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Abstract:- 

Protein tyrosine phosphates (PTPs) are enzymes that catalyze protein tyrosine dephosphorylation. Among 

various members of the PTP super family, Protein tyrosine phosphates 1B (PTP1B) has emerged as the best-

validated drug target. Mounting evidence from biochemical, genetic and pharmacological studies support a 

role for PTP1B as a negative regulator in both insulin and leptin signaling collectively. A computer assisted 

methodology was applied for the construction of pharmacophore and for building 3D QSAR model of novel 

benzofuran and benzothiophene biphenyl derivatives as a inhibitors of PTP1B. 3D QSAR model of PTB 1B 

inhibitor based on common featured pharmacophore was developed using phase module of Schrodinger 

software. In this study A series of 136 analogues of novel benzofuran and benzothiophene biphenyl derivatives 

as a inhibitors of Protein Tyrosine Phosphatase 1B and their PTP1B inhibitory data (IC50) was selected and 

used to develop the Pharmacophore based 3D QSAR model. The statistically best model corresponding to PLS 

5 (ARRRR.3895) was selected on the basis of highest values of R2, 0.9527; SD, 0.1276; and F-value, 297.8. 

The best model was validated for its stability (Q2) and reliability to predict the biological activity of the 

molecules that have not been used for the development of model i.e. test set molecules (Pearson-r). The model 

showed good values of Q2 and pearson-r i.e. 0.3655 and 0.611 respectively. The correlation graph between 

experimental and predicted activities of test and training set  molecules was analyze and generated QSAR 

models should satisfy q2> 0.5, R2 > 0.6, R2
o or R′2o close to R2, and the corresponding 0.85≤ k ≤ 1.15 or 0.85≤ 

k′ ≤1.15. The best model showed satisfactory values of k, 0.998; k′, 1.001; R2
o, 0.999 and R′2

o, 0.999. These all 

parameters further strengthen the stability and reliability of generated QSAR model. 
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INTRODUCTION 

Protein tyrosine phosphates (PTPs) are enzymes 

that catalyze protein tyrosine dephosphorylation. 

In humans, more than a hundred PTPs exist that 

can function either as negative or positive 

modulators in various signal transduction 

pathways1. Deregulation of PTP activity 

contributes to the pathogenesis of several human 

diseases, including cancer, diabetes and immune 

disorders 2-4.  

 

The importance of the PTPs in diverse 

pathophysiology has made them the focus of 

intense interest as a new class of drug targets. Thus, 

inhibitors of the PTPs are also expected to have 

therapeutic value with novel modes of action 5-6. 

Among various members of the PTP super family, 

Protein tyrosine phosphates 1B (PTP1B) has 

emerged as the best-validated drug target7. PTP1B 

is localized in the cytoplasmic face of the 

endoplasmic reticulum and is expressed 

ubiquitously in the classical insulin-targeted 

tissues such as liver, muscle and fat8. Mounting 

evidence from biochemical, genetic and 

pharmacological studies support a role for PTP1B 

as a negative regulator in both insulin and leptin 

signaling.  

 

PTP1B can associate with dephosphorylated 

activated insulin receptor (IR) or insulin receptor 

substrates (IRS)9-14. Over expression of PTP1B in 

cell cultures decreases insulin-stimulated 

phosphorylation of IR and/ or IRS-1, whereas 

reduction in the level of PTP1B, by antisense 

oligonucleotides or neutralizing antibodies, 

augments insulin initiated signaling 15-18.  

 

Mice that lack PTP1B display enhanced sensitivity 

to insulin, with increased or prolonged tyrosine 

phosphorylation of IR in muscle and liver19-21. 

Interestingly, PTP1B ob/ob mice are protected 

against weight gain and have significantly lower 

triglyceride levels when placed on a high-fat diet. 

