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Abstract 

 

Aim: To enhance accuracy in predicting bone age from x-ray image to that of chronological ages using novel 

Convolutional Neural Network technique in comparison with Support Vector Machine. Materials and methods: 

Classification is performed by a convolutional neural network (N=10) over a Support vector machine (N=10). The 

sample size is calculated using Gpower with pretest power 0.8 as an alpha 0.2. Result: Mean accuracy of 

convolutional neural network (82.36%) is high compared to support vector machines (74.84%). The significance 

value for accuracy and loss is 0.028 (p<0.05). Conclusion: The mean accuracy of the bone age prediction system in 

convolutional neural networks is better than the support vector machine. 
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1. Introduction  

 

Bone age prediction can be useful in a 

variety of situations. For example, it may be 

accustomed to predict what proportion longer a baby 

can grow, after they can hit a time of life or maybe 

their final height. It can also be used to monitor the 

progress of children being treated for conditions that 

affect growth (Lei et al. 2019; Harmsen et al. 2013). 

Bone age prediction is also very useful when it comes 

to identifying people lacking proper identification. In 

recent years, there has been a significant increase in 

the number of refugees lacking proper identification 

seeking asylum in Europe (Wang et al. 2016; Dufau 

et al. 2019). Unaccompanied individuals under the 

age of 18 are eligible for special rights according to 

the United Nations Convention on Rights of the 

Child, so from a legal standpoint, an accurate 

assessment is important to create a fair procession 

age prediction using x-ray images is an important 

application (Stoyanov et al. 2018; Amasya et al. 

2020). Some of the applications of bone age 

prediction are the study helps doctors estimate the 

maturity of a child's skeletal system. It's usually done 

by taking a single X-ray of the left wrist, hand, and 

fingers. It is a safe and painless procedure that uses a 

small amount of radiation. applications that include 

eye disease detection, Alzheimer diagnosis, COVID-

19 screening, physiotherapy, and cardiac analysis. 

However, the input images will come in various sizes 

and conditions, where some images will be relatively 

small for the newborn baby and vice versa for the late 

teen case (Hochberg 2002; Gaskin et al. 2011; Tanner 

2001). Nowadays bone age prediction is applied in 

cybercrime departments, diagnosis of orthopedic 

related problems. 

 

In this research work, Bone Age prediction 

has been carried out by researchers, and 80 related 

research articles in IEEE Digital Xplore and 40 

articles are published in research gate. Assessment of 

a child’s skeletal maturity is important for the 

management of skeletal disorder during growth 

(Amasya et al. 2020). Differences between skeletal 

age and chronological. Therefore BAA is an 

important tool in the monitoring of growth, and to 

diagnose and manage a multitude of endocrine 

disorders and pediatric syndromes (Zulkifley, 

Abdani, and Zulkifley 2020). Bone age has also been 

used for computing the ultimate adult height of 

youngsters in traditional healthy kids and might be 

employed in determinant age where birth records 

don’t seem to be accessible (Mellits, Dorst, and 

Cheek 1971). The collected data is compared against 

the taken dataset of Convolutional Neural Network 

(Yoo et al. 2013). Bone age classification using 

convolutional neural networks (CNN) as a support 

tool for related disciplines in bone age diagnosis. 

Although different types of study for bone age 

evaluation using CNN have been conducted, the 

attention mechanism has not been thoroughly 

compared to standardized atlas collection of hand 

radiography for bone age assessment (Tanner 1983). 

The regressor network, that is employed to predict 

the age has utilized three-layer residual dissociable 

convolution units to provide a deep network, 

however, maintain a suitable model size, which is 

around 20,000,000 parameters. The network has also 

been trained using variable learning rates where its 

value is linearly decreasing concerning the training 

epoch (Jhang and Cho 2019) (Jhang, Kang, and 

Kwon 2020). 

