蔵

The Edge-to-Vertex Strong Geodetic Number of a Graph
${ }^{1}$ A.L. MerlinSheela, ${ }^{2}$ J.John, ${ }^{3}$ M. Antony
${ }^{1}$ Research Scholar, Register Number: 18233232092003, Department of Mathematics

St. Jude's College,Thoothoor - 629 176, Tamil Nadu, India.
Email: sheelagodwin@gmail.com
${ }^{2}$ Department of Mathematics
Government College of Engineering, Tirunelveli - 627007, Tamil Nadu, India.
Email: john@gcetly.ac.in
${ }^{3}$ Department of Mathematics
St. Jude's College,Thoothoor - 629 176, Tamil Nadu, India
Affiliated to ManonmaniamSundaranar University, Abishekapatti,
Tirunelveli - 627012.

Abstract

In this paper, we introduce the concept of edge-to-vertex strong geodetic number $s g_{e v}(G)$ of a connected graph with at least 3 vertices. Some general properties satisfied by these concepts are studied. The edge-to-vertex strong geodetic number of certain classes of graphs is determined. It is proved that for each pair of integers k and m with $2 \leq k \leq m$, there exists a connected graph G of order $m+1$ and size m with $s g_{e v}(G)=$ k. It is shown that for positive integers r, dand $l \geq 2$ with $r \leq d \leq 2 r$, there exists a connected graph G with $\operatorname{radG}=r$, $\operatorname{diam} G=d, s g_{e v}(G)=l$. Connected graphs of size $m \geq 4$ with edge-to-vertex strong geodetic number $m, m-1$ or $m-2$ are characterized.

Keywords: distance, edge-to-edge distance, edge-to-vertex geodetic number, edge-tovertex strong geodetic number.
AMS Subject Classification: 05C12

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic definitions and terminologies, we refer to $[3,4,5,6,9]$. If $u v \in E(G)$, we say that u is a neighbor of v and denote by $N_{G}(v)$, the set of neighbors of v. The degree of a vertex $v \in V$ is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. A vertex v is said to be a universal vertex if $\operatorname{deg}_{G}(v)=$ $n-1$. A vertex v is called an extreme vertex if the subgraph induced by v iscomplete. An edge of a connected graph G is called an extreme edge of G if one of its ends is an extreme vertex of G.

For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. A $u-v$ path of length $d(u, v)$ is called a $u-v$ geodesic. The
diameter of graph is the maximum distance between the pair of vertices of G. The diameter of G is denoted by diam G or d. The closed interval $I[x, y]$ consists of x, y and all vertices lying on some $x-y$ geodesic of G and for a non-empty set $S \subseteq V(G)$, $I[S]=\cup_{x, y \in S} I[x, y]$. A set $S \subseteq V(G)$ in a connected graph G is a geodetic set of G if $I[S]=V(G)$. Let $\tilde{g}[x, y]$ be a selected fixed $x-y$ geodesic. For $S \subseteq V(G)$, we set $\tilde{I}[S]=\{\tilde{g}(x, y): x, y \in S\}$ and let $V(\tilde{I}[S])=\underset{P \in G[S]}{\cup} V(P)$. If $V(\tilde{I}[S])=V$ for some $\tilde{I}[S]$ then the set S is called a strong geodetic set of G. The minimum cardinality of a strong geodetic set of G is called the strong geodetic number of G and is denoted by $\operatorname{sg}(G)$.