This is unexpected because insulin is also an 

anabolic factor, and increased insulin sensitivity 

can result in increased weight gain. PTP1B was 

subsequently shown to bind and dephosphorylate 

Janus Kinase2 (JAK2), which is downstream of 

leptin receptor22.  

 

Thus, the resistance to diet-induced obesity 

observed in PTP1B ob/ob mice is likely to be 

associated with increased energy expenditure 

owing to enhanced leptin sensitivity. Collectively, 

this biochemical, genetic and pharmacological 

studies provide strong proof and validating to the 

concept that inhibition of PTP1B could address 

both diabetes and obesity and making PTP1B an 

exciting target for drug development. Selectivity is 

one of the major issues in the development of 

PTP1B inhibitors as drugs. Because all PTPs share 

a high degree of structural conservation in the 

active site, the pTyr (phosphotyrosine)-binding 

pocket, designing inhibitors with both high affinity 

and selectivity for PTP1B poses a challenge. 

Fortunately, PTP substrate specificity studies have 

shown that pTyr alone is not sufficient for high-

affinity binding, and residues flanking the pTyr are 

important for PTP substrate recognition23. The 

various research results indicate that there are sub 

pockets adjacent to the PTP active site that can also 

be targeted for inhibitor development.  

 

These studies also provide a molecular basis for 

addressing and manipulating PTP inhibitor 

potency and specificity, and suggest a novel 

paradigm for the design of potent and specific PTP 

inhibitors, namely bidentate ligands that bind to 

both the active site and a unique adjacent 

peripheral site. Bioavailability is another important 

issue in the development of PTP1B-based small-

molecule therapeutics.  

 

The active sites of PTPs have evolved to 

accommodate pTyr, which contains two negative 

charges at physiological pH. Consequently, most 

active-site-directed PTP inhibitors (non-

hydrolyzable pTyr mimetics) reported to date 

possess a high charge density to serve as 

competitive inhibitors24-25. A computer assisted 

methodology was applied for the construction of 

pharmacophore and for building 3D QSAR model 

of novel benzofuran and benzothiophene biphenyl 

derivatives as a inhibitors of PTP1B .  

 

The application of the resulting pharmacophore 

model in screening database allowed us to identify 

a small set of other compounds that must be having 

PTP 1B inhibitor activity. 3D QSAR model of PTB 

1B inhibitor based on common featured 

pharmacophore was developed using phase 

module of Schrodinger software.  

 

Phase is a software package designed for 

pharmacophore modelling, structure alignment and 

activity prediction. Notably this package provides 

the means to align sets of ligands onto a 

pharmacophore and to develop 3D-QSAR models 

able to identify further structural features that 

govern activity of molecules26. In this study Phase 

was initially applied to develop a common feature 

PTP 1B inhibitor pharmacophore model to be used 
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as an alignment rule and, then, to carry out a 3D-

QSAR investigation. 

 

MATERIALS AND METHODS 

Selection of molecules and data set 

A series of 136 analogues of novel benzofuran and 

benzothiophene biphenyl derivatives as a 

inhibitors of Protein Tyrosine Phosphatase 1B and 

their PTP1B inhibitory data (IC50) was selected 

from published literature27 and used to develop the 

Pharmacophore based 3D QSAR model. Out of the 

total 136 analogues, 22 analogues were removed 

from the series  i.e. analogue SKD-53, SKD-54, 

SKD-55, SKD-59, SKD-64, SKD-65, SKD-69, 

SKD-70, SKD-93, SKD-94, SKD-101, SKD-102, 

SKD-135, SKD-144, SKD-150, SKD-161, SKD-

173 was removed because of negative IC50 values; 

analogue SKD-66 SKD-68, SKD-95, SKD-141 

and SKD-142 was removed because of 

unpublished stereochemistry. A total data set of 

113 analogues of  Benzofuran and Benzothiophene 

Biphenyls derivative was selected. The biological 

activities (IC50) were converted into the 

corresponding pIC50 values (-log IC50), where IC50 

value represents the amount of drug in molar (M) 

concentration that causes 50% inhibition of Protein 

Tyrosine Phosphatase 1B. IC50 values of all 

molecules present in dataset were obtained using a 

same assay method i.e SAS release 6.08, 

PROCNLIN in malachite green ammonium 

molybdate method28.  