Our institution is keen on working on latest research 

trends and has extensive knowledge and research 

experience which resulted in quality publications 

(Rinesh et al. 2022; Sundararaman et al. 2022; 

Mohanavel et al. 2022; Ram et al. 2022; Dinesh 

Kumar et al. 2022; Vijayalakshmi et al. 2022; Sudhan 

et al. 2022; Kumar et al. 2022; Sathish et al. 2022; 

Mahesh et al. 2022; Yaashikaa et al. 2022). The 

current system of predicting bone age has certain 

limitations in detecting the difference between a 

child's bone age and chronological age, which could 

signal a growth problem. However, such differences 

do not always imply that there is a disadvantage, as 

even perfectly healthy children will have bone ages 

that differ from their recorded ages. Even though 

much study has been done on this subject, there is 

still a gap in terms of formulating performance when 

it comes to automatically detecting and recognizing 

bone age. As a result, an automatic system to forecast 

and recognize number plates is necessary. The goal 

of this research is to use innovative convolutional 

neural networks to automatically predict and 

recognize bone age, hence boosting performance and 

lowering the rate of erroneous predictions. 

 

2. Materials and Methods 

 

This study setting was done in the Data 

Analytics Lab, Department of Information 

Technology, Saveetha School of Engineering, 

Saveetha Institute of Medical and Technical 

Sciences. The sample size taken for this research 

work is 20 (Group 1=10, Group 2=10). In predicting 

the bone age from an x-ray image, to modify the 

problem of low accuracy rate, convolutional neural 

networks and support vector machines are used. 

Convolutional neural networks learn about the age of 

the bone approximately. The support vector machine 
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enables thorough exploration of bone age  data 

present. The mean accuracy of convolutional neural 

networks is 82.36%. The mean accuracy of the 

support vector machine is 74.84%. Dataset for this 

instance is collected from 

(https://www.kaggle.com/saksham219/bone-ag-

prediction- through-x-rays/data ?select=boneage-

training-dataset) website with 12,611 instances (Kim 

et al. 2015). 

Novel Convolutional Neural Networks 

(CNNs, or ConvNets) are a type of artificial neural 

network used to evaluate visual information. Based 

on the shared-weight architecture of the convolution 

kernels or filters that slide along input features and 

give translation equivariant responses known as 

feature maps as explained in Fig. 1. Surprisingly, 

most Novel Convolutional Neural Networks are only 

equivariant under translation, rather than invariant. 

They're used in image and video recognition, 

recommender systems, image classification, image 

segmentation, medical image analysis, and natural 

language processing, among other things. 

 

 
Fig. 1. Convolutional neural network 

 

The input to a CNN is a tensor with the 

following shape: (number of inputs) x (input height) 

x (input width) x (number of outputs) x (number of 

outputs) x (number of outputs) x (number of outputs) 

x (number of outputs) x (number of output (input 

channels). The image is abstracted to a feature map, 

also known as an activation map, after passing 

through a convolutional layer, with the following 

shape: (number of inputs) x (feature map height) x 

(feature map width) x (feature map height) x (feature 

map width) x (number of inputs) x (number of inputs) 

x (number of inputs) x (number of inputs) x (number 

of input (feature map channels). The input is 

convolved by convolutional layers, which then pass 

the result on to the next layer. A cell in the visual 

brain comparably responds to a given stimulus. Each 

convolutional neural only processes data for the 

receptive field in which it is located. Although fully 

linked feedforward neural networks can be used to 

learn features and categorize data, there are several 

limitations. Pseudocode for novel convolutional 

neural network described in Table 1.  

Support-vector machines (SVM), also 

known as support-vector networks, are supervised 

learning models that examine data for classification 

and regression analysis. SVMs, which are based on 

statistical learning frameworks and Chervonenkis, is 

one of the most reliable prediction systems (1974). 

An SVM training algorithm creates a model that 

assigns new examples to one of two categories, 

making it a non-probabilistic binary linear classifier, 

given a series of training examples, each marked as 

belonging to one of two categories (although methods 

such as Platt scaling exists to use SVM in a 

probabilistic classification setting). 

