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Abstract 

Crime Scene detection predict the chances of happening the crime without any involvement of human 

intervention is always the crucial task in the field of artificial intelligence. In this paper crime forecasting 

based on the weapon detection and tracking with the person can help investigator to understand the sequence 

of action took place during the crime. The images are manually annotated, which is a process where an 

expert goes through each images and mark the position and class of object within the image. Object detection 

and classification algorithms provides the necessary ground to verify data for the algorithms. The models 

like SSD, YOLO and Faster RCNN are used for weapons detection and mediapipe library is used to generate 

the human body datapoints and calculate the relation between weapons with the human. The maximum 

accuracy of Faster RCNN with mediapipe library is 93%.  
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I. INTRODUCTION  

Every society's first worry is crime. It affects a 

society's standard of living and financial well-

being. It is essential in deciding whether people 

should go to a city or nation at a certain time or, if 

they choose to do so, which regions they should 

avoid. . It is crucial to take precautions to avoid a 

physical attack, especially in public settings where 

it may be more challenging to flee or call for 

assistance. It is crucial to call the police as soon as 

a crime is committed. So, a government's first aim 

has always been to reduce criminal activity. Since 

crime rates increase globally, law enforcement 

organizations are always looking for cutting-edge 

information systems that make use of cutting-edge 

machine learning methodologies to better protect 

their communities. Many valuable lives were lost 

due to street crimes and individual institution 

attacks. This further proves that manual 

monitoring systems still require a human eye to 

see unusual activity, and that it takes time to report 

such activity to security professionals who may 

then take appropriate action.  

 

The proposed device intends to help law 

enforcement officers find and recognize guns in a 

range of situations, including outdoor locations. 

Guns, Knives, or any other sharp instrument are 

mainly used to perpetrate violence, which has a 

huge negative impact on social costs as well as 

physiological, psychological, and financial costs. 

Each year, violence claims many lives. Children 

who are exposed to high levels of violence in their 

communities or through the media frequently 

experience psychological trauma. Whether they 

are spectators, offenders, or victims, children 

exposed to violence may suffer harmful 

psychological repercussions in the short and long 

term. Many studies have shown that knives and 

weapons are the main tools used in crimes 

including robberies, theft, rapes, and break-ins. 

These crimes can be decreased by spotting 

disruptive conduct early on and closely monitoring 

any suspicious activity so that law enforcement 

officials can respond right away. 

 

II. LITERATURE REVIEW 

Object Detection from the Image Scene:  

Liang et al. (2019) uses CNN-RsNN hybrid 

architecture for object detection and shows the 

relation among the object with the help of 

PASCALVOC2012 and SYSU (Sun Yat-Sen 

University) datasets with scene descriptions. They 

define the entire sentences in phrases of nouns and 

verbs with the assist of natural processing [1]. Li 

et al. (2019) uses deep supervision methods by 

formulating the probabilistic framework to predict 

improved generalization. They train disorder or 

partially visible scenes from synthetic CAD 

renderings in which weights are been calculated 

and used in the real images of datasets include 

KITTI, PASCALVOC, PASCAL3D+[3]. The 

authors predict two-dimension and three-

dimension object skeletons in a given single test 

image by using the deep supervision framework 

with a novel CNN architecture [3]. G. Kalliatakis 

et al. (2019) identify the child labor through 

imagery. They use the HRA (Human Rights 

Archive) database and CNN (convolution neural 

Network) [1] [5] for human rights violations. 

Himanshu and hiren (2018) compare the accuracy 

of various hybrid method like resfeatt-cnn, resfeat 

resfeats-152 + pca-svm, resfeats-152 + scnn and 

resfeats-50 + scnn [6]. They use a unique dataset 

like caltech-101, caltech-256, MLC, solar, mit-

indoor67, scene-15[5]. Mehrdad et al. (2020) 

detects the salient objects of various sizes in the 

scene with the help of Multi-scale Attention 

Guided (MAG). They propose a discriminative 

feature extraction and integration network, which 

they discuss with as dfnet, inclusive of elements 

feature extraction N/W [9] and the feature 

integration network [6]. Shichao et al. (2019) 

shows the system for recognizing the traffic signal 

which will help the ADAS [10] self-reliant 

vehicles system. Their system includes clustering-

orientated characteristic for traffic signs detection 

and recognition. The gtsrb and btsc are used as 

datasets [10]. Brais et al. (2020) detects the small 

object by using STDnet [13]. The stdnet is built on 

the mechanism, known as region context 

community (rcn), Region proposal network for 

deciding the favorable regions, and removing the 

other region from the scene. Saikia et al. (2016) 

uses the faster-rcnn for detecting an object in an 

indoor environment [16]. Chunwei et al. (2019) 

proposed the network (ADNET), for denoising the 

scene. Adnet has block-matching, 3-d filtering 

(bm3d), and dncnn for quantitative and qualitative 

evaluation [18]. Li (2015) reviewed DNN R-CNN 

for object detection in smart cities by using Pascal 

Visual Object Challenge (VOC) 2007 and 2012 

datasets [20]. 

