
Section A-Research paper 
Study on Underwater Technique For Multi-Source Data Correction 

and Cooperative Positioning Error Compensation 

 

 

Eur. Chem. Bull. 2023, 12 (S3), 1010 - 1016                                                                                                                     1010 

 
 

 

STUDY ON UNDERWATER TECHNIQUE FOR 

MULTI-SOURCE DATA CORRECTION AND 

COOPERATIVE POSITIONING ERROR 

COMPENSATION 

 
Dr. Pawan Ravikesh Bhaladhare1, Dr. Ankita V. Karale2, Mr. Yogesh 

Sudam Gite3 

 

 

Article History: Received: 12.12.2022 Revised: 29.01.2023 Accepted: 15.03.2023 

 

Abstract: 

 

The duration and distance of information transmission are the primary factors in underwater formation 

cooperative driving errors of navigation and placement. Time-related errors are connected to transmission lag, 

clock skew, and other elements. It is challenging to measure how different variables like water temperature, 

ocean current, and sea depth effect transmission distance inaccuracy. The Kalman filter technique is employed 

in this study to simulate the trajectory of the micro-platform, examine the mechanisms causing navigation and 

positioning mistakes, sort the errors into systematic and random errors, and categorise the errors. The 

positioning error characteristics of the micro-platform in the coordinated movement of underwater formation are 

investigated in conjunction with the multiple linear regression model and the approach based on Bayesian 

particle filter. To achieve the compensation and estimation of the positioning error, the experimental settings are 

altered, and the corresponding connection between the dependent variables and independent variables in the 

model is examined. 
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1. Introduction 

 

Whether in the military's underwater mission 

execution of special combatants or the civil area of 

marine engineering underwater maintenance 

operations, underwater multi-person / aircraft 

formation (Ou et al., 2021) cooperative cooperation 

is an essential method of functioning. In a wide 

variety of complex water environments, it is 

necessary to integrate multi-source data generated 

by various sensors in order to achieve formation 

maintenance and an accurate formation route. This 

will inevitably result in navigation and positioning 

errors brought on by systematic errors and random 

errors. The inaccuracy created by the cumulative 

calculations of sensors like inertial navigation and 

Doppler ergometer is referred to as the systematic 

error. Random error refers to the error generated by 

environmental conditions or specific factors 

according to particular laws, which is 

unpredictable. Its impact on navigation and 

placement frequently follows certain principles. 

This research establishes the motion and 

positioning models of the micro-platform based on 

the Kalman filtering technique and analyses the 

relative positioning error mechanism under 

cooperative formation working conditions. Both 

the Bayesian particle filter algorithm and the 

multiple linear regression model approach are used. 

The estimation of navigation and positioning error 

is finished, and the corresponding connection 

between the dependent variable and the 

independent variable in the model is explored by 

altering the experimental circumstances. 

 

2. Creation of a motion model for a micro 

platform 

The master and slave micro-motion platforms first 

synchronise their clocks before beginning the 

underwater formation's cooperative navigation. The 

position data and corresponding variance of the 

master micro-motion platform, as well as the 

separation between the master and slave micro-

motion platforms, can be analysed under the 

assumption that the underwater acoustic signal of 

the autonomous micro-motion platform is received 

from the micro-motion platform at a specific time. 

The necessary data of the primary micro motion 

platform may then be examined from the micro 

motion platform when the underwater acoustic 

signal packets originating from the autonomous 

micro motion platform are received again from the 

micro motion platform at (τ + 1). The position 

estimate information at the time of the micro 

motion platform may be solved using the position 

information collected from these two times and the 

dead reckoning system from the micro motion 

platform. 

It is assumed that the motion state of the micro 

platform at K time is changed from the state at (K-

1) time in combination with the Kalman filter 

algorithm(He et al., 2022), and the transformation 

formula is as follows: 

xk = Fkxk−1 + Bkuk + wk (1) 

Bk is the input control model operating on the 

controller uk; Fk is a state transformation model 

acting on statex xk−1; Qk is the covariance matrix, 

which is a multivariate standard normal 

distribution; and wk is the process noise, with a 

mean of zero. 

wk~N(0, Qk)  (2) 

The measurement variable Zk of state xk at time k 

has the following model formula: 

zk = Hkxk + vk 

Hk is the observation model, vk is the observation 

noise, and is the function that transforms the state 

quantity into the observation quantity are some of 

them. The covariance matrix, Rk, is like the 

preceding wk and follows the multivariate standard 

normal distribution:  

vk~N(0, Rk) 

It is believed that the starting state and the noise at 

each time, {x0, w1, … , wk, v1, … , vk}, are 

independent of one another. 

