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Abstract 

This paper describes the synthesis and characterization of copper-integrated magnetic 

nanoparticles (Fe3O4@silica-Lys-Cu(PPh3)I) with a size less than 16 nm. The complex was 

adequately characterized by thermogravimetric analysis (TGA), Fourier transform infrared (FT-

IR), energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray 

photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and a vibrating sample 

magnetometer, (VSM). Using the Chan-Lam coupling method, the catalytic performance of 

copper integrated magnetic nanoparticles (Fe3O4@silica-Lys-Cu(PPh3)I) was investigated in the 

preparation of bioactive N-aryl sulfonamides from a variety of aryl boronic acids and sulfonyl 

azides in ethanol. The key advantages of present method are magnetically separable catalyst by 

applying external magnet and use of green solvent. The reusability studies exhibit that complex 

can be reused up to eight consecutive times without material reduction in catalytic activity. 

Keywords: Copper, green solvent, magnetic nanoparticles, N-aryl sulfonamides, reusability, 

triphenylphosphine.  

Introduction  

 Recently, cross coupling reactions have emerged as an extremely useful tool in synthetic organic 

chemistry. By combining two fragments with the assistance of a metal catalyst, they make it 

possible to produce products in a straightforward manner. [1] For their potential value in 

medicinal chemistry, C-N cross-coupling reactions have been intensively studied, and they have 

made substantial contributions to the synthesis of dyes, agrochemicals, and medicines. These 

responses have also contributed significantly to the development of new methodologies. [2a-b] 

Due to the diverse applications for the products of C–N cross-coupling reactions, numerous 

methods have been developed. [3a-c] Chan–Lam coupling is one of the most frequently used 

techniques for C–N cross coupling. The Chan–Lam coupling process employs arylboronic acids 

in conjunction with amines under moderate reaction conditions. It has many advantages over 

other methods, including inexpensive catalysts, room temperature, and excellent functional 

group endurance. Moreover, the Chan–Lam coupling reaction can be performed in a single step. 

[4a-c] Their synthesis of antidepressant drugs, N-arylation of purine nucleosides, derivatization 

of silica gel exterior, creation of a porous aromatic structure, fabrication of a microelectrode 

array with a polymer coating for electrochemical signalling, etc. all utilise the Chan-Lam 

coupling. [5] In recent years, the development of magnetic nanoparticles (MNPs) has been 

accelerated in the catalysis industry, where magnetic nanocatalysts are essential for meeting 

green chemistry requirements. [6a-m]. Using MNPs is one way to link homogeneous and 

heterogeneous catalysis in a chemical reaction. [6n] MNPs are utilised for a variety of 

applications, including catalysis[7], biomedical engineering[8a-d], therapeutic delivery[8e], 

biosensor[8f], atmospheric treatment[9], biochemical separation[10], biocompatibility [11] and 

dietary analysis[12]. Since the surfaces of MNPs can be functionalized with such a wide variety 

of substrates, this has created a multitude of opportunities for designing mission catalysts. [13a] 
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Organosiloxane precursors have been utilised successfully for depositing silica on MNPs, among 

numerous other precursors. This coating functions as a barrier and hydroxyl-rich layer for a 

significant amount of organofunctionalization. Other materials have been utilised as well. [13b] 

MNPs have recently gained traction as potentially useful advanced materials due to their unique 

combination of physicochemical properties, which include strong dispersivity, massive surface 

area, low harmful potential, super-paramagnetic performance, and bioactivity. [13c] As a result, 

nano-magnetite-assisted catalytic systems have recently generated a great deal of interest within 

the field of chemical synthesis. [14] In addition, the prospect of magnetically separated catalysis 

has attracted the interest of the academic community, not least because of its potential 

application in fixed-bed systems and the ease with which it can be retrieved using an external 

magnet. [15] Despite progress, MNP development in magnetic findable catalyst preparation is 

still in its infancy and requires immediate attention. N-aryl sulfonamides are preferred patterns 

that have been demonstrated to play an active role in the study of biological sciences due to their 