 

Object Detection from the Motion Scene:  

Li and shin (2019) detect the unexpected accident 

of cars in the tunnel under bad light of CCTV 

monitoring. They use Faster Regional Convolution 

Neural Network (Faster R-CNN) for detecting the 

Objects and Tracking algorithm for surveillance 

the tunnels for the events, like driving direction, 

halting, fire, roaming person in the tunnel [4]. Inad 

and duaa(2018) designed an approach for 

pedestrian detection. They use vggnet, they will 
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work with is mpeg-4[7]. It improve the overhead 

of video search interest as well as improve 

accuracy. Zouhair et al. (2020) reviewed the 

Driver Behavior (DB) inside the car. The machine 

learning technique used widely and shows good 

results in calculating the behavior of the driver 

while driving [8]. Sreenu and Saleem (2019) 

survey in detecting the number of people in the big 

crowd at all conditions. They surveyed various 

methods like the svas[11] model which offers the 

automatic detection of such type of activity. 

IBSTM and Kalman filter [11] is used for object 

entity in the crowd. Smriti et al. (2017) build the 

system to detect the fall of a person especially the 

old age person in the home. Shi-Tomasi algorithm 

and Pyramidal Lucas-Kanade algorithm are used 

to detect the fall and not fall [12]. Sachin and 

Subrahmanyam(2016) defines a motion 

recognition technique named as weber movement 

history image (wmhi)[14]. Hanen et al. (2017) 

introduce a method for identify the object in the 

motion. They use the SIFT method with BOVW 

[26][15]. Zhigang et al. (2018) recognize the 

human movement with the help of feature 

extraction CNN with a TS-NET [17]. Qaisar et al 

(2017) contributed the action recognition in a deep 

learning environment [19]. They overview the 

CNN, RNN, DBN, DBM, SDA [19]. They show 

that the deep learning techniques can be applied in 

human action recognition, gesture and emotion 

recognition, etc. Muhammad et al. [21] compares 

various model like VGG16, Inception-V3, 

Inception-ResnetV2, SSDMobile NetV1, Faster-

RCNN, YOLOv3, and YOLOv4 for weapon 

detection using dataset No standard dataset ( 

weapons images from own camera, internet, 

extracted data from YouTube CCTV videos, 

through GitHub repositories). Erssa et al.[22] 

detects the violent object like gun, pistol and 

sword from CCTV by using the efficient-net 

machine learning model and gets the accuracy of 

98.12%, They uses the real time dataset for 

training and testing of model from local 

surveillance department. Arunnehru et.al. 

recognize the human action with 3D (CNN) and 

KTH and Weizmann dataset [26]. Ravinarayana 

et.al [27] uses LSTM with transfer learning for 

predicting the crime activity with the help of 

inputs videos and gets the accuracy of 70%. 

 

III. PROPOSED METHOD 

We proposed a model that gives a computer a 

prescient awareness of dangerous weapons and 

that can also warn a human administrator when a 

pistol or knife with a person is clearly on the edge. 

If possible, we can also share the live image with 

security personnel so they may move 

simultaneously by using cameras with GPS 

position. Also, in preparation for a future 

catastrophe, we have built an information system 

for keeping track of all the drills that have an 

influence on the metropolitan areas. This leads to 

the establishment of a database that records all 

activities so that quick action may be taken in the 

event of a future emergency. In this work, we have 

tried to create an integrated framework for 

investigation security that distinguishes the 

weapons gradually. If the identification is 

definitely correct, it will warn/brief the security 

personnel to handle the situation by getting to the 

scene of the incident using the GPS location of 

cameras. The workflow of the proposed work can 

broadly be divided into five phases as shown in 

figure1. 

1. Data acquisition and preprocessing 

2. Train the various model like YOLO, SSD and 

Faster RCNN with the weapons images 

3. Test the models 

4. Find relation between the detected objects 

5. Compare the accuracy between the models 

 

 

 
Figure1: The workflow of the proposed work. 

