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Abstract  

 

Aim: Spatial and spectral satellite image segmentation and land cover classification utilising Novel linear 

regression versus random forest with higher accuracy Linear regression outperform random forest in terms of 

accuracy  

Materials and Methods: Multispectral Satellite Image Segmentation using  Linear Regression (N=10) and 

Random Forest (N=10) with the split size of training and testing dataset 60% and 40% using G-power setting 

parameters: (α=0.05 and power=0.85) respectively  

Results:  Linear Regression with Accuracy 80.04 % is more Accurate than the  Random Forest with Accuracy 

74.07% and attained the significance value 0.053 (Two tailed, p>0.05)  

Conclusion: The Linear Regression model is significantly better than the Random Forest for multispectral 

satellite Novel Image Segmentation. 
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1. Introduction 

 

The availability of new earth observation 

satellites, such as Sentinel 2, has sparked interest in 

their precision agriculture potential (Proffitt 2006). 

The influence of inter row space and vine geometry 

on the assessment of non-continuous crops, such as 

grapevines, may pose issues (Thwal, Ishikawa, and 

Watanabe 2019)). Satellites are used to examine 

the qualities of plants. This article depicts people's 

perspectives and informs them about their 

alternatives for action and the expenses associated 

with them (Borra, Thanki, and Dey 2019). To this 

end, explicit spatial layout awareness varies not 

just in connection to major visual and ocular-motor 

parameters, but also in proportion to the costs of 

executing specified actions (Acharya, Yang, and 

Lee 2016). Although explicit consciousness is 

changeable in this way, visually guided behaviours 

that are directed at one's immediate surroundings 

are not. Applications of this study are providing a 

base map for graphical reference, assisting 

planners, engineers, extracting mineral deposits 

with remote sensing based spectral analysis, 

disaster mitigation planning and recovery,  

agriculture development  (Bengtsson, Nordin, and 

Pedersen 1994). 

 

There were many distinct performances of 

Linear Regression and Random Forest simple. 

Around 188 related papers were found in IEEE 

Xplore and 197 were found in the ScienceDirect 

database. Many Python libraries were utilised in 

the development, including Keras, which included 

a net for Multispectral Satellite Novel Image 

Segmentation, and TensorFlow, which was created 

by Google and is used to build deep learning neural 

networks by performing  algorithms (Berhane et al. 

2018). Describes the different numerical methods 

used to create a credible land cover map. The Land 

cover area intricacy necessitates the use of a variety 

of data, including Landsat satellite pictures, digital 

elevation models, digital orthophotos. Linear 

Regression is Compared over Random Forest 

architecture. The proposed method achieves a 

significant improvement in performance and 

efficiency (Kulkarni and Rege 2021). 

 

Our institution is passionate about high quality 

evidence based  research and has excelled in 

various domains (Vickram et al. 2022; Bharathiraja 

et al. 2022; Kale et al. 2022; Sumathy et al. 2022; 

Thanigaivel et al. 2022; Ram et al. 2022; Jothi et al. 

2022; Anupong et al. 2022; Yaashikaa, Keerthana 

Devi, and Senthil Kumar 2022; Palanisamy et al. 

2022). Presenting ways for determining 

correctness. Comparing three nonparametric 

machine-learning methods in this work. The study 

disadvantages are as follows: Image de-striping, 

Local cloudiness, limited temporal and 

geographical resolution, and image gaps make 

vegetation classification a difficult process in land 

cover area. The aim was to forecast Satellite novel 

Image Segmentation using Novel Linear 

Regression, which delivers the highest accuracy 

rate when compared to the Random Forest 

Algorithm ((Acharya, Yang, and Lee 2016). 

 

2. Materials and Methods 

 

The study setting of the proposed work 

was conducted in the DBMS Laboratory, Saveetha 

School of Engineering in guidance with faculty. To 

perform this research two groups were taken. 

Group 1 is the Linear Regression and group 2 is 

Random Forest. The Sample size was calculated 

using clinical analysis by keeping G power fixed 

with 80%, 440 sample sizes estimated per group, 

totally 880, 93% confidence, pretest power 80%, 

and enrolment ratio 1 and the maximum accepted 

error is fixed as 0.05. The dependent variables are 

their location and proximity to other data and 

independent variables are generally on the Passive 

sensors collecting radiation. In this study, the 

accuracy of two classifiers Linear Regression and 

Random Forest was compared. 

 

The two groups that used Linear 

Regression and  Random Forest algorithms were 

performed by taking the dataset containing 10 

columns and 20 rows. The dataset was split into 

training and testing parts accordingly using a test 

size of 0.2. The first group in this paper is the  

linear regression algorithm which performs 

classification by forming groups of every different 

class in the data. Random Forest classifier takes k 

groups as input size and tries to do classification 

with the k groups. Significance value p = 0.053 in 

Table 4. The proposed work is designed and 

implemented with the help of google colab 

software. The platform to assess deep learning was 

Windows 10 OS. The Hardware configuration was 

an Intel corei7  processor with a RAM size of 8GB. 