The value of the motion state x of the micro 

platform with time may be obtained when 

combined with the Kalman filtering technique. 

Specifically, the error Pk−1|k−1 between the last 

state value and the measured value is used to 

anticipate the error Pk|k−1 between the current state 

value and the measured value. This is to predict the 

current state optimum estimation xk−1 by the last 

state optimal estimation xk|k−1. The motion state's 

prediction update equation is: 

x̂k|k−1 = Fkx̂k|k−1 + Bkuk (Estimating the 

predictive state) 

Pk|k−1 = FkPk−1|k−1Fk
T + uk (Matrix of Prediction, 

Estimation, and Covariance) 

The estimator x̂k−1 derived by comparing the most 

recent state value xk−1 with Zk−1 is denoted by the 

formula x̂k|k−1. The anticipated value of the current 

estimator, x̂k, which is derived from the prior 

estimator, x̂k, is represented by the expression 

identical x̂k|k−1 

By deducting the system state equation from the 

state prediction equation: 

xk − x̂k|k−1 = Fk(xk−1 − x̂k|k−1) + wk 

Pk|k−1 = E [(Fk(xk−1 − x̂k−1|k−1) + wk)

× (Fk(xk−1 − x̂k|k−1) + wk)
T

] 

The state estimate error may be transformed into: 

since it is not connected with the system noise. 

E[(xk−1 − x̂k−1|k−1)wk
T]

= E [wk
T(xk−1 − x̂k−1|k−1)

T
]

= 0 
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→ Pk|k−1 = FkPk−1|k−1Fk
T + Qk 

The formula can alternatively be revised to read: 

x̂k|k = x̂k|k−1 + Kk(Zk − Hkx̂k|k−1) 

Pk|k = Pk|k−1 + KkHkPk|k−1 

Kkis a Kalman gain, which decides how to turn the 

predicted value into the updated value to satisfy: 

Kk =  Pk|k−1Hk
T(HtPk|k−1Hk

T + Rk)
−1

 

Thus, the following may be established for the 

micro-platform motion measurement model: 

(Xk, uk, wk) 

Zk+1 = g(Xk+1
S , Xk+1

M , Xk
M, DXk+1

M ) 

 

3. Navigation positioning system error 

correction using multiple linear regression 

equations 

System error is the error that occurs from a specific 

or specific factor changing in accordance with a 

specific law under a specific set of experimental 

circumstances, and its impact on the determination 

results frequently complies with a specific rule. It is 

challenging to create a closed-loop motion for the 

placement and navigation of micro-platforms 

across vast distances. The closed-loop path of 

short-range eight-character navigation (shown in 

Figures 1 and 2) is suggested to replace the 

cooperative working state of underwater formation 

in long distance, so as to carry out error correction 

analysis. This is done in order to find the 

corresponding relationship between navigation 

errors. 

 
Figure 1: Diagram of a closed-loop node setup 

 

 
Figure 2: Driving trajectory comparison technique at nodes 

 

Figure 3 depicts three instances of a micro-platform traversing an 8-shaped closed-loop map:  

 
Figure 3: Node-level closed-loop correction diagram 

 

A multivariate linear regression equation between 

the system error of the micro-platform and multiple 

influencing factors is established by combining 

with the environmental characteristics around the 

underwater micro-platform and the parameters of 

the dead reckoning information in light of the 

aforementioned situation. Feature extraction and 

matching are performed at the starting and ending 

points of the closed-loop route. In order to fully 

correct the navigation and positioning error, the 

dead reckoning position of the micro-platform is 
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corrected by combining the parameter matching 

and optimization methods, so that the calculated 

position value closely matches the actual position 

value of each point in the driving area (Figure 

3(c)). 