 

A. Data acquisition and preprocessing: 

In data acquisition step the images are taken from 

various sources from internet like kaggle and 

Roboflow shown in below Figure.2 [30]. After 

that images are passed for cleaning and 

enhancement using python code. Then all the 
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images dataset passed for augmentation process 

where extra images are generated for your 

classifier through squishing skewing 

or extraordinary randomize crops. It is the process 

of expanding the dataset by include more pictures 

like images from different views and angles from 

a single image, which might result in a model that 

is more accurate. The 80% of individual class of 

guns, knife and person are in the training phase 

and 20% images are process for testing phase. 

 

 
Figure 2: Sample images collected from dataset [30] 

 

B. Training the Images with various Models:  

The processed image dataset is now passed to 

various deep learning models for weapons 

detection and classification. All models will train 

with the images of 3 classes i.e. guns, knife and 

the person, so these models will detect the images 

of  guns , knife and the person from the scene. The 

80%of images are processed for the training 

phase. 
 

1. In YOLOv5, these were the two unified blocks 

that turned into a single monolithic block. 

i. Feature extraction  

ii. Object localization  

YOLOv5 has three main components namely 

Backbone, Neck, and Head shown in below 

Figure.3 [28]. 

 

 
Figure.3. YOLOv5 Architecture [28] 
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YOLOv5 employs Cross Stage Partial Networks 

for the purpose of obtaining instructive 

information from the input image (CSP). The 

model neck creates feature pyramids (FP). Anchor 

boxes are used to apply feature class probabilities. 

In YOLOv5, hyperparameters are used to control 

the model's architecture, training process, and 

performance. For YOLOv5 the hyperparameters 

were 50 along with the Batch size and Learning 

rate as 16 and 0.001. 

 

2. The SSD architecture is depicted in the below 

Figure .4[11] comprises additional layers that 

are built on top of a base CNN network, such 

as VGG or Mobile Net. The SSD techniques 

extracted data from each grid cell using a 

sequence of convolutional and pooling layers. 

Each grid cell is then subjected to a classifier to 

forecast. The hyperparameters for SSD 

algorithm were 150 with similar batch size and 

learning rate as YOLOv5 algorithm. 

 

 
Figure.4. SSD VGG-16 Architecture [11] 

 

3. Faster R-CNN is used for detecting small and 

prominent objects in a scene. Faster R-CNN 

is mainly used in object detection. They have 

the same layers as the basic CNN model, as 

well as the RCN and RPN networks, and 

their output is fed into the SVM classifier as 

shown in Figure.5 [16]. The faster R-CNN 

has early convolution, which is like the 

ResNet [8], which is used to extract simple 

features; it acts as a shallow layer, the next is 

the RCN which selects the small regions that 

may contain objects. 

 

 

 
Figure.5. Faster RCNN Architecture [16] 

 

C. Test the models 

Testing the Images with various Models: After 

successful completing the training phase of each 

models with around 65,046 images of guns, knife 

and person. The model works well in the training 

part. The next step is to test each model with 

around 15,323 images of guns, knife and person. 

The over fitting and under fitting are also be 

measured for each model. 

 

D. Find relation between the detected objects 

For forecasting the chance of happening the crime 

based on the object present in the scene is very 

crucial and it require very high level precision and 

accuracy. We used the mediapipe library which is 

provide the facility of datapoints generation. It 

will create the datapoints in the full body of the 

person like they create 423 datapoints in only the 

face of the person, and 21 data point only in hand. 

We used the datapoints of hand, arm, shoulder, 

stomach, thigh and legs. The total six datapoints 

from the person body is detected in the scene, if 

the weapons is also detected in the hand of the 

person, then the next step is to calculate the angle 

between the weapons and the person body with 

the help of these datapoints. If the angle is 
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between 30 to 120 then there is the high chance of 

happening a crime if the angle of not in between 

then there is less chance of happening the crime. 

If no weapons is detected in the scene then no 

chance of happening the crime.  These data points 

help in tracing the movement of person also this 

will provide the information that person is 

carrying gun or knife along with them or not. 

 

 

 
Figure 6: Relation of weapons with the person 

 

IV. EXPERIMENTATION AND RESULT  

A. Detection of Weapons SSD Model  

This section presents all of the results from the 

implementations of the Single Shot Detection 

(SSD), the results of the detected objects from the 

scene for each of the 3 classes–Guns, Knives, and 

Person with the accuracy and type of detected 

object is formulated in a figure.7. The 

performance of the model is calculated in table1, 

2, 3. 