The system sort used was 64-bit. For the 

implementation of code, the python programming 

language was used. As for code execution, the 

dataset is worked behind to perform an output 

process for accuracy. 

 

Linear Regression 

In insights, straight relapse is a direct way 

to deal with demonstrating the connection between 

a scalar reaction and at least one informative factor 

(otherwise called reliant and autonomous factors). 

The instance of one informative variable is called 

straightforward direct relapse; for multiple, the 
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cycle is called different straight relapses over  the 

land cover area. This term is unmistakable from 

multivariate straight relapse, where different 

associated subordinate factors are anticipated, 

rather than a solitary scalar variable. 

 

Pseudocode for Linear Regression  

INPUT: Training data D, number of 

epochs e, learning rate n. 

OUTPUT: Classifier accuracy 

Ensure: Weights w0, w1w1,.. wk 

Step 1: Initialise weights wo, w1,... wk 

from standard normal distribution with  

        Zero  mean and standard deviation σ 

Step 2: for epoch in 1... e do 

Step 3: for each (x, y) ∈ D in random order do 

Step 4: if ŷ ← ω0 +∑k
i=1 ωi χi 

Step 5: if (ŷ > 1 and y = 1) or (ŷ < −1 and y = −1) 

then 

Step 6: continue 

Step 7: wo ← wo - η  2(ŷ — y) - 

Step 8: for i in 1... k do 

Step 9: wi ← wi– η 2(ŷ — y)  

Step 10: end for 

Step 11: end for 

Step 12: return  wo, w1,... wk 

 

Random Forest Algorithm 

Choice trees are a famous strategy for 

different AI assignments. Tree learning comes 

nearest to meeting the prerequisites for filling in as 

an off-the-rack technique for information mining, 

since it is invariant under scaling and different 

changes of element values, is strong to the 

incorporation of insignificant highlights, and 

delivers inspectable models. Notwithstanding, they 

are only occasionally precise. Specifically, trees 

that become extremely profound will generally 

advance exceptionally unpredictable examples: 

they overfit their preparatthe ion sets in  land, cover 

area, for example have low predisposition, yet 

extremely high difference. Arbitrary timberlands 

are an approach to averaging numerous profound 

choice trees, prepared on various pieces of a similar 

preparation set, determined to diminish the 

difference. This comes to the detriment of a little 

expansion in the inclination and some deficiency of 

interpretability, yet for the most part significantly 

helps the exhibition in the last model. 

 

Pseudocode for Random Forest  

INPUT: Training data D, number of 

epochs e, learning rate n. 

OUTPUT: Classifier accuracy 

Step 1:To generate c classifiers: 

For i = 1 to c do 

  Step 2:Randomly sample the 

training data D with replacement to produce Di 

  Step 3:Create a root node. Ni 

containing Di 

  Step 4:Call BuildTree(Ni) 

Step 5:End for 

Step 6:If N contains instances of only one 

class then return 

   Else 

Step 7:Randomly select x% of the possible 

splitting features in N 

Step 8:Select the feature F with the 

highest information gain to split on  

Step 9:Create f child nodes of N, N1,......,Nf 

For i = 1 to f do 

  Step 10:Set the contents of Ni to 

Di 

     Fi 

  Step 11:Call Build Tree(Ni) 

     Step 12:End for 

Step 13:End if 

 

Statistical Analysis 

The statistical analysis is done using 

IBM’s SPSS statistical analysis tool with version 

26. Independent Sample T-test analysis was 

performed by using the Machine learning models 

and evaluated the quality of the study. In SPSS the 

dataset is prepared using the 10 samples from each 

of the algorithms and the total samples is 20. Group 

id is given 1 for Linear Regression and 2 for 

Random Forest. 

 

3. Results 

 

The group statistical analysis on the two 

groups shows: Linear Regression has more mean 

accuracy than Random Forest  and the standard 

error mean is slightly less than Linear Regression. 

The Linear Regression algorithm scored an 

accuracy of  80.04% and  Random Forest has 

scored 74.07% as shown in Table 4. The accuracies 

are recorded by testing the algorithms with 10 

different sample sizes and the average accuracy is 

calculated for each algorithm. Figure 1 represents 

the bar chart of accuracies with standard deviation 

error is plotted for both the algorithms. The Mean 

value of Linear Regression is better when 

compared with the  Random Forest with a standard 

deviation of 1.514121 and 2.01753 respectively. 

Table 4 shows the Independent sample T-test data 

of Random Forest and Linear Regression with the 

significance value obtained is 0.053 (Two-tailed, 

p>0.05).   

 

4. Discussion 

 

From the results of this study, Linear 

Regression  is proved to be having better accuracy 

than the Random Forest algorithm over Novel 
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Image Segmentation in Table 1. Linear Regression 

has an accuracy of 80.04% whereas Random Forest  

has an accuracy of 74.07%. In Table 2, the group 

statistical analysis on the two groups shows that 

Random Forest has more mean accuracy than 

Random Forest and the standard error mean 

including standard deviation mean is slightly less in 

Table 3. These involve various combinations of the 

proposed scheme's constituent components, 

specifically, rough-set initialization (Jenicka 

2021)). 