 

The pIC50 values of the study molecules span over 

a wide range of activity i.e 5.51 to 7.57. For the 

development of 3D QSAR model the data set was 

divided into training set and test set of 80 and 33 

molecules respectively. The structures of the study 

molecules and their corresponding biological 

activities (IC50) are given in Table I.  

 

 

Table 1. Chemical structures of dataset used for pharmacophore and 3D QSAR analysis 

With actual and predicted activities from the best model. 

SN. Ligand Name 
IC50 

Activity   (pIC50) Pharm Set QSAR Set 
(µM) 

1 SKD -52 0.74 6.131 6.04 - Training 

2 SKD -56 0.92 6.036 6.2 - Training 

3 SKD -57 0.74 6.131 5.98 - Training 

4 SKD -58 0.7 6.155 6.01 - Training 

5 SKD -60 1.08 5.967 6.04 - Training 

6 SKD -61 0.58 6.237 6.05 - Training 

7 SKD -62 2.19 5.66 5.8 Inactive Training 

8 SKD -63 0.44 6.357 6.26 - Training 

9 SKD -67 0.35 6.495 6.56 - Training 

10 SKD -71 0.22 6.658 6.52 - Training 

11 SKD -72 0.34 6.469 6.44 - Training 

12 SKD -73 0.29 6.538 6.63 - Training 

13 SKD -74 0.4 6.398 6.08 - Test 

14 SKD -75 1.32 5.879 6.02 - Training 

15 SKD -76 0.68 6.167 6.14 - Training 

16 SKD -77 0.11 6.959 7.11 - Training 

17 SKD-78 0.36 6.444 6.48 - Test 

18 SKD -79 0.17 6.77 6.89 - Training 

19 SKD -80 0.095 7.022 6.83 - Test 

20 SKD -81 0.11 6.959 6.26 - Test 

21 SKD-82 0.12 6.921 6.77 - Training 

22 SKD -83 0.077 7.114 7.07 - Training 

23 SKD -84 0.12 6.921 6.91 - Training 

24 SKD -85 0.085 7.071 7.14 - Training 

25 SKD -86 0.12 6.921 6.73 - Training 

26 SKD -87 0.077 7.114 6.95 - Test 

27 SKD -88 1.16 5.936 5.94 - Training 

28 SKD -89 1.55 5.81 5.88 - Training 

29 SKD -90 0.13 6.886 6.89 - Training 

30 SKD -91 0.41 6.387 6.49 - Training 

31 SKD -92 0.41 6.229 6.38 - Test 

32 SKD -96 0.97 6.013 6.27 - Training 

33 SKD -97 0.51 6.292 6.66 - Training 
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34 SKD -98 1.07 5.971 6.03 - Training 

