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Abstract  

Background: Molecular structures hold a wealth of knowledge that can be applied further. 

The information was decoded using a traditional Quantitative Structure-Activity Relationship 

(QSAR) approach based on the descriptors. A mono substituted series of Glucokinase-

Glucokinase Regulatory Protein Inhibitors (GK-GKRP/GCKR) was the subject of the study.  

AIM: A new chemical will be created using this knowledge. To determine the suggested 

compound's binding pattern, docking tests will be carried out.  

Material and methods: In the present study, both linear and nonlinear statistical methods were 

sequentially applied. These methods included multiple linear regression (MLR), partial least 

squares (PLS), and artificial neural networks (ANN). The created model was evaluated using 

a variety of statistical techniques to clearly demonstrate its dependability and accuracy.  

Result: The various statistical parameters s value: 0.37, F-value: 64.61, r: 0.92, r
2
: 0.84 and 

r
2
CV: 0.80 demonstrated the predictive capability and resilience of the model using the 

training set. The validation of training set was carried out using test set. 

Conclusion: The model sheds light on the different descriptors chosen for the current 

investigation. The current work not only demonstrates the role that different substituents play 

in biological activity, but it also suggests modifications that could be made to the design of 

new effective compounds to increase selectivity and decrease toxicity. 

Keywords Glucokinase-Glucokinase regulatory protein (GK-GKRP/GCKR), Quantitative 

structure Activity Relationship (QSAR), Docking, Multiple Linear Regression (MLR), Partial 

Least square (PLS), and Artificial Neural Network (ANN) 

INTRODUCTION 

Diabetes 1 mellitus, also known as elevated plasma glucose level, is a metabolic disorder of 

the body. This metabolic disorder is brought on by an insulin secretion deficiency or insulin 
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resistance. Diabetes mellitus can be broadly divided into two primary classes: Type I diabetes 

mellitus, also known as Insulin Dependent Diabetes Mellitus 2 (IDDM), and Type II diabetes 

mellitus, also known as Non-Insulin Dependent Diabetes Mellitus. Because the islet cells in 

the pancreas have broken down in type I diabetes, there is no insulin at all. In type II, insulin 

may not be able to elicit a response because of resistance. One of the most prevalent and 

quickly spreading diseases in the world, diabetes, an endocrine system disorder identified by 

unusually high blood glucose levels, is expected to afflict 693 million individuals by 2045 

(1). Vascular complications of both the macrovascular (cardiovascular disease, or CVD) and 

microvascular (diabetic retinopathy, neuropathy, and kidney disease, or DKD) systems are 

the leading cause of morbidity and mortality in people with diabetes, placing a heavy 

financial burden on society due to differences in health care spending and access between 

developed and developing nations. High blood glucose levels brought on by absolute or 

relative insulin shortage, in the setting of β-cell malfunction, insulin resistance, or both, are 

the hallmarks of diabetes, a chronic metabolic condition. Other clinically discernible subtypes 

of diabetes exist, including monogenic diabetes (such as maturity-onset diabetes of the young 

or neonatal diabetes), gestational diabetes, and possibly a late-onset autoimmune form, 

despite the fact that diabetes is traditionally divided into an early-onset autoimmune form 

(type 1 diabetes; T1D) and a late-onset non-autoimmune form (T2D) (latent autoimmune 

diabetes in the adult). In fact, T2D is primarily used to describe any type of diabetes that is 

not autoimmune or monogenic in origin, and it is becoming more and more apparent that it 

may actually be a collection of many pathophysiological states. Despite this diversity, all of 

these forms of diabetes have a notable genetic component. 

A flexible hinge region divides the big domain and the small domain, two domains that make 

up the 465-residue, 52-kDa enzyme known as GCK. GK, unlike hexokinase, is reserved or 

inhibited by GKRP which mediates the translocation of the enzyme from the cytosol to the 

nucleus. Glucokinase catalyzes the very first step of the glycolysis cycle, i.e., 

phosphorylation of glucose, a rate-limiting step. Principally found in pancreatic beta cells and 

in the liver (99%), where it promotes glucose-stimulated insulin secretion and controls 

glucose uptake and glycogen synthesis respectively (2,3). Substrates bind in a cleft between 

the large and small domains, just like with other proteins that adopt the hexokinase fold, and 

cause a conformational change to a more compact form of the enzyme. This hexokinase's 

structure displays a special "superopen" conformation that hasn't been seen in any other 

hexokinases before. It is distinguished by a wide opening angle between the big and small 

domains and an unnoticeable, disordered loop made up of residues 151–180. GCK adopts a 

"closed" conformation, in which the disordered loop is completely visible and the big and 

small domains are separated by a modest opening angle (4).  