fascinating chemical properties and potential biological actions. In contrast to their use in 

treating diabetes, hydrops, and cardiovascular issues, these compounds exhibit analgesic, 

carcinogenic, antiseptic, and acquired immune deficiency syndrome properties. [16] The 

production of N-aryl sulfonamides is a major focus of research in the field of chemical synthesis 

due to the compounds' promising medical applications. Copper catalysed interactions of sulfonyl 

azides or sulfonamides with boronic acids,[17] and palladium(II) acetate catalysed N-arylation of 

sulfonamides involving haloarenes or aryl triflates,[18] to name a few of the most well-known 

techniques. Transition metal-free reaction of o-silylaryl triflates with sulfamides;[19] copper 

facilitated the reaction of chloramine-T and arylboronic acids;[20a] Pd aided the cross-coupling 

of methanesulfonamide with haloarenes; [19b] Pd enhanced the aminosulfonylation of aryl 

iodides; and [20c] iron catalyzed the [20d] In terms of substrate versatility, moderate reaction 

conditions, and potential synthetic applications, the copper-catalyzed reaction of sulfonyl azides 

and boronic acids is the most efficient method. Recent research indicates that a variety of 

catalytic systems may increase the effectiveness of this method. In addition, there is still room 

for investigation of novel methods, particularly those involving the use of a substantial catalyst 

support. Using ethanol and the Chan-Lam coupling method, we present a novel method for 

producing bioactive N-aryl sulfonamides from a variety of aryl boronic acids and sulfonyl 

azides. This method is a continuation of our work on heterogeneous catalysis and is based on the 

discussion presented above. [21] 

2. Experimental section 

2.1 General remarks  

 The reactions were conducted with dried equipment, which also served to maintain the 

necessary conditions for the reactions. To verify the product and surface functionalization, KBr 

pellets were utilized in a Perkin-Elmer Spectrometer (Model No.783USA) to obtain FTIR 

spectra of compounds in the range of 400–4000 cm
-1

. The weight reduction graphs were acquired 

by heating the sample from 25 to 1000 °C using the TA SDT Q600 V20.9 Build 20 instrument. 
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The elemental composition was broken down and examined using a Perkin-Elmer 2400, Series 

II, CHNS/O analyzer. The RIGAKU Mini flex 600 XRD was utilized for phase identification 

and structural elucidation of the synthesized compounds over a 2 angle range of 20 to 80 

degrees. The morphology of the samples was examined using a Philips CM 200 electron 

microscope with a working voltage ranging from 20 to 200 kV. Using a Lakeshore 

magnetometer from the United States, Model 7410 and investigations into magnetism were 

conducted (VSM). All samples were induction heated in a 1.5 mL plastic microcentrifuge tube 

with a 6 cm diameter coil (4 turns). Following the procedure outlined in previous research, Fe3O4 

MNPs (1) and silica-coated Fe3O4 MNPs (1) were produced (2). The remaining chemicals were 

purchased from regional suppliers and utilized without additional purification. 

2.2 Preparation of Fe3O4 MNPs(1) 

 Using chemical co-precipitation, Fe3O4 nanoparticles were manufactured. In a procedure 

that exemplifies the method, 2 g (10 mmol) of FeCl2.4H2O and 4 g (15 mmol) of FeCl3.6H2O 

were dissolved in 30 ml of distilled water. In addition, 25 mL of ammonium hydroxide solution 

was added while vigorously agitating the aforementioned mixture. Each drop of the solution was 

added while the mixture was continuously stirred. After the reaction was complete, the resulting 

mixture sat for an additional half-hour to form the black Fe3O4 MNPs precipitate. To purify the 

Fe3O4 MNPs (1), we first separated them with an external magnet, then washed them with hot 

water, and finally dried them at 60 °C in a vacuum.  

FT-IR (KBr, thin film): =3405, 1599, 570 cm
-1

. 