35 SKD -99 0.45 6.347 6.15 - Training 

36 SKD-100 0.52 6.284 6.27 - Training 

37 SKD -103 0.058 7.237 7.35 - Training 

38 SKD -104 0.025 7.602 7.56 Active Training 

39 SKD -105 0.053 7.276 7.25 - Training 

40 SKD -106 0.052 7.284 7.23 - Training 

41 SKD -107 0.29 6.538 6.45 - Training 

42 SKD-108 0.044 7.357 6.92 - Test 

43 SKD -109 0.18 6.745 6.66 - Training 

44 SKD -110 0.054 7.268 7.25 - Training 

45 SKD-111 0.36 6.444 6.5 - Training 

46 SKD -112 0.1 4.996 5.51 Inactive Training 

47 SKD -113 0.1 7 6.83 - Training 

48 SKD -114 0.08 7.097 7.05 - Training 

49 SKD -115 0.052 7.284 7.07 - Test 

50 SKD -116 0.071 7.149 7.19 - Training 

51 SKD -117 0.1 7 7.34 - Test 

52 SKD -118 0.029 7.538 7.36 Active Training 

53 SKD -119 0.028 7.553 7.37 Active Training 

54 SKD-120 0.047 7.328 7.24 - Training 

55 SKD -121 0.025 7.602 7.25 Active Test 

56 SKD -122 0.025 7.602 7.43 Active Test 

57 SKD -123 0.17 6.77 6.68 - Test 

58 SKD -124 0.056 7.252 7.31 - training 

59 SKD -125 0.038 7.42 7.41 - Training 

60 SKD -126 0.043 7.367 7.42 - Training 

61 SKD -127 0.23 6.638 6.78 - Test 

62 SKD -128 0.13 6.886 6.36 - Test 

63 SKD -129 0.054 7.268 7.24 - Test 

64 SKD -130 0.052 7.284 7.23 - Test 

65 SKD-131 0.023 7.638 7.57 Active Training 

66 SKD -132 0.074 7.131 7.21 - Test 

67 SKD -133 0.055 7.26 7.24 - Training 

68 SKD -134 0.17 6.77 6.73 - Training 

69 SKD -136 0.082 7.086 7.15 - Training 

70 SKD -137 0.14 6.854 6.9 - Training 

71 SKD -138 0.92 6.036 6.58 - Test 

72 SKD -139 0.46 6.337 6.74 - Test 

73 SKD -140 0.16 6.796 6.78 - Training 

74 SKD -143 1.19 5.924 6.15 - Training 

75 SKD -145 0.23 6.638 6.5 - Training 

76 SKD -146 1.4 5.854 5.79 - Training 

77 SKD -147 1.15 5.939 5.76 - Training 

78 SKD -148 0.54 6.268 6.33 - Training 

79 SKD -149 0.51 6.292 0.16 - Test 

80 SKD -151 0.8 6.097 6.07 - Training 

81 SKD -152 1.3 5.886 6.29 - Test 

82 SKD -153 0.9 6.046 5.79 - Training 

83 SKD -156 1.6 5.796 6.5 Inactive Test 

84 SKD -157 0.65 6.187 6.25 - Training 

85 SKD -158 0.47 6.328 6.24 - Training 

86 SKD -159 0.13 6.886 7.01 - Training 

87 SKD -160 1.3 5.886 6.09 - Test 

88 SKD -162 1.1 5.959 6.07 - Training 

89 SKD -163 0.48 6.319 6.31 - Training 

90 SKD -164 0.33 6.481 6.39 - Training 

91 SKD -165 0.38 6.42 6.41 - Training 

92 SKD -166 1.4 5.854 6.08 - Test 
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93 SKD -167 0.37 6.432 6.43 - Training 

94 SKD -168 1.2 5.921 5.77 - Training 

95 SKD -169 0.32 6.495 6.56 - Training 

96 SKD -170 0.7 6.155 5.9 - Test 

97 SKD -171 1.1 5.959 5.97 - Test 

98 SKD -172 1.3 5.886 5.8 - Training 

99 SKD -174 0.075 7.125 7.21 - Training 

100 SKD -175 0.106 6.975 7.1 - Training 

101 SKD -176 0.039 7.409 7.15 - Test 

102 SKD -177 0.026 7.585 7.04 Active Test 

103 SKD -178 0.034 7.469 7.52 - Training 

104 SKD -179 0.029 7.538 7.08 Active Test 

105 SKD -180 0.028 7.553 7.25 Active Test 

106 SKD -181 0.028 7.553 7.1 Active Test 

107 SKD -182 0.024 7.62 7.28 Active Test 

108 SKD -183 0.03 7.523 7.53 Active Training 

109 SKD -184 0.032 7.495 6.87 - Test 

110 SKD-185 0.04 7.398 7.4 - Training 

111 SKD -186 0.354 6.451 6.52 - Training 

112 SKD -187 1.16 5.936 5.79 - Training 

113 SKD -188 0.178 6.75 6.73 - Training 

 

Alignment of molecules  

For 3D QSAR study all the molecules in data set 

must have relative conformation that can be 

aligned over their common scaffold. All the 

molecules in the data set bear a common basic 

scaffold i.e biphenyl benzofuran & 

benzothiophene  (figure-1). Alignment can be done 

using pharmacophore based molecular alignment 

protocols for the present study. 