The first rate-limiting step in the metabolism of glucose is the phosphorylation of glucose to 

glucose-6-phosphate, which is catalysed by the hexokinase isoenzyme glucokinase.  The 

majority of glucokinase expression is found in pancreatic beta cells, where it controls the rate 

of glucose phosphorylation to regulate insulin output. Therefore, glucokinase serves as the 

pancreas' glucose sensor. Because of its distinct kinetics, glucosekinase can act as a reliable 

glucose sensor and is distinguished from other hexokinases by its lower affinity for glucose 

(Km 10 mmol/L), moderate cooperative binding with glucose, and lack of inhibitory 
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feedback from glucose-6-phosphate (5). GK governs the amount of oxidative and glycolytic 

ATP produced, which in turn affects the ratio of ATP to ADP. As the ratio rises, the K 

channel gradually closes and depolarizes the cell. Once the membrane potential threshold of 

the L-type Ca channel is reached, various signalling pathways including Ca
2+

, cAMP, 

inositol-3-phosphate, and protein kinase C are activated, leading to the release of insulin. A 

change in any one of the three essential elements of this functional unit has a significant 

impact on the GSIR threshold. High glucose increases the amount of GK expression in b cells 

by up to tenfold, depending on the concentration, making them more susceptible to the effects 

of glucose on insulin production and release (6). The glucokinase regulatory protein (GKRP), 

a 68 kDa polypeptide that serves as a competitive inhibitor of glucose binding to GCK, 

controls the activity of GCK in the liver (7).  When there is little glucose present, GCK 

combines with GKRP, and the inactive complex is drawn to the nucleus of the hepatocyte. 

The GCK-GKRP complex separates when blood glucose levels rise, and GCK goes back to 

the cytosol to take part in glycogen metabolism. In animals, fructose 6-phosphate encourages 

complex formation while fructose-1-phosphate inhibits it (8). As GK and GKRP shows a 

vital role in glucose management, it attracts attention as a drug target. Some Phase I studies 

have verified that the target has the capacity to normalize blood sugar in patients with T2DM. 

Unequivocally, the capability of GKRP to affect both release of insulin and hepatic 

metabolism of glucose could provide greater efficiency as a monotherapy. Further studies of 

the newly designed compounds may lead to more potent and less toxic compounds for 

clinical trials and new pharmacological candidates for T2DM. 

Targeting this protein in a way that disrupts the complex will not change the enzyme's 

kinetics, lowering the possibility of causing hypoglycemia. To create new drug entities in the 

current study, the Insilco tools of qualitative structure activity relationship for drug discovery 

will be used. To forecast the activity of the compound, a variety of in silico drug design 

techniques will be applied, including MLR, PLS, and ANN. 

MATERIAL AND METHODS 

Dataset for Analysis 

A series of compounds having good log IC50 values is selected from the literature. Generally 

the reported activities are skewed so the biological activity is taken as –log of the given IC50 

value by using the following formula: 

pIC50= −logIC50 

Sketching of the compounds available in the series is done by using the chemdraw ultra 8.0 

software [(www.perkinelmer.com), USA] (9). Structure cleanup is applied to avoid any 

mistake in the structure (bending or stretching). Moving towards the QSAR development the 

structures were then used for the further study by importing into the new data sheet of TSAR 

3.3(www.accelrys.com) (10).  

Define Substituent and Dataset Preparation  

Series at hand has only one substitution, around the pridyl ring (whole series). The 

substituents were defined by using the “define substituent” option in-built in the TSAR 

worksheet (version 3.3; Accelrys Inc., Oxford, England) as shown in figure 1. The structure 

were then converted into the high quality by using CORNIA-Make 3D (11). Then the 

http://www.accelrys.com/
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COSMIC option was employed so as to determine the total energy of the molecule, which is 

the sum of torsion angle, Vander walls force, columbic force etc. 