Here is how the system error is stated: 

𝜇(𝑦) = 𝛽0 + 𝛽1𝑥1+ . . . +𝛽𝑝𝑥𝑝 

It is possible to write it down as a matrix by 

looking at group N data: 

𝑌 = 𝑋𝛽 +  𝜀 

X stands for observation quantity, Y for 

observation error, for observation matrix, and for 

observation error. The multivariate linear 

regression equation (Michailidis et al., 2020) can 

be represented as the following matrix form since 

the origin of system error is frequently certain 

deterministic factors, not random variables. 

Assuming the regression equation fulfils G-M 

requirements and observation error obeys normal 

distribution. 

𝑌 = 𝑋𝛽 +  𝜀 

𝜀 ~ 𝑁(0, 𝜎2𝐼𝑛) 

The factor parameters affecting the system error are 

determined using the least squares estimation and 

maximum likelihood estimation methods. The 

regression equation is then reintroduced into the 

driving process of the micro platform prior to the 

node for positioning correction comparison in order 

to identify the source and magnitude of the system 

error and complete the compensation and 

correction of the system error (Gao & Guo, 2018). 

 

4. Bayesian filtering-based random error 

correction for location and navigation 

Random mistake frequently results from something 

unforeseen and unintentional that happens during 

the measurement process; these events have no 

regularity and cannot be predicted, while repeated 

measurements have statistical regularity. By 

following the 8-word path on the closed map, it is 

possible to extract the random error sample 

function of the state space propagation of the 

micro-platform, which can roughly reflect the 

posterior probability density of the positioning 

error of the micro platform. The mapping link 

between small distance and big distance is 

constructed in conjunction with the particle filter 

based on Bayesian filtering(Zheng et al., 2005), 

after which the positioning inaccuracy of the large-

scale micro platform is fixed(Hightower et al., 

2000). 

The research object for this work is τ. The process 

equation of the system may be built in accordance 

with the content, where τ can be derived by using 

input.(Rebelo & Nascimento, 2021) The 

observation is the environmental information error, 

where the difference between the real-time 

environmental detection and the projected value, 

and it also reflects the positioning error of the 

system's inertial navigation. 

Based on this, the system's observation equation 

may be formed as follows:  

The process equation: 

𝜏𝑘 = 𝑔(𝜏𝑘−1, 𝑈𝑘) 

The observation equation: 

𝑒𝑘 = ℎ(𝜏𝑘) 
The undersea micro platform's navigation and 

positioning state variable 𝜏𝑘 is iteratively evaluated 

using Bayesian and Markov hypothesis: 

Let𝜏0:𝑘 represent the state variable series 𝜏0:𝑘 =
 (𝜏𝑖 , 𝑖 = 0,1, . . . , 𝑘) and  𝜏1:𝑘 represent the variables 

used to make observations. The Bayesian formula 

demonstrates that: 

 
The likelihood probability density when the 

observation is 𝑒1:𝑘 is 𝑃(𝜏0:𝑘|𝑒0:𝑘) and the posterior 

probability density is  𝑃(𝜏0:𝑘|𝑒0:𝑘).(Lomax et al., 

2000) The edge density of  𝑃(𝑒0|𝑒1:𝑘), or the 

posterior probability density  𝑃(𝜏𝑘|𝑒1:𝑘), is the 

subject of the filtering issue. 

 
The posterior probability density  𝑃(𝜏𝑘|𝑒1:𝑘) will 

need to be computed once for the formula above 

everytime a new observation data set is received, 

which is quite unpleasant. As a result, the posterior 

probability density is produced using the recursive 

updating approach described below: 

The system model is utilized to forecast the 

probability density of time, and the prior 

probability density  𝑃(𝜏𝑘|𝑒1:𝑘−1) of time is acquired. 

Beginning with the posterior probability density 

 𝑃(𝜏𝑘|𝑒1:𝑘−1) obtained at 𝑘 − 1 time. 

Update: When the observed value 𝑒𝑘 at  arrives, it 

is used to correct the above prior probability 

density to obtain the posterior probability density 

 𝑃(𝜏𝑘|𝑒1:𝑘)at ;   

Update: The posterior probability density  𝑃(𝜏𝑘|𝑒1:𝑘) 

at is obtained by correcting the prior probability 

density above with the observed value 𝑒𝑘 at k. 