 

 

X

R

O
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Figure 1. Basic skeleton Benzofuran and Benzothiophene Biphenyls as PTP 1B inhibitor 
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Fig. 2 Alignment of the all Molecules with common Pharmacophore 

 

Molecular modeling and computational details  

The study was performed using the PHASE 

software that is a versatile product for 

pharmacophore perception, structural alignment, 

activity prediction and 3D database creation and 

searching.  Three dimensional structures of all 

molecules were sketched using freely available 

Discovery Studio visulizer version 2.1. After the 

sketching of all molecules, cleaning and 

conformational search was performed in “develop 

pharmacophore” module of PHASE. Conformers 

for all molecules were generated employing 

following specification i.e mixed MCMM/LMOD 

method, OPLS_2005 force field, 5 conformers per 

rotatable bond and maximum of 1000 conformers 

with relative energy difference of 10 kcal/mol. The 

conformers were further treated with GB/SA water 

and 100 minimization steps. The criterion for 

removal of redundant conformers was set to 

RMSD of 1Å. Finally these conformers were 

employed for the development of pharmacophore 

model and 3D QSAR studies. 

 

Pharmacophore and 3D QSAR modeling  

The generated conformations of all molecules were 

employed for the development of the 

pharmacophore model. The model is developed on 

the basis of active molecules. The generated 

models are ranked on the basis of scoring protocol 

i.e. scoring parameters like survival, survival 

minus inactives (S-I) and post-hoc. Survival score 

corresponds to score actives, S-I to score inactives 

and post-hoc to rescore. High values of score 

actives are calculated for the pharmacophore 

hypotheses that are according to the active ligands 

only whereas survival-inactives are for the 

hypotheses that have good power to discriminate 

the active ligands from the inactive ones. The best 

selected hypothesis on the basis on above criteria 

was then used for the alignment of all study 

molecules. For the development of QSAR model 

all molecules with their pharmacophoric features 

aligning over the generated hypothesis were placed 

into regular grid of cubes (1Å) with each cubes 

allotted 0 or 1 ‘bits’ to account for the different 

type of pharmacophoric features in the training set 

that occupy the cube (1Å). This representation 

gives rise to huge pool of binary values that can be 

used as independent variables to create 3D QSAR 

models. This large number of independent 

variables is then correlated with dependent 

variables using Partial least squares (PLS) 

analysis.29 

 

PLS analysis and model validation 

PLS analysis is an extension to the multiple 

regression analysis and is used to correlate the 

large number of independent variables with 

dependent variable for the development of QSAR 

model. PHASE QSAR models were generated 

using maximum of N/5 PLS factors, where N 

corresponds to number of molecules in the training 

set. To improve the signal to noise ratio        ‘t-

value’ less than 2 were employed prior to run PLS 
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analysis. The best model is selected on the basis of 

highest values of R2 (correlation of prediction for 

the training set), SD (standard deviation) and F-

value. The model was validated by determining Q2 

(cross validation correlation for the test set 

molecules), Pearson-r (to check the external 

predictability of model) and k, k′, R2
o, R′2o. 

 

Pharmacophore modeling and its validation 

After performing the sketching, cleaning and 

conformers generation the data set was divided into 

actives, inactives and moderately actives for the 

generation of pharmacophore model. Molecules 

with pIC50 higher than 7.523 and lower than 5.796 

were considered to be actives and inactives 

respectively, whereas those in between these limits 

were considered to be moderately active [Table I]. 