 

 
Fig. 2. Support vector machine 

 

 

In machine learning, classifying data is a typical 

problem as explained in Fig. 2. Assume that some 
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data points are assigned to one of two classes, and the 

purpose is to determine which class a new data point 

will be assigned to. A data point is viewed as a 

display style pp-dimensional vector (a list of display 

style pp numbers) in support-vector machines, and 

we want to know if we can separate such points with 

a display style (p-1)(p-1)-dimensional hyperplane. 

Pseudocode for the support vector machine is 

described in Table 2. 

 

Statistical Analysis 

The analysis was done by IBM SPSS 

version 26. In SPSS, datasets are prepared using 10 

as a sample size for both the algorithm convolutional 

neural network and support vector machine. Group is 

given as 1 for convolutional neural network and 2 for 

support vector machine, group id is given as a 

grouping variable, and accuracy is given as a testing 

variable. An independent sample T-test was 

conducted for accuracy. Standard deviation, standard 

mean errors were also calculated using the SPSS 

Software tool. The independent variables in Bone age 

detection were Height, Depth, Width, Carbon 

content, calcium value and dependent variables were 

Accuracy and Precision. The significance values of 

proposed and existing algorithms contain group 

statistical values of the algorithms. 

 

3. Results 

 

In statistical tools, the total sample size used 

is 20. This data is used for the analysis of 

convolutional neural networks and support vector 

machines. Statistical data analysis is done for both 

the prescribed algorithms namely convolutional 

neural networks and support vector machines. The 

group and accuracy values are being calculated for 

given filtering systems. These 20 data samples used 

for each algorithm along with their loss are also used 

to calculate statistical values that can be used for 

comparison. Table 3, shows that group, accuracy, and 

loss values for two algorithms convolutional neural 

network and support vector machine are denoted. The 

Group statistics table shows several samples that are 

collected. Mean and the standard deviation is 

obtained and accuracies are calculated and entered.  

Table 4, shows group statistics values along 

with mean, standard deviation and standard error 

mean for the two algorithms are also specified. 

Independent sample T-test is applied for data set 

fixing confidence interval as 95%. Table 5 shows 

independent t sample tests for algorithms. The 

comparative accuracy analysis, mean of loss between 

the two algorithms are specified. Fig. 3, shows a 

comparison of the mean accuracy and mean loss 

between the convolutional neural network and 

support vector machine. 

 

4. Discussion 

  

From the results of this study, Convolutional 

neural networks are proved to be having better 

accuracy than the support vector machine. 

Convolutional Neural Network has an accuracy of 

82.36% whereas support vector machine has an 

accuracy of 74.84%. The group statistical analysis on 

the two groups shows that Convolutional neural 

networks (group 1) have more mean accuracy than 

support vector machines (group 2) and the standard 

error mean including standard deviation mean is 

slightly less than Convolutional neural networks.  

This research increases prediction for 

recognition systems to find better bone age prediction 

using x-ray images under their data. This model has a 

slow processing rate with better accuracy (Rajvanshi 

and Dhaka 2016; Prateek et al. 2019). The slow 

processing rate is due to the usage of a large database 

but in the case of a smaller database, both the 

processing and accuracy are faster and better. The 

above problem's complexity will be reduced once a 

model is built(Moolayil 2018). Despite the fact  that 

many researchers have discovered various recognized 

models, many of them are unable to accurately 

perform better algorithms (Liu et al. 2019). Many 

applications can be developed to predict accurately 

for sensitivity from various platforms. 

  The novel convolutional neural network 

algorithm has the drawback of not being user-friendly 

and is very time-consuming(Harmsen et al. 2013). 

This means that the novel convolutional neural 

network algorithm is not easy to use and takes a lot of 

time processing the data. In the future, this bone age 

prediction using x-ray images can be further 

improved by developing a novel convolutional neural 

network. 

