corrections can be challenging to make without 

biasing the conclusions, representing another level of 

multiplicity similar to data dredging. Our model relies on 

marginal data, and while it offers precise conclusions 

about treatment effects, modeling dependent frequencies 

could yield even greater accuracy. Beyond drug AEs, our 

model has broad applications, including the analysis of 

cDNA microarray data, where the multiplicity problem is 

more pronounced, with tens of thousands of genes 

potentially involved. Categorizing genes into genetic 

pathways (similar to body systems for AEs) helps to 

identify differentially expressed genes implicated in 

diseases and their treatment. The developed Bayesian 

model accounts for categorical data and multiple 

comparisons to provide more accurate estimates. 

 

5.    Discussion 

 

We conducted a comparison of two Bayesian adaptive 

approaches with Simon’s Optimal Two-Stage design in 

the context of Phase II trials involving multiple patient 

groups. Bayesian adaptive designs can be configured to 

have similar operating characteristics to Simon’s design 

in terms of Type I error and power. Such designs usually 

have smaller sample sizes because of more frequent 

interim analyses and the possibility of stopping early for 

efficacy. Utilizing a Bayesian hierarchical model to 

borrow across patient groups can further reduce Type I 

error, increase power, and decrease the mean sample 

size, making personalized medicine more feasible. 

Several pharmaceutical companies have successfully 

implemented this approach, which is sometimes referred 

to as a tumor-agnostic design, and frequently focuses on 

patients with a tumor positive for a specific biomarker 

regardless of the tumor site. Determining whether and 

how to borrow across groups depends on whether similar 

treatment effects are possible. The amount of borrowing 

in our model is based on an inverse gamma hyperprior on 

the variance term for the log-odds of the response rate, 

which can be adjusted according to clinical judgment 

during trial design. The choice of futility and efficacy 

thresholds can be made by examining simulation results 

and adjusting criteria to achieve optimal results. In our 

example, the Bayesian hierarchical design may be 

overpowered and could be refined to have lower power 

in each group. The definitions of p0, pmid, and p1 in the 

Bayesian designs are partially an artifact of the 

comparison with Simon’s design, and it may be more 

natural to use a single target response rate, pgoal, instead. 

In conclusion, the Bayesian hierarchical design is an 

important alternative in Phase II trials, as it offers greater 

power and lower Type I error with a lower mean sample 

size, making personalized medicine more feasible. 
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