The system state follows a first-order Markov 

process, and the system observation  𝑒𝑘 is 

independent if (𝑘 − 1) time and  𝑃(𝜏𝑘−1|𝑒1:𝑘−1) are 

known. 

Initially, the prediction step yields the prior 

probability density  P(τk|e1:k−1) of a (k − 1) time 

system state without K-time data. 

 
Where P(τk|e1:k−1) is the system state's transition probability density. 
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Then, by updating step with the observation value at k-time points, the posterior probability density of the 

system state at K time points is obtained: 

 
Defined by conditional probabilities: 

 
From the joint probability formula: 

 
From Bayesian formula: 

 

 
Assuming that each system observation   is independent of each other, we can get: 

 
However ∫  P(ek|e1:k−1) is usually a normalized constant, so:  

 
By using a weighted sum of random samples, the Bayesian particle filter technique may approximate the 

posterior probability density of placement and navigation during the whole motion process. 

 
Among them, {wk

i } is the normalised weight of 

particles, N is the number of particles, {τk
i } and δ(.) 

is the Dirac-Delta function. 'Particles' are a 

sequence of samples acquired via Monte Carlo 

random sampling at k moments.(Seeger, 2004) As 

a result, the particle set and its weight value 

{τk
i , wk

i } may be used to roughly depict the 

posterior probability density  P(τk|e1:k−1)  of the 

system, as illustrated in Figure 4. 

 

Normalized constant  P(τk|e1:k−1) is generally 

unknown, so the particle set cannot be directly 

sampled from posterior probability 

density P(τk|e1:k−1). The importance density 

function q(τk|e1:k−1), which is easier to sample, is 

usually used to sample through importance 

sampling. The importance density q(τk|e1:k−1), 

can be expressed as:  
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Figure 4: Distribution of the posterior probability density 

 

As the normalised constant P(τk|e1:k−1)  is often 

unknown, the posterior probability density 

 P(τk|e1:k−1) cannot be directly sampled for the 

particle set.(Trivedi & Balakrishnan, 2013) The 

most common method of importance sampling uses 

the simpler to sample significance density function 

q(τk|e1:k−1). The expression for the significance 

density q(τk|e1:k−1) is: 

 
Thus, the particle weight meets:  

 
If the importance density may be divided into: 

 
The updating formula for weight may be calculated using the recursive Bayesian estimating approach as 

follows: 

 
 

If q(τk|e1:k−1) ,the importance density function 

only depends onτ  and , and it is unnecessary to 

store the historical values of particle sets and 

observations.(Han & Zhang, 2007) The weight 

updating formula of the above equation can be 

simplified as: 

It is not essential to preserve the historical values of 

particle sets and observations if q(τk|e1:k−1) since 

the importance density function only relies on and. 

The weight updating formula in the previously 

stated equation is as follows: 

 
 

The posterior probability density of the state may 

be iteratively calculated in order to acquire the 

statistical data of the state expectation by 

calculating the weight of the particle set generated 

by sequential sampling(Li et al., 2018) of the 

importance density function in accordance with the 

preceding formula: 
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After normalizing weight: 

 
One way to express the posterior probability density is as follows: 

 
When the particle number is  N → ∞ , the large 

number theorem can ensure that the above equation 

can approximate the real posterior probability 

P(τk|e1:k−1), so as to complete the random error 

estimation in the navigation and positioning of 

micro platform.  

The following equation may approximate the 

genuine posterior probability P(τk|e1:k−1) when 

the particle number is N → ∞, completing the 

random error estimate in the navigation and 

placement of the micro platform. 

 

2. Conclusions 

 

A technique for systematic error estimation and 

correction in underwater cooperative formation 

navigation and placement is put forward in this 

research. The motion model of an underwater 

micro-platform is created by integrating the 

Kalman filter method with different sensor data 

carried by the micro-platform itself. The mistake of 

the closed-loop path of the short-distance eight-

character navigation prior to the coordination of the 

micro-platform is what distinguishes the error 

connection between navigation and positioning at 

the same time. A quick calibration and correction 

approach for systematic error and random error in 

cooperative placement is provided, which may 

increase the precision of underwater cooperative 

formation navigation. It is based on multivariate 

linear regression equation and Bayesian particle 

filter method. 
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