2.3 Preparation of silica coated Fe3O4 MNPs(2) 

 Nanoparticles of Fe3O4 were manufactured via chemical co-precipitation. 2 g (10 mmol) 

of FeCl2.4H2O and 4 g (15 mmol) of FeCl3.6H2O were dissolved in 30 mL of distilled water as 

an example of the method. In addition, 25 mL of ammonium hydroxide solution was added to the 

mixture while vigorously stirring. Each drop of the solution was added while continuously 

stirring the mixture. After the reaction was complete, the mixture was sat for an additional half-

hour to precipitate the black Fe3O4 MNPs. The Fe3O4 MNPs (1) were purified by separating 

them with an external magnet, washing them with hot water, and then drying them at 60 °C in a 

vacuum. FT-IR (KBr, thin film): = 3410, 1602, 1072, 971, 795 and 634 cm
-1

. 

2.4 Preparation of Fe3O4@silica-Lys (4) 

 The mixture of silica coated Fe3O4 MNPs (2) (2 g) and L-Lysine (3) (2 g, 13 mmol) 

dissolved in distilled water (100 mmol) was continuously stirred for an hour and a half. After 

allowing the reaction mixture to settle completely, magnetic separation was utilized to separate 

the product. Fe3O4@silica-Lys (4) was obtained by treating the product with methanol (4 x 20 

mL), distilled water (4 x 20 mL), and drying it under vacuum at 50 °C for 13 hours (4). 

FT-IR (KBr, thin film): = 3404, 2924, 1741, 1384, 1101, 971, 813 and 638 cm
-1

. 

 2.5 Preparation of [Fe3O4@silica-Lys-Cu(PPh3)I]complex (5) 

  A mixture of MNP-Lys (4) (2.0 g), CuI (0.95 g, 5 mmol) and triphenyl phosphine (1.3 g, 

5 mmol) in distilled water (100 mL) was stirred at 80 °C for 24 h. Afterwards, the product was 
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separated by external magnet, washed with methanol (3 × 50 mL), CH2Cl2 (3 × 50 mL) and 

dried under vacuum at 50 °C for 24 h to yield [Fe3O4@silica-Lys-Cu(PPh3)I]  complex (5). 

FT-IR (KBr, thin film): υ = 3418, 2958, 2923, 1675, 1634, 1564, 1518, 1480, 1434, 1094, 693, 

515, 469 cm
−1

. Observed analysis of elements (%): C, 33.80; N, 0.84; P, 3.19; O, 22.82; Si, 

11.67; Fe, 18.46; Cu, 4.37; I, 1.80; Loading: 0.68 mmol Cu g
−1

 of 5. 

2.6 Protocol for the general synthesis of N-aryl sulfonamides 

 A mixture of phenyl boronic acid (1.2 mmol), sulfonyl azide (1 mmol) and 

[Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) (70 mg) in ethanol (5 mL) was stirred at 70 °C. After 

completion of the reaction as monitored by the TLC, the 5 was Separated by using external 

magnet. Evaporation of solvent in vacuum followed by column chromatography over silica gel 

using petroleum ether-ethyl acetate afforded pure products. 

3. Results and discussion 

 Preparation of Magnetic nanoparticle decorated Lysine-copper complex is depicted in 

scheme 1. Initially, water dispersible base Fe3O4 MNPs (1) were prepared by chemical 

precipitation method as described in the literature.[22] The silica coating of 1 was achieved 

through base catalyzed hydrolysis using tetraethyl orthosilicate (TEOS) resulting in the 

formation of silica coated Fe3O4 MNPs (2).[23] The organofunctionalization of 2 with L-lysine 

(3) resulted in the formation Fe3O4@silica-Lys (4) through the reaction of –COOH groups of 3 

with –Si-OH groups of 2forming stable O-Si-O bonds. We have chosen L-lysine as a prime 

ligand owing to the presence of groups that serve as donor ligands forming stable chelates with 

variety of metals ions. Finally, the complexation of 4 with Ph3P as a co-ligand and CuI as metal 

salt precursors  resulted in the formation of desired copper incorporated magneticnanoparticles 

acronymed as Fe3O4@silica-Lys-Cu(PPh3)I complex (5). 
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Scheme 1: [Fe3O4 @ silica-Lys-Cu(PPh3)I] synthesis in multiple steps complex (5)  