Sites were then created for all molecules that give 

total six kinds of markers i.e acceptor, donor, 

hydrophobic, positive ionization, negative 

ionization and ring aromatic features. For the 

generation of pharmacophore model numbers of 

minimum and maximum sites were selected as 

five. Furthermore, the software was restricted to 

match five out of six selected active ligands. 

Finally, common pharmacophore models were 

scored and top ten hypotheses were survived to the 

PHASE scoring procedure i.e survival. Results of 

score hypothesis are shown in Table II. The best 

hypothesis ARRRR 389 were selected on the basis 

of highest values of survival and vector. The stereo 

view of ARRRR 389 and its mapping with the 

highest active molecule SKD-131 having fit value 

of 3 is displayed in Figure 5 and 6 respectively. 

Further, selected best pharmacophore model 

needed to be validated for its power to identify 

actives and inactives. 

 

 

Table II. Scoring results of the generated various pharmacophore hypotheses 

Sr. No Hypothesis ID Survival Site Vector Volume # Matches 

1 ARRRR. 389 61.963 0.93 0.976 0.718 12 

2 ARRRR. 378 61.915 0.91 0.973 0.688 12 

3 ARRRR. 381 61.910 0.92 0.960 0.688 12 

4 ARRRR. 376 61.878 0.96 0.977 0.742 12 

5 ARRRR. 525 61.872 0.88 0.959 0.693 12 

6 ARRRR. 469 61.751 0.91 0.962 0.677 12 

 

Generation of 3D QSAR Model and its 

validation 

3D QSAR is a well known technique to correlate 

3D structure features with the biological activity of 

the molecules. The pharmacophore based 

alignment bundle of 113 molecules was used to 

develop 3D QSAR model. PHASE has two 

modules for performing 3D QSAR i.e atom based 

and pharmacophore based. The difference among 

both is whether all atoms are taken into account, or 

merely the pharmacophore sites that can be 

matched to the hypothesis. Pharmacophore based 

QSAR works well for the molecules having 

structural diversity or having high number of 

rotatable bonds. For present study of congenric 

dataset molecules, atom based 3D QSAR is best 

suited. Basically, in this QSAR study the activity 

data of the study molecules is correlated with 

relative 3D positions of the atoms present in 

ligands. 

To build QSAR model, the dataset was randomly 

divided into training and test set of  80 and 33 

compounds respectively, in order to create training 

set to test set ratio of 3:1.Grid spacing of 1Å and 

the maximum PLS factors as 5 were employed to 

develop the model. The statistically best model 

corresponding to PLS 5 (ARRRR.3895) was 

selected on the basis of highest values of R2, 

0.9527; SD, 0.1276; and F-value, 297.8. The 

results of all models corresponding to number of 

PLS factors are displayed in Table III. The 

correlation graph between experimental and 

predicted activities of training set molecules from 

the best model is displayed in Figure 3. The best 

model was validated for its stability (Q2) and 

reliability to predict the biological activity of the 

molecules that have not been used for the 

development of model i.e. test set molecules 

(Pearson-r). The model showed good values of Q2 

and pearson-r i.e. 0.3655 and 0.611 respectively. 

The correlation graph between experimental and 

predicted activities of test set molecules is 

displayed in Figure 4. Only the high values of R2 

and Q2 is not the sufficient criteria for the 

validation of generated QSAR models however the 

model should satisfy q2> 0.5, R2 > 0.6, R2
o or R′2o 

close to R2, and the corresponding 0.85≤ k ≤ 1.15 

or 0.85≤ k′ ≤1.15. The best model showed 

satisfactory values of k, 0.998; k′, 1.001; R2
o, 0.999 

and R′2
o, 0.999. These all parameters further 

strengthen the stability and reliability of generated 

QSAR model. 