 

5. Conclusion 

 

  From this study of bone age prediction using 

x-ray images, the mean accuracy of  support vector 

machine algorithms is 74.84% whereas novel 

convolutional neural networks have a higher mean 

accuracy of 82.36%. Hence it is inferred that the 

novel convolutional neural network is better in 

accuracy when compared to support vector machine 

algorithms. 
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Tables and Figures  

 

Table 1. Pseudocode for Novel Convolutional Neural Networks 

// I: Input dataset records 

1. Import the required packages. 

2. Convert the image into machine-readable after the extraction feature. 

3. Assign the image to the output variables. 

4. Using the model function, assign it to the variables. 

5. Compiling the model using metrics as accuracy. 

6. Evaluate the output  

7. Get the accuracy of the model. 

OUTPUT : //Accuracy 

 

Table 2. Pseudocode for Support Vector Machines 

// I: Input dataset image 

INPUT: Capture Image 

Step 1: Pre-process the image of the particular x-ray 

Step 2: Segment and normalize the images. 
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Step 3: Extract the feature vector of each normalized candidate 

Step 4: Train SVMs based on a saved sample database. 

Step 5: Recognize the bone age by the set of SVMs trained in advance. 

Step 6: If there are no more unclassified samples, then STOP. 

Step 7: Add these test samples into their corresponding database for further training. 

OUTPUT: Prediction bone age. 

OUTPUT : //Accuracy 

 

Table 3.  Group, Accuracy, and Loss value uses 8 columns with 8 width data for bone age prediction. 

 

SI.NO 
Name Type Width Decimal Columns Measure Role 

1 Group Numeric 8 2 8 Nominal Input 

2 Accuracy Numeric 8 2 8 Scale Input 

3 Loss Numeric 8 2 8 Scale Input 

 

Table 4. Group Statistical analysis for  Novel convolutional neural network and Support vector machine Algorithm 

Mean, Standard Deviation, and standard error mean is determined. 

 Group N Mean Std Deviation Std.Error Mean 

Accuracy CNN 10 82.2250 0.10146 
0.03208 

 

 SVM 10 74.6500 .14974 .04735 

Loss CNN 10 17.7380 .07983 .02525 

 SVM 10 25.3500 .14974 04735 

 

 

 

 

 

 

 

Table 5. Independent sample T-test t is performed on two groups for significance and standard error determination. 
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the p-value is greater than 0.05 (0.028) and it is considered to be statistically insignificant with a 95% confidence 

interval. 

 
 

 

Levene's 

Test for 

Equality of 

variance 

T-Test for equality of mean 

  t df 

 

Sig(2 

- 

tailed) 

Mean 

difference 

Std.Error 

Difference 

95% confidence 

of Difference 

  
 

F 
Sig      Lower Upper 

Accuracy 

Equal 

variances 

assumed 

2.181 .157 132.434 18 .000 7.57500 .05720 7.45483 7.69517 

 

Equal 

Variances 

not 

assumed 

  132.434 15.825 .000 7.57500 .05720 7.45364 7.69636 

Loss 

Equal 

variances 

assumed 

5.700 .028 
-

141.852 
18 .000 -7.61200 .05366 

-

7.72474 

-

7.49926 

 

Equal 

Variances 

not 

assumed 

  
-

141.852 
13.734 .000 -7.61200 .05366 

-

7.72730 

-

7.49670 

 

 
Fig. 3  Comparison of Novel Convolutional neural network and Support vector machine Algorithm in terms of mean 

accuracy. The mean accuracy of the Novel Convolutional neural network is better than the Support vector machine 

Algorithm. The standard deviation of the Novel Convolutional neural network is better than the Support vector 

machine Algorithm. X-Axis: Novel Convolutional neural network vs Support vector machine.  Y-Axis: Mean 

accuracy of detection ± 1 SD. 