3.1 FT-IR:- The FTIR spectroscopy was used to monitor the reaction sequence employed for the 

synthesis of [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5). The FTIR spectrum ofFe3O4 MNPs 

(1)displayed characteristic Fe–Ostretching band at 570 cm
-1

(Figure 1[a]). The FTIR bands at 

1101 cm
-1

, 971 cm
-1

, and 813 cm
-1

 corresponding to a symmetric Si-O-Si stretching, symmetric 

Si-O-Si stretching, and asymmetric Si-O-Si stretching, respectively suggests the formation of 
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silica coated Fe3O4 MNPs (2)(Figure 1[b])[24]. The successful covalent grafting of L-lysine (3) 

on 2 was corroborated from the FTIR spectra of Fe3O4@silica-Lys (4) that displayed peaks at 

3404 (N-H stretching), 2924 (C-H stretching), 1635 (C=O stretching), 1462 (C-O stretching), 

1384 (C-N stretching) and 638 cm
-1

 (Fe-O stretching) (Figure 1[c])[25,26]. Finally, the 

formation of 5 was validated from the FTIR spectrum which revealed characteristic peaks at 693 

cm
-1

 (Cu-I stretching) and series of bands in the region 1094-515 cm
-1

 corresponding to the 

stretching of P-C bonds in PPh3 group.[27,28] Further, the formation of 5 was supported from 

appearance of strong peaks at 1634 cm
-1

 (symmetric C-C stretching), 1480 cm
-1

, and 1434 cm
-1

 

(stretching vibrations of the monosubstituted benzene ring) (Figure 1[d]).[29] 

 

 
Figure 1: FT-IR spectra of [a] Fe3O4 MNPs (1); [b] Silica coated Fe3O4 MNPs (2);  

[c] Fe3O4@silica-Lys(4); [d] [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5)  

3.2 TGA:- The thermal profile of base Fe3O4 MNPs (1) and [Fe3O4@silica-Lys-Cu(PPh3)I] 

complex (5) was investigated by using thermogravimetric analysis(TGA) over the temperature 

range of 25-1000 °C at a heating rate of 10 °C/min under nitrogen environment (Figure 2). The 

TGA curve of 1 depicted two stage thermal decomposition (Figure 2[a]). The first weight loss of 

5.27% up to 129 °C is attributed to the evaporation of water. The existence of Fe3O4 molecules 

was confirmed by a lack of noticeable second weight loss between 130-800°C. (Figure 2[a]). On 

the contrary, thermogram of 5 revealed multi-stage thermal decomposition pattern. An initially, 

weight loss of 3.96% up to 160 °C was ascribed to desorption of physisorbed and chemisorbed 

water. The cumulative three-step weight loss of 6.82%, 25.79%, and 13.80% is attributed to the 

decomposition of organic moieties functionalized on the Fe3O4 core. Finally, the large residue 
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weight of 45.92% is due to formation of metallic oxide and carbaceneous 

material.[30.31](Figure 2[b]). 

 

 

Figure 2: TGA curves of [a]Fe3O4 MNPs (1) and [b][Fe3O4@silica-Lys-Cu(PPh3)I]complex (5)  

3.3 EDX: -Energy dispersive x-ray analysis (EDX) was utilized to analyze the elements 

composition of [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5). The EDX mapping revealed the 

presence of carbon, oxygen, iron, nitrogen, phosphorus, silicon, and copper (Figure 3). The 

analysis revealed 4.34% of Cu indicating loading of 0.68 mmol of Cu per gram of 5. 