 

 

  
Figure.7. Detection of Objects with SSD Model [30] 

 

B. Detection of Weapons YOLO Model 

This section presents all of the results from the 

implementations of the You only look once 

(YOLO), the results of the detected objects from 

the scene for each of the 3 classes–Guns, Knives, 

and Person with the accuracy and type of detected 

object is formulated in a Figure.8. The perfor-

mance of the model is calculated in table1, 2, and 

3.  
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Figure.8. Detection of Objects with YOLO Model 

 

C. Detection of Weapons Faster RCNN Model 

This section presents all of the results from the 

implementations of the Faster Region based 

Convolution Neural Network (Faster RCNN), the 

results of the detected objects from the scene for 

each of the 3 classes–Guns, Knives, and Person 

with the accuracy and type of detected object is 

formulated in figure9. The performance of the 

model is calculated in table1, 2, 3. 

 

 

   
Figure.9. Detection of Objects with Faster RCNN Model 

 

D. Prediction of Happening, Not Happening 

Crime 

This section presents all of the results from the 

implementations of the Mediapipe library for 

forecasting the crime prediction based on the 

datapoints and the angle between the weapons and 

the person. In figure.10 the angle between the 

gun, shoulder and hip is 47° which is considered 

as high chance of happening the crime. 

 

 

 
Figure.10. High Probability of the crime with person and gun 

 

In figure11 the angle between the gun, shoulder and hip is 17° which is considered as low chance of 

happening the crime. 
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Figure.11.Low Probability of the crime with person and gun 

 

In figure.12 the angle between the Knife, shoulder and hip is 115° which is considered as high chance of 

happening the crime. 

 

 
Figure.12. High Probability of the crime with person and Knife 

 

In figure.13 the angle between the Knife, shoulder and hip is 9.3° which is considered as low chance of 

happening the crime 

 

 
Fig13.Low Probability of the crime with person and gun 

 

E. Performance Evaluation of various Models with Mediapipe Library: 

Table 1: ACCURACY COMPARISON BETWEEN ALL THREE MODELS 
Algorithm Avearge Gun 

Accuracy 

Average Knife 

Accuracy 

Avearge Person 

Accuracy 

Average 

 

 

Accuracy 
SSD 89% 82% 76% 82% 

YOLO 92% 89% 87% 89% 

Faster 

RCNN 

97% 93% 90% 93% 
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Table 2: SPEED COMPARISON BETWEEN ALL THREE MODELS 
Algorithm Testing Time 

SSD 0.25 sec 

YOLO 0.54 sec 

Faster RCNN 0.75 sec 

 

Table 3: MAP WITH FASTER RCNN, SSD, YOLO MODELS 

Models 
Avearge Precision 

Guns Knife Person 

SSD 0.78 0.744 0.698 

YOLO 0.76 0.72 0.66 

Faster RCNN 

 

0.84 0.76 0.72 

 

The four performance matrices such as accuracy, 

recall, precision, and F1-score as shown in Eqs.1 -

4 and the result are shown in Table 4. 

 

Accuracy = (TN + TP) / (TP +FP +FN +TN)        

(1) 

 

RECALL = TP / (TP + FN)        (2) 

PRECISION = TP / (TP+ FP)      (3) 

F1 SCORE = 2 *(Recall* Precision) / (Recall + 

Precision)  (4)                                                        

 

 

Table 4: CONFUSION MATRIX WITH ALL THREE MODELS 

 

 

 

 

 

 

V. CONCLUSION 

In this paper, we compare the performance of 

SSD, YOLO, and Faster RCNN with different 

weapons dataset like (knife and gun) and the 

person dataset. The faster RCNN is shown to have 

better results in detecting small objects like guns 

and knives in the scene as compared with SSD and 

YOLO, Yolo is faster than the faster RCNN, 

and SSD is faster than YOLO. The accuracy of 

faster RCNN is 97%, 93%, 90% for guns, knives 

and person which is better than SSD and YOLO 

models. Also, SSD requires a higher order 

resolution layer to detect small objects, accuracy 

can be increased by increasing the cost of 

increasing the default bounding box. Once the 

weapons are detected from the scene, the relation 

of weapons with person are calculate with help of 

angle between the datapoints of weapons, elbow 

and hip of the person. Based on the angle we 

forecast the probability of happening the crime. 

The images captured in predetermined and 

controlled situations made up the dataset that was 

utilized. Under unfavorable image conditions, like 

low resolution, blur, position fluctuation, and 

occlusion, the algorithm's accuracy suffers 

significantly. It is difficult to increase the accuracy 

of the majority of the image-based data that is 

currently accessible because it was collected using 

low-resolution equipment. The most recent  

 

 

 

 

 

 

 

massive datasets made from online images are 

poorly annotated, which leads to inaccurate people 

and knife identification. Datasets that are based on 

video produce superior results because they allow 

us to record objects from the scene and forecast 

the likelihood that a crime will occur based on the 

objects and poses that were observed. 
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