Table III. Statistic results of generated 3D QSAR models employing ARRRR. 389 based alignment. 
Model ID #PLS Factors SD R2 F Stability RMSE Q2

 Pearson-r 
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ARRRR.3891 1 0.3402 0.6452 141.9 0.9747 0.5363 0.5363 0.7711 

ARRRR. 3892 2 0.2321 0.8371 197.8 0.9009 0.4252 0.5323 0.7385 

ARRRR. 3893 3 0.1877 0.8948 215.5 0.856 0.4555 0.4634 0.6865 

ARRRR. 3894 4 0.1646 0.9202 216.2 0.8393 0.4656 0.4393 0.6687 

ARRRR. 3895 5 0.1276 0.9527 297.8 0.7874 0.4953 0.3655 0.611 

 

Model ID (ARRRR.389x) corresponds to QSAR 

model with PLS factor x employing ARRRR.389 

based alignment. 

SD : Standard deviation 

R2 : correlation of prediction for training set 

molecules 

F-value : Fisher test 

RMSE : Root means squared error 

Q2 : Cross validation correlation for test set 

molecules 

Pearson-r :Correlation coefficient for test set 

molecules 

 

 

 

 
Figure 3 Co-relationship between Phase activity (Actual PIC50 Value) Vs Phase predicted (Predicted PIC50 

Value) for the molecules of training set 

 

 
Figure 4 Co-relationship between Phase activity (Actual PIC50 Value) Vs Phase  predicted (Predicted PIC50 

Value) for the molecules of test set 
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3D contours analysis 

During the alignment of molecules, all molecules 

align with their least energy conformers over the 

pharmacophore features of the generated 

hypothesis. It suggests that not only the 

substitution but the orientation changes of 

molecules caused by the substitutions (lower 

energy conformer of molecule among the total 

number of generated conformations tries to fit 

itself over the pharmacophore sites) also have an 

impetus on the biological activity. 3D contours of 

different properties are analyzed one by one to 

explain structural features governing biological 

activities of molecules present in data sets. 

 

Negative Ionizable property contours 

Negative Ionizable (NI) property contour map is 

shown in Figure 5, In this figure the red colored 

cubes represent the areas where the presence of NI 

group is unfavorable and may lead to decrease in 

the biological activity whereas blue colored cubes 

indicates the NI favorable regions Ionization of -

COOH group will affect the biological activity, if 

it is negatively ionized it will increase the activity 

like in molecule SKD 131 in which –COOH group 

is negatively ionized as compared to molecule 

SKD 112 in which –COOH group is in unionized 

form . Finally if we will substitute the negatively 

ionized  -COOH group by highly  negatively 

ionized group or improve the negative ionization at 

that position, activity of the molecules will be 

improved. In molecule SKD 104, 121, 122, the –

COOH group is negatively ionized but to a lesser 

extent as compared with molecule SKD 131, hence 

they will exhibit activity which is slightly less than 

that of SKD 131. Similarly molecule SKD 125 and 

130 has less activity than SKD 131 due to less 

negatively ionized –COOH group. In molecule 

109, 123 and 128 the negative ionization of –

COOH group Is decreasing which will decrease the 

activity of these molecules. In molecule SKD 100, 

removal of –COOH group cause marked reduction 

in activity. In molecule SKD 75 and 187 no 

ionization of –COOH seems to occur thus 

decreasing the activity to several times as 

compared with that of SKD 131. 