 
Figure 3: EDX spectra of [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) 
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3.4 XRD: - (XRD) examination was utilized to determine if the crystal structure of Fe3O4 MNPs 

(1) was maintained in [Fe3O4@silica-Lys-Cu(PPh3)I]complex 5. (Figure 4). With (hkl) values of 

(220), (311), (400), (331), and (431), the major distinctive peaks in the diffractogram of 5 were 

formed well with (220), (311), (400), (331), (431) and (511).[32] All of the reflective peaks were 

referenced on the JCPDS card (reference code: 77-1545), indicating that the Fe3O4 MNPs have a 

single phase inverse spinel structure with high phase crystallization. Using the Debye-Scherrer 

formula, the average crystal size was calculated to be 15.9 nm based on the most prominent 

peaks (311) at 2 values of 35.54° for 5. The accuracy of this calculation's results was confirmed. 

XRD analysis reveals that the crystalline structure of compound 1 is maintained even after 

undergoing multi-step functionalization in compound 5. 

 
Figure 4 XRD pattern of [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) 

 

 

3.5 TEM: - Transmission electron microscopy (TEM) was used to investigate the morphology of 

the [Fe3O4@silica-Lys-Cu(PPh3)I]complex (5). The TEM micrographs(Figure 5)revealed 

spheres with non-smooth surface. Moreover, encapsulated dark magnetite nanocores surrounded 

by grey shell were seen in TEM micrographs(Figure 5a-b).[33] A fine observation of (Figure 

5[c])indicate average nanoparticle size of 15 nm for 5 with a lattice fringe width distance of d(311) 

= 2 516                    lectron diffraction (SAED) of 5 exhibit four strong diffraction rings 

with bright dotted pattern corresponding to crystallographic planes (311), (400), (331) and (422) 

respectively (Figure 5[d]). SAED pattern of 5 persuades polycrystalline nature of Fe3O4 MNPs.  
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Figure 5: TEM images of [a-b] [Fe3O4@silica-Lys-Cu(PPh3)I](5); 

 [c] Nanoparticle of 5 showing lattice fringe width; [d] SAED pattern of 5 

3.6 VSM: -The magnetic properties of  Fe3O4 and [Fe3O4@silica-Lys-Cu(PPh3)I]5 were 

evaluated by vibrating sample magnetometer (VSM) measurements. The VSM analysis revealed 

saturation magnetism (Ms) value of 75 emug
-1 

for 1 and 52 emug
-1

 for 5 (Fig. 6a-b). The 

decrease in the Ms value caused by the presence of organofunctional groups on the nano-exterior 

magnetite's.[34] Even though Ms values of 5 is lower than that of 1, it is sufficient to allow facile 

separation using an external magnet. 

 

Figure 6 Magnetic curves of [a]bare Fe3O4 MNPs (1)and [b] [Fe3O4@silica-Lys-Cu(PPh3)I] 

complex (5) 
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3.7 XPS: -The X-ray photoelectron spectroscopy (XPS) was further employed for structural 

investigations of [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5). The XPS survey spectrum of 

[Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) displayed peaks of Fe, O, Si, C, N, P, I and Cu (Fig. 

7a). The core level XPS spectrum of Cu 2p displayed peaks at 933.44 eV and 953.45 eV 

respectively (Fig. 7b). The fact that the energies of these peaks differ by 20.01 eV demonstrates 

that copper in complex 5 is in +1oxidation state.[35] In the core level XPS spectrum of C1s, the 

main peak is observed at 285.1 eV which is again deconvoluted into 283.1 eV (Fig. 7c). The 

peak at 283.1 eV shows bonding interactions of carbon and silicon. This fact is again confirmed 

by a peak around 100.6 eV in the Si 2p region (Fig. 7a). The core level spectrum of oxygen 

displays peaks with binding energies 529.7 and 533.2 eV which are indicative for oxygen in 

Fe3O4 and oxygen bonded with Si (Fig. 7d).[36] The large peak area with binding energy 131.77 

eV is ascribed to presence of P 2p peak related to triphenylphosphine group (Fig. 7e). A 

pronounced peak displayed with binding energy 401 eV confirms N atom bonded in NH2 group 

(Fig. 7e). These observations strongly suggest the coordination of NH2 with Cu (Fig. 7f). In 

addition, the peak at 631 eV results from iodine interacting with the covalently bonded copper 

atom in copper iodide. At 712 and 728 eV, the core level XPS spectrum of the element Fe 2p 

displays a pair of solitary peaks. The findings of this study provide conclusive evidence for the 

successful formation of 5 and confirm the proposed structure. 