Calculating Descriptors 

After importing structure, defining substituent and minimizing energy the next step is to 

calculate the descriptor and then refining them to select only those that are much or closely 

correlated to the biological activity. Nearly 200 classical descriptors from geometrical, 

structural, electronic and hydrophobic class were generated by calculating their statistical 

values using whole molecule along with substituent. Various descriptors like kier chi, kappa, 

dipole moment, molecular, indicies, HOMO, LUMO, logP and other molecular, electronic, 

topological descriptors and VAMP were obtained using the TSAR package (12). 

Data Reduction 

Data redundancy, which is the main cause of deceptive results, is mainly observed when the 

data are large and lead to ambiguity in choosing the relevant descriptors. So, Correlation 

matrix is used to limit and refine the data and to obtain the most correlated descriptor or 

physicochemical parameter with biological activity and no intercorrelation. While performing 

correlation matrix pair wise correlation method was used for evaluation of the descriptors. 

Descriptors which highly correlate to with biological activity were retained (13). These 

descriptors are used for performing correlation and then used in the final model building and 

are used to interpret the information that is encoded in the structure of the molecules. 

Statistical Analysis 

To statistically analyze the data various regression methods were applied in order to form and 

validate the model. The whole series was divided into test and the training set. The training 

set compounds are utilized to generate the model while the test set compounds were used to 

internally validate the model developed by training set molecules. Regression analysis was 

carried out through the execution of MLR, PLS, and ANN options, accessible in TSAR 3.3. 

The assessment of predictive power of the anticipated model was performed and confirmed 

through a set of statistical parameters, such as standard deviation (s), squared regression 

coefficient (r
2
), conventional regression coefficient (r), cross‑ validation test (r

2
cv), and 

Fischer’s ratio (F) (14). 

Multiple linear regression analysis (MLR) 

MLR describes the relation between the biological activity data (dependent Y variable) and 

the structural descriptors (independent X variable) using statistical calculation. MLR involves 

fitting of the data, extracted from both the variables to the derived regression equations (15). 

Partial least square (PLS) 

PLS analysis method also explain the relationship between a dependent variable and a set of 

descriptors (independent variables) using the calculation of the equations. PLS is considered 

as a preferred tool for surmounting the difficulties of MLR, owing to redundancy resulted due 

to a large pool of data or high inter-correlations among descriptors (16). 

Artificial neural network approach (ANN) 

ANN is characteristically a software‑ based program that is designed to replicate like human 

brain to analyzes and process information. In ANN technique, several neurons (the 

processing elements) are linked to each other through links like net and form “layers.” The 

features of the ANN are appropriate for processing of the data, particularly when the 
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functional relationship between the input and the output is not previously defined or is of 

nonlinear type. 

Model validation 

For the cross‑ validation Leave‑ one‑ out method was used and involved the deletion of one 

descriptor, at a time, and analyzing the data set values for the obtained model based on the 

remaining descriptors. The values of r2 and cross‑ validation, with least prediction error, 

were chosen. Additionally, the test set compounds, not included in building of the model, are 

used to determine the predictability of the designed QSAR model (17). 

RESULTS  

40 compounds with GK-GKRP inhibitory activity were selected to create model. The data set 

was splitted into training and test set and was used to develop the model (18). 

 

Table 1: Structures and biological activities of 40 compounds used for data set 

preparation 

Compound Name Structure IC50(µM) 

1.  

 

0.004 

2.  

 

0.009 
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3.  

 

25 

4.  

 

1.05 

5.  

 

0.028 

6.  

 

0.006 
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7.  

 

0.374 

8.  

 

0.047 

9.  

 

0.028 

10.  

 

0.016 
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11.  

 

0.006 

12.  

 

0.005 

13.  

 

1.09 
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14.  

 

3.07 

15.  

 

3.36 

16.  

 

0.401 

17.  

 

0.061 
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18.  

 

0.035 

19.  

 

0.101 

20.  

 

0.235 

21.  

 

0.320 
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22.  