Similar paper provides an overview of 

state-of-the-art computer vision algorithms, 

particularly, and deep learning models based on the 

models trained on the first partition of the dataset 

their application to land use classification using 

satellite imaging data is presented in this study 

effort land cover area, A study by  (Johnson et al. 

2003) gives context for the Special Issue on Micro 

Strategy and Strategizing's origins, ideas, and 

papers. For opposite urban hydrological 

investigations, detection using remote sensing 

photography is critical using Novel Image 

Segmentation. Urban hydrology is a developing 

scientific field that enables us to improve and 

manage urban water systems in order to address 

environmental challenges created by increasing 

urbanisation. 

The study examines the computing power 

requirements per unit of area. Their imaging action 

is easily repeatable. The Limitations of this study 

are  Local cloudiness, low temporal, and Signal 

reception can be spotty at times. satellites are their 

unstable signal. (Borra, Thanki, and Dey 2019) and 

gaps on the image create a complex task for 

vegetation classification. Future scope enables far 

broader coverage, and because all information is 

digital in land cover area,, it can be easily linked 

with software (Sozzi et al. 2019). Cloud cover has 

little effect on results in some circumstances.  

 

5. Conclusions 

 

In this research work, the prediction of the 

accuracy percentage of Multispectral Satellite 

Image Segmentation using  Linear Regression to 

have enhanced accuracy 80.40%. When compared 

to the Random Forest 74.07% shown in Fig. 1. 

Accuracy estimation for various Satellite Image 

Segmentation has been successfully calculated for 

the Images. The main focus was on the algorithmic 

substance of various attention processes, as well as 

a summary of how they are used. Conclude that we 

have succeeded in creating a Machine learning 

model that is a major improvement above all other 

Multispectral Satellite Image Segmentation 

Previously available. Accurate descriptions of 

accurate calculations for each Image can be done 

using this model. 
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TABLES AND FIGURES 

   

Table 1. Group, Accuracy, and Loss value uses 8 columns with 8 width data for Multispectral Satellite Image 

Segmentation 

SI.NO Name Type Width Decimal Columns  Measure Role 

1 Group Numeric 8 2 8 Nominal Input 

2 Accuracy Numeric 8 2 8 Scale Input 

3 Loss Numeric 8 2 8 Scale Input 

 

Table 2. Accuracy and Loss Analysis of Linear Regression and Random Forest. 

S.No  GROUPS  ACCURACY LOSS  

 

 

 

 

 

 

 

 

1 

 

 

 

 

 

 

 

 

 Linear Regression  

80.04 12.30 

79.12 18.64 

76.26 16.11 

80.00 19.53 

74.65 22.00 

71.65 13.00 

74.00 11.87 

73.00 25.75 

80.97 24.75 
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70.00 12.45 

 

 

 

 

 

 

 

2 

 

 

 

 

 

 

 

 

Random Forest  

 

74.07 25.75 

69.65 24.75 

69.00 12.45 

71.45 23.45 

74.00 12.45 

73.09 11.25 

68.45 15.12 

74.11 16.23 

70.00 15.25 

70.45 11.03 

 

Table 3. Group Statistical Analysis of  Linear Regression and Random Forest. Mean, Standard Deviation and 

Standard Error Mean are obtained for 10 samples.  Linear Regression has higher mean accuracy and lower mean 

loss when compared to Random Forest. 

 GROUP N Mean Std.Deviation Std.Error 

Mean 

ACCURACY  Naive Bayes 10 75.9690 38.9529 1.23180 

Linear 

Regression. 
10 71.4870 23.2110 .73400 

LOSS  Naive Bayes 10 15.8450 44.0643 1.39343 

Linear 

Regression. 
10 16.7730 57.2529 1.81050 
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Table 4. Independent Sample T-test: is insignificantly Naive Bayes better than Random Forest with p value 

0.053 (Two tailed, p>0.05). 

  F Sig. t df Sig 

(2-

tail 

ed) 

Mean 

Diffencen

e 

Std.Erro

r 

differenc

e 

Lower Upper 

 

 

 

ACCURAC

Y 

Equal 

variances  

assumed 

1.17

0 

.05

3 

5.66

5 

18 .00

0 

8.60100 1.60100 5.5406

0 

14.1514

0 

Equal 

Variance

s      not 

assumed 

  5.66

5 

16.89

3 

.00

0 

8.60100 1.69468 4.0238

0 

14.1782

0 

 

 

 

 

LOSS 

Equal 

variances  

assumed 

.745 .05

3 

-406 18 689 -52800 2.28463 -

3.7278

4 

1.87184 

Equal 

Variance

s      not 

assumed 

 

  -406 16893 690 -82800 2.28463 -

3.7504

9 

2.89449 

 

 
Fig. 1.  Represents the mean accuracy of the software effort estimation for Linear Regression and Random 

Forest. The Linear Regression obtained 80.40% accuracy and the Random Forest obtained 74.07% accuracy. 

The Linear Regression achieved better than Random Forest. Mean Accuracy with +/- 1 SD. 