 

 
Figure 7 (a) XPS survey spectrum of [Fe3O4@silica-Lys-Cu(PPh3)I]. complex (5) 
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During the subsequent step, the synthesis of N-aryl sulfonamides, the catalytic performance of 

the [Fe3O4@silica-Lys-Cu(PPh3)I]complex (5) was investigated (Scheme 2). 

 
Scheme2- [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) was responsible for the catalysis of the 

formation of N-aryl sulfonamides. 

To determine the optimal conditions for the synthesis, we exhaustively screened multiple 

variables. We used phenyl boronic acid (6a; 1.2 mmol) and 4-toluenesulfonyl azide as typical 

substrates (7a; 1.0 mmol). Numerous amounts of bare Fe3O4 MNPs (1), silica layered Fe3O4 

MNPs (2), and Fe3O4@silica-Lys(4) were utilized in the model reaction to investigate the active 

site in the [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) that is responsible for the catalytic cycle 

(Table 1, entry 1-3). Curiosity-inducingly, none of the catalytic runs resulted in the anticipated 

progression of the reaction. On the basis of these findings, we have determined that 

[Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) was the only catalyst that drove the reaction in the 

desired direction. 

Initial research employed various concentrations of [Fe3O4@silica-Lys-

Cu(PPh3)I]complex (5) will investigate the effect of catalyst loading on the formation of N-aryl 
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sulfonamides . In a brief (30 minute) reaction involving 50 mg (0.034 mmol) of 5, a high yield 

(94%) of 4-methyl-N-phenylbenzenesulfonamide (8a) was produced (Table 1, entry 4). When 

the process quantity was increased from 100 mg (0.068 mmol) to 150 mg (0.102 mmol) and 200 

mg (0.136 mmol), the product yield increased from 84% to 96%. (Table 1, entries 4 to 7) This 

study reveals that increasing the quantity by a factor of five had no discernible effect on the 

product yield or reaction time. Therefore, 50 mg of 5 is sufficient to accelerate this model 

reaction and rapidly produce the required product. 

Table 1: Catalyst loading optimization in synthesis of N-aryl sulfonamides 

 

Reaction condition: phenyl boronic acid with (1.2 mmol), 4-toluenesulfonyl azide with (1.0 mmol), and ethanol with 

a volume of (5.0 mL); During chromatography, the yields that were isolated.
 

The selection of a solvent was the following phase in the process of optimization that was 

being carried out. To determine which of the many different solvents would be the most 

effective, a battery of rigorous tests was carried out on all of them (Table 2). Table 2 illustrates 

that while enhances productivity has been procured in polar organic solvents such as dimethyl 

formamide (DMF), tetrahydrofuran (THF) and polar dichloromethane (DCM) (entries 1-3), only 

modest yields were achieved in non-polar solvents such as toluene and xylene. This is because 

polar organic solvents are more electronegative than non-polar solvents (entries 4-7). (Table 2, 

entries 4-5). In polar organic solvents like ethanol and methanol, adequate yields were found 

Entry Catalyst 

 

Quantity 

(mg) 

Time 

(min.) 

Yield
b
 

(%) 

1. bare Fe3O4 MNPs(1) 200 1440 - 

2. silica coated Fe3O4 MNPs (2) 200 1440 - 

3. Fe3O4@silica-Lys(4) 200 1440 - 

4. 

 

 

5. 

 

 

6. 

 

 

7. 