 

1.60 

23.  

 

0.310 

24.  

 

0.256 

25.  

 

0.045 
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26.  

 

0.182 

27.  

 

0.017 

28.  

 

0.266 

29.  

 

0.069 



IN SILICO-QSAR MODELLING OF PREDICTED GLUCOKINASE - GLUCOKINASE REGULATORY PROTEIN INHIBITORS AGAINST DIABETES 
 

Section A-Research paper 

1853 
Eur. Chem. Bull. 2023, 12(Special Issue 4), 1841-1865 

30.  

 

0.018 

31.  

 

0.013 

32.  F3C

N

H2N

S
O

O

N

N

N

OH

 

0.013 

33.  

 

0.010 
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34.  

 

0.010 

35.  

 

0.068 

36.  

 

0.024 

37.  

 

0.013 
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38.  

 

0.070 

39.  

 

0.081 

40.  

 

0.049 

 

MLR analysis 

Following data reduction, linear equations were created utilizing the response variable, GK-

GKRP inhibitory activity, and the two explanatory variables, Lipole X component 

(substitution 1) and Verloop B1 (substitution 1). The created models were tested statistically 

(r, r
2
, r

2
cv, s, and f values) to obtain a significant model. Additionally, the statistics of the 

final model were enhanced by eliminating one potential outlier (18, 43) with large residual 

values. 
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Table 2: Tabulated TSAR software analysis of the correlation matrix. 

  

Verloop B1 

(Subst. 1) 

 

Lipole 

X Component 

(Subst. 1) 

 

Log Value 

Verloop B1 (Subst. 1) 1 -0.010528 0.84881 

Lipole X Component 

(Subst. 1) 

-0.010528 1 -0.36729 

Log Value 0.84881 -0.36729 1 

 

Original Data : Y = 1.8473288*X1 - 0.24102053*X2 - 3.0267346 

Standardized Data : Y = 0.77917737*S1 - 0.33046508*S2 + 1.2576237 

 

Table 3: Using MLR analysis, the model was created using a training set. 

 

 

 

 

 

 

 
Figure 1: Graph of developed training & test model through MLR 

Among all of the selected models, the Selected Model has the highest statistical values, 

including r, r
2
, r

2
cv, s, and f. It also exhibits statistically significant biological activity 

variance. Table provides statistical metrics, such as t-value, jackknife SE, and covariance SE, 

that confirm the validity and importance of the descriptors for GK activation. A low number 

for "s" and a high value for "f" support the model's applicability. 
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R² = 0.7898 
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0.92 0.84 0.80 0.37 64.6139 



IN SILICO-QSAR MODELLING OF PREDICTED GLUCOKINASE - GLUCOKINASE REGULATORY PROTEIN INHIBITORS AGAINST DIABETES 
 

Section A-Research paper 

1857 
Eur. Chem. Bull. 2023, 12(Special Issue 4), 1841-1865 

Table 4: The t-test values, Jackknife SE, and Covariance SE values of the descriptors 

used for regression analysis 

 Coefficient Jacknife SE Covariance SE t-value t-probability 

Verloop B1 

(Subst. 1) 

1.8473 0.17807 0.17719 10.426 3.4624e-010 

Lipole 

X Component 

(Subst. 1) 

-0.24102 0.071707 0.054509 -4.4217 0.0001968 

 

Test set compounds, which were kept separate from the training set compounds, were used to 

evaluate the models' capacity for extrapolation. All of the compounds in the test set were 

handled in the same way as the compounds in the training set. The developed model's 

outstanding predictive ability and statistical significance are demonstrated by its R
2
 value of 

0.848. Every compound received the same treatment as the compounds in the training set. 

Additionally, PLS was run on the same MLR data set to verify the predictability of the 

created model. Comparable results between MLR and PLS further support the model's 

importance. 

PLS Analysis 

Additionally, PLS was used to validate the produced model's relevance and predictive ability. 

The research suggest that MLR and PLS should be equivalent. After doing MLR and PLS 

analysis, NN analysis was carried out to obtain more precise information because non-linear 

models have occasionally been shown to be more accurate and exact than linear models.  