 

 

 
Figure 5. Contour map of negative ionizable property with the highest active molecule (SKD-131) and 

inactive molecule (SKD-112) 

 

Electron withdrawing property contours 

Electron withdrawing (EW) property contour map 

is shown in Figure 6. Red coloured contour 

correspond to the areas where the presence of EW 

groups may lead to suppression of activity, 

whereas blue coloured corresponds to areas where 

electron withdrawing groups may enhance the 

biological activity of the molecules. Electron 

withdrawing group present near to biphenyl ring 

will decrease the activity of the compound 

(unfavorable site). In molecule SKD 112, electron 

withdrawing group is near to biphenyl ring and 

activity decreases as compared to molecule SKD 

131 in which electron withdrawing group is far 

from biphenyl ring. If Br which is attached to the 

biphenyl ring is replaced by p/m-OCH3  benzene or 

iodine or is removed as in case of molecule SKD 

121, 122, 100, 75, 177, it will decrease the activity 

as compared with activity of SKD 131. If the alkyl 

chain attached adjacent to –COOH group is 

replaced by benzene or its length is shortened as in 

case of molecule SKD 125, 128, 130, it will 

decrease the activity as compared with activity of 

SKD 131. 
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Figure 6. Contour map of electron withdrawing property with the active molecule (SKD-131)  and Inactive 

molecule (SKD-112) 

 

Hydrophobic property contour 

Hydrophobic property contour map is shown in 

Figure 7 in this figure Hydrophobicity also play 

major role in this series of molecules and affect the 

activity of the molecules. Hydrophobicity at the 

near of biphenyl ring will decrease the activity or 

hydrophobicity around the biphenyl ring will 

decrease the activity (unfavorable site). Molecule 

SKD 112 having a hydrophobic group close to the 

biphenyl ring which will decrease the activity. 

Thus if the hydrophobicity or hydrophobic group 

is near from biphenyl ring, they will decrease the 

activity like in molecule SKD 75, 100, 112, 

157,187 in which the distance of hydrophobic 

group is less as compared to molecules SKD 131, 

121 and 104 and activity will increase. 

 

 

 
Figure 7. Contour map of hydrophobic property with the highest active molecule (SKD-131) and inactive 

molecule (SKD-112) 

 

Database screening (in-house database) 

The best pharmacophore model ARRRR.3895 was 

used as a three dimensional query for screening of 

an in-house database of about 15,00,000 

compounds. During the screening software was 

relaxed to match database molecules with at least 3 

sites of pharmacophore hypothesis. In the 

screening total 20 molecules were retrieved having 

different parent scaffolds. Among these molecules 

12 molecules were having the parent scaffold 

similarity with the study molecules. Among these 

molecules, six best molecules on the basis of their 

high fitness value are displayed in Table IV along 

with their mapping over hypothesis ARRRR.3895.  

 

Results and discussion 

The present study is a combination of 

pharmacophore modeling and 3D QSAR analysis. 

Both studies have been performed using PHASE 

2.5 embedded into Maestro 9.1 running on centOS 
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5.4 operating system installed in hp Z200 

workstation. The generated pharmacophore model 

is employed for the alignment of all study 

molecules with their pharmacophoric sites and for 

the screening of in-house database to find out new 

molecules that may have PTP 1B inhibitory 

activity. The QSAR model generated from the 

dataset is employed to reveal the important 

information about the substitution pattern of 

molecules and relationship with their 

corresponding biological activity. QSAR model 

was also used to predict the biological activity of 

the molecules retrieved from the screening of 

database. There are several steps that are carried 

out for the development of pharmacophore and 3D 

QSAR model i.e. prepare ligands, cleaning 

structures, conformer generation, create sites, find 

common pharmacophore, score hypothesis and 

finally the build QSAR model. 

 

Conclusion 

On the basis of above study it can be concluded that 

the developed pharmacophore can be used as a tool 

for the alignment of all the study molecules for 

generation of the highly predictive QSAR. 

Generated QSAR model is further used for the 

prediction of the biological activity of new 

compounds. The contour analysis of the best 

QSAR model clearly indicates that hydrophobic 

property is the most important determinant for 

inhibition of PTP 1B than the electron withdrawing 

and hydrogen bond donor properties. Virtual 

screening (VS) of in house database of 

approximately sixty thousand molecules using best 

model retrieve twelve new PTP 1B inhibitors. 

Thus, this study guided how to design new potent 

PTP 1B inhibitors as novel agents for the 

management of diabetes. 
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