[Fe3O4@silica-Lys-Cu(PPh3)I] 

complex (5) 

 

[Fe3O4@silica-Lys-Cu(PPh3)I] 

complex (5) 

 

[Fe3O4@silica-Lys-Cu(PPh3)I] 

complex (5) 

 

[Fe3O4@silica-Lys-Cu(PPh3)I] 

complex (5) 

50 

 

 

100 

 

 

150 

 

 

200 

30 

 

 

28 

 

 

28 

 

 

25 

 

94 

 

 

   94 

 

 

95 

 

 

96 
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(Table 2, entries 6-7). The fact that the reaction did not begin in the water came as a complete 

surprise to us (Table 2, entry 8). Ethanol produced the highest yield of the required product 

when compared to the other solvents that were investigated; hence, this solvent was chosen for 

more research. (Seen in Table 1, Position 7) 

Table 2: Improvement of catalyst loading and solvent in N-aryl sulfamides synthesis 

 

Entry Solvent Time (min) Yield
b 

(%) 

1 DCM 420 74 

2 DMF 480 72 

3 THF 270 84 

4 Toluene 540 62 

5 Xylene 510 64 

6 Methanol 50  84 

7 Ethanol 30  94 

8 Water 2881 Null Product 

Reaction condition: phenyl boronic acid with (1.2 mmol), 4-toluenesulfonyl azide with (1.0 mmol) 

and ethanol with a volume of (5.0 mL); During chromatography, the yields that were isolated. 

         After figuring out the best conditions for the synthesis, the technique's applicability and 

versatility were tested by combining sulfonyl azides with various arylboronic acids in terms of 

their structural composition (Table 3). In every instance, the procedure was carried out as 

planned and resulted in the formation of the required N-aryl sulfonamides with yields ranging 

from high to exceptional (Table 3, entries 8 a-l) without any formation of any unintended 

byproducts. There was no impact from the electronic effect of substituents since the interactions 

between electron-rich and electron-poor arylboronic acids were equally successful in producing 

large yields of the compounds that were wanted. 

Table 3: [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) catalyzed  N-aryl sulfonamides synthesis 
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Entry 
Phenyl boronic 

 Acids (6) 

Sulfonyl azides 

(7) 

Product 

(8) 

Time 

(Min.) 
Yield

b
(%) 

   a  

   

  30 94 

 

b 

  
 

 

 

40       92 

   c 
 

  

 

40 

 

90 

 

d  
  

 

40 

 

78 

 

e  
  

 

35 

 

80 

 

f  
  

 

45 

 

90 

 

g 
   

 

50 

 

88 

 

h 
   

 

40 

 

      94 

 

i  
  

 

35 

 

90 

 

j  
  

 

40 

 

94 
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k  
  

 

 

  40 

 

 

90 

 

l 

  
  

 

40 

 

78 

a
Reaction conditions: : phenyl boronic acid with a concentration of 1.2 mmol, 4-toluenesulfonyl azide with a 

concentration of 1.0 mmol, and ethanol with a volume of 5.0 mL; [GrFemImi]NHC@Cu complex with a 

concentration of 100 mg; 
b
extracted yields from chromatography. 

The high catalytic activity of the [Fe3O4@silica-Lys-Cu(PPh3)I]complex (5) can be 

attributed to the presence of copper iodide and triphenylphosphine in the Chan-Lam coupling. 

Since triphenylphosphine is both an efficient reducing agent and a neutral ligand, it has found 

extensive use in the production of organometallic compounds. Copper combines with 

triphenylphosphine, which is reoxidized by atmospheric oxygen to facilitate reductive 

elimination, a crucial step in the coupling reaction. Consequently, the [Fe3O4@silica-Lys-

Cu(PPh3)I]complex (5) accelerates the rate of reductive elimination, resulting in outstanding 

outcomes.  