 
Figure 2: Graph of developed training & test model through PLS 

ANN analysis 

Two layers are employed in the NN analysis: the input layer, which contains descriptors; the 

output layer, which contains log1/IC50 values; and the hidden node layer, which calculates 

the hidden neurons based on the quantity of training and test patterns automatically. The 
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number of rows in the training set and the number of neurons in the hidden layer were 

balanced to obtain good NN results. 

The training set and test were found to have r
2
 correlation coefficients of 0.93 and 0.928, 

respectively. Positive dependency of the Lipole X component (substituent 1) and negative 

dependency of verloop B1 (substituent 1) was found. 

 

 
Figure 3: Graph of developed training & test model through ANN 

 

 
Figure 4: Neural graph of Lipole X Component (Substitution 1) with biological activity 
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Figure 5: Neural graph of Verloop B1 (Substitution 1) with biological activity 

Comparing linear and non-linear approaches 

To measure the predictability and relevance of the models, various statistical linear (MLR, 

PLS) and non-linear (NN) analytic techniques were used. After studying both linear and non-

linear approaches, it was found that their results in terms of statistical fitness are equivalent. 

The r
2
 values are, respectively, r

2
, MLR = 0.848, r2, PLS = 0.824, and r2, NN = 0.93 for the 

training set and r
2
, MLR = 0.789, r

2
, PLS = 0.770, and r2, NN = 0.92 for the test set. Based 

on the research presented here, it is clear that the MLR, PLS, and NN approaches produced a 

very significant and robust QSAR model that was able to predict the activity of the structural 

data. 

The training and test set compound’s actual and estimated values, as well as the 

corresponding graphs, are shown figure 1,2 & 3. Tables 5 and 6 are representing the actual 

and predicted values of IC50, which were produced using MLR, PLS, and NN analysis. 

Table 5: Actual and predicted activity data obtained from MLR, PLS & ANN of the 

training set molecules 

S.No Compound 

Name  

Actual Value Predicted 

MLR 

Predicted 

PLS 

Predicted 

ANN 

1.  1 2.3979 1.8727 1.85966 1.88794 

2.  2 2.0458 1.5024 1.49862 1.71215 

3.  3 -1.3979 -1.1794 -0.99074 -1.45855 

4.  5 1.5528 1.6635 1.62994 1.75943 
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5.  6 2.2218 2.3446 2.42246 1.98041 

6.  9 1.5528 1.5805 1.55049 1.68324 

7.  10 1.7959 1.6566 1.64357 1.75103 

8.  13 -0.037426 0.046637 0.078548 0.096751 

9.  14 -0.48714 -0.091468 -0.02918 -0.45172 

10.  17 1.2147 1.1427 1.00847 1.52812 

11.  18 1.4559 0.81783 0.764646 0.997853 

12.  19 0.99568 0.78157 0.785663 0.905462 

13.  20 0.62893 0.76081 0.615355 0.833903 

14.  21 0.49485 0.77704 0.657894 0.892199 

15.  22 -0.20412 0.44023 0.201937 -0.20075 

16.  25 1.3468 1.0923 1.10864 1.44671 

17.  27 1.7696 1.0921 1.09245 1.44655 

18.  29 1.1612 1.4572 1.44422 1.65824 

19.  30 1.7447 2.0061 2.01884 1.93857 

20.  31 1.8861 1.8823 1.87939 1.89835 

21.  32 1.8861 2.0061 2.01884 1.93857 

22.  33 2 2.2658 2.14341 2.00485 



IN SILICO-QSAR MODELLING OF PREDICTED GLUCOKINASE - GLUCOKINASE REGULATORY PROTEIN INHIBITORS AGAINST DIABETES 
 

Section A-Research paper 

1861 
Eur. Chem. Bull. 2023, 12(Special Issue 4), 1841-1865 

23.  34 2 2.1129 1.82935 1.96277 

24.  35 1.1675 0.53234 0.547272 1.0408 

25.  36 1.6198 2.0611 0.987617 1.80868 

26.  37 1.8861 2.0739 1.00046 1.81111 

Table 6: Actual and predicted activity data obtained from MLR, PLS & ANN of the test 