According to the Cu(I), Cu(II), and Cu(III) systems, the most likely mechanism of the 

[Fe3O4@silica-Lys-Cu(PPh3)I]complex (5) that catalyzed the Chan-Lam coupling is as follows: 

The research conducted by Kim and colleagues provides the foundation for [37], which is 

outlined in Scheme 3.7 is initially exposed to air and oxidised to form (I), which then reacts with 

sulfonyl azide to form an intermediate (II). In addition, intermediates result from the reaction of 

arylboronic acid with II, which is followed by transmetalation (III). Compound III is oxidised by 

air to produce an intermediate with a higher oxidation state (IV). This intermediate then 

undergoes reductive elimination to produce the desired N-aryl sulfonamides. [38] 

 

Scheme 3: A possible framework for the formation of  N-aryl sulfonamide using 

[Fe3O4@silica-Lys-Cu(PPh3)I]complex (5) 
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A split reaction test was conducted to determine the heterogeneity of the [Fe3O4@silica-

Lys-Cu(PPh3)I]complex (5). After 50% conversion, the 5 was removed from the reaction with 

the use of an external magnet (GC). The resulting filtrate was stirred for 6 hours under identical 

reaction conditions, and GC-MS analysis indicated no additional product production increase. 

Also, the ICP-OES measurement of the reaction mixture showed that there was no copper 

leaching, which suggests that the reactions are happening in different ways.  

 

Reusability is an important characteristic of heterogeneous catalysts that determines their 

dynamic lifetime. In order to conduct experiments on reusability, the model reaction was 

conducted at optimal reaction conditions. The [Fe3O4@silica-Lys-Cu(PPh3)I]complex (5) was 

easily retrieved after each cycle using an exterior magnet. The retrieved complex was once 

rinsed using ethanol and then dried in a vacuum at a temperature of 50°C before being reused in 

the subsequent cycle. The catalyst exhibited considerable reusability, with yields beginning at 

94% and declining to 82% by the eighth run (Fig. 8). The fact that the recoverable complex can 

be used eight times without a big drop in output is clear.  

 

 
Figure 8: Reusability analysis of [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) in N-aryl 

sulfonamide synthesis 
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 In order to study the stability of the [Fe3O4@silica-Lys-Cu(PPh3)I] complex, 

several technical studies, such as FT-Raman, TGA, FT-IR, TEM,  and EDX, were conducted out 

on two fresh and recycled samples of the complex (5). It is important to note that the FT-IR 

spectra (Fig. 9a) of recovered 5 complex maintains the characteristic peak pattern of the fresh5 

complex (Fig. 1d). Figure 9b shows that the thermal analysis for recovered 5 in the TGA is quite 

similar to the thermogram for fresh 5. (Fig. 2b). Following eight rounds of catalysis, the integrity 

of the catalyst was verified by elemental EDX mapping of the number 5. (Fig. 9c). In more 

recent research, transmission electron microscopy (TEM) analysis of fresh (Fig. 5 a-c) and 

reused (Fig. 9d) 5 indicates that morphology is maintained even after six successive runs. After 

eight separate runs, the FT-Raman, TGA, FT-IR, TEM and EDX, examinations of fresh and 

recycled 5 demonstrated that the structural strength and key characteristics of the complex 

continue unaltered. This confirmed the stability of 5. 

 

 

 
Figure 9 (a): FT-IR spectrum of reused [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) 
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Figure 9 (b): TGA curve for recovered [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) 

 

 
Figure 9 (C): EDX spectrum of reused [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) 
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Figure 9 (d): TEM images of reused [Fe3O4@silica-Lys-Cu(PPh3)I] complex (5) 

 

4. Conclusions 

 In conclusion, we have described a newly established method for the environmentally friendly 

synthesis of N-aryl sulfonamides using magnetic nanoparticles containing copper as a reusable 

catalyst. Our team developed this methodology. XRD and TEM analysis revealed the crystalline 

Fe3O4 MNPs single-phase inverse spinel structure, as well as their morphology and average 

diameter of 16 nm. In the Chan-Lam coupling of phenylboronic acids with sulfonyl azides, 

which results in the formation of N-aryl sulfonamides, the product of the reaction demonstrates 

excellent catalytic performance. This is the outcome of the reaction that was executed. This 

method provides a number of significant benefits, including high yields, a simple work-up 

process, the use of an environmentally friendly solvent, and a slightly shorter reaction time. 

These are additional benefits offered by this method: 
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