set molecules 

S.No Compound 

Name 

Actual 

Value 

Predicted MLR Predicted PLS Predicted 

ANN 

1.  4 -0.021189 -0.22083 -0.21624 -0.02629 

2.  8 1.3279 1.7351 1.92903 1.14357 

3.  11 2.2218 1.728 1.74044 2.08252 

4.  12 2.301 1.7263 1.74688 2.2793 

5.  15 -0.52634 -0.35326 -0.30933 -0.13644 

6.  16 0.39686 0.52812 0.502497 0.623501 

7.  23 0.50864 0.60171 0.651413 0.630807 

8.  24 0.59176 0.60171 0.651413 0.630807 

9.  26 0.73993 0.60197 0.616258 0.631045 

10.  28 0.57512 0.80539 0.812398 0.799814 

11.  38 1.1549 1.7745 1.79659 1.34292 

12.  39 1.0915 1.3435 1.1876 1.29468 

13.  40 1.3098 0.79958 0.795149 0.850509 
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Lipole X component (Subst. 1) - Drug distribution within the body after absorption is 

greatly influenced by lipophilicity, which also provides information on how rapidly drugs are 

metabolized and eliminated. Another theory puts lipophilicity at the heart of how medicines 

bind to their intended receptor sites. Lipole is used to describe molecule lipophilicity 

quantitatively. A directional component of lipophilicity is the lipole X component. The 

improved inhibitory activity of compounds with an increase in the bulky lipophilic group in 

the entire molecule is explained by a favourable contribution of the lipole X component to 

biological activity. 

Verloop B1 (Substitution 1) - Verloop Parameters are a collection of multi-dimensional 

steric descriptors that define a box and can be used to describe the volume and shape of the 

substituent. These parameters are crucial for illuminating the steric influence of substituents 

on how organic compounds interact with macromolecular drug receptors. The breadth of the 

substituent in a direction perpendicular to its length is described by the Verloop B1–B5 

parameters. 

Designing of new optimized molecule 

It is difficult to create a new chemical structure that has all the necessary components in the 

right proportions to achieve the target protein's best binding pattern. A QSAR model was 

created, and this provided some important new information regarding the molecular structure 

necessary for biological activity. The compounds were created using the information that was 

obtained. Ten compounds in all were created (not stated here), with the best-fitting compound 

(A1) displayed below in figure 6. 

 
Figure 6: Structure of newly designed most potent compound (A1)  

 

Docking 

The designed novel compound was then used for docking study to further check the binding 

efficiency of the compound using PDB, 4OHM. Lib dock module from Discovery studio 2.0 

was used to perform docking studies. All water molecules and side chains were removed 

from the PDB structure in the radius of 10Å. The top-scored pose is used for analyzing polar 

and non-polar interactions (18). The complete docked structure of S1 and A1 is shown in 

figure 7 and figure 8. For comparison the documented structure (S1) was also docked on the 

same PDB ID, to check the common amino acids and their binding to the defined protein. 

Compound A1 is showing interaction with the same amino acids as that of the documented 

compound S1. As seen in the docking picture below A1 & S1 were showing hydrogen 
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bonding (Dark green line) with active amino acid residue Arg 525, Arg 215, Trp 517 & Gly 

181 and  hydrophobic (pink line) interactions with active amino acid residue Val 28, Pro 29. 

All these amino acids interactions are required for the required activity (19, 20). 

 

Figure 7: Docked picture of S1 on PDB 4OHM 

 

Figure 8: Docked picture of A1 on PDB 4OHM 

DISCUSSION and CONCLUSION 

The QSAR investigation was carried out utilizing linear (MLR, PLS) and non-linear (NN) 

statistical methods with 40 inhibitors. Comparable outcomes from the two approaches 

demonstrated the validity of the proposed models, which can be utilized to discover new 

compounds. The descriptors in charge of their biological action are verloop B1 (substitution-

1) and lipole X1 component (substitution-1). In the defined study, the values of r, r
2
, r

2
cv, f-

value and s-value proved the statistical soundness of the model. The valuable information 
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retrieved from this model can be used further to design and optimize the new compounds in 

terms of potency and selectivity. A docking study of the designed compound suggested 

hydrogen bonding with the enzyme pocket, which is essential for biological activity.  
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