For, $e=u v, f=w z \in E(G)$, the distance between e and f is $d(e, f)=\min \{d(u, w), d(u, z), d(v, w), d(v, z)\}$. A $e-f$ path of length $d(e, f)$ is called a $e-f$ geodesic. A set $S \subseteq E$ is called an edge-to-vertex geodetic set if every edge of G is either an element of S or lies on a geodesic joining a pair of edges of S. The edge-to-vertex geodetic number $g_{e v}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{e v}(G)$ is called a $g_{e v}$-set of G. The edge-to-vertex geodetic number of G is studied in [1,7,8,11].
Theorem 1.1[11]. Every end-edge of a connected graph G belongs to every edge-tovertex geodetic set of G.
Theorem 1.2[11]. For the complete graph $K_{n}(n \geq 4), g_{e v}\left(K_{n}\right)=\left\{\begin{array}{l}\frac{n}{2} \text { if } n \text { is even } \\ \frac{n+1}{2} \text { if } n \text { is odd. }\end{array}\right.$.
Theorem 1.3[11]. For the complete bipartite graph $G=K_{r, s}(2 \leq r \leq s), g_{e v}(G)=s$.

2. The Edge-to-Vertex Strong Geodetic Number of a Graph

Definition 2.1. For $f, h \in E(G)$, let $\tilde{g}_{e v}[f, h]$ be a selected fixed e - f geodesic. For $S \subseteq E(G), \tilde{I}_{e v}[S]=\{\tilde{g}(e, f): e, f \in S\}$ and let $\left(\tilde{I}_{e v}[S]\right)=\underset{P \in G[S]}{\cup V(P)}$. If $V\left(\tilde{I}_{e v}[S]\right)=V$ for some $\widetilde{\tilde{I}_{e v}}[S]$, then the set S is called an edge-to-vertex strong geodetic set of G. The minimum cardinality of an edge-to-vertex strong geodetic set of G is called the edge-tovertex strong geodetic number of G and is denoted by $s g_{e v}(G)$.
Example 2.2. For the graph G given in Figure 2.1, $S=\left\{v_{1} v_{2}, v_{4} v_{5}\right\}$ is a minimum edge-to-vertex geodetic set of G so that $g_{e v}(G)=2$. Also $S_{1}=\left\{v_{1} v_{2}, v_{4} v_{5}, v_{1} v_{6}\right\}$ and $S_{2}=\left\{v_{1} v_{2}, v_{4} v_{5}, v_{5} v_{6}\right\}$ are the edge-to-vertex strong geodetic sets of G so that $s g_{e v}(G)=3$.

Figure 2.1

Example2.3. For the graph G given in Figure 2.1, $S_{1}=\left\{v_{1} v_{2}, v_{4} v_{5}, v_{1} v_{6}\right\}$ and $S_{2}=$ $\left\{v_{1} v_{2}, v_{4} v_{5}, v_{5} v_{6}\right\}$ are two $s g_{e v}$-sets of G. Thus there can be more than one $s g_{e v}$-set of G.

Theorem 2.4. For a connected graph G of size $m \geq 2,2 \leq g_{e v}(G) \leq s g_{e v}(G) \leq m$.
Proof. A $g_{e v}$-set needs at least two edges and therefore, $g_{e v}(G) \geq 2$. Every edge-tovertex strong geodetic set of G is an edge-to-vertex geodetic set of G and so $2 \leq$ $g_{e v}(G) \leq s g_{e v}(G)$. Also, the set of all edges of G is an edge-to-vertex strong geodetic set of G so that $s g_{e v}(G) \leq m$. Thus2 $\leq g_{e v}(G) \leq s g_{e v}(G) \leq m$.

Remark 2.5. The bounds in Theorem 2.4 are sharp. For the path P with at least 3 vertices, $g_{e v}(P)=2$. For the cycle $G=C_{5}, g_{e v}(G)=s g_{e v}(G)=3$. For the star $G=K_{1, m}(m \geq 3), s g_{e v}(G)=m$.

Theorem 2.6.If x is an extreme vertex of a connected graph G, then every edge-tovertex strong geodetic set contains at least one extreme edge that is incident with x.
Proof. Let x be an extreme vertex of G. Let $e_{1}, e_{2}, \ldots, e_{k}$ be the edges incident with x. Let S be any edge-to-vertex strong geodetic set of G. We claim that $e_{i} \epsilon S$ for some $i(1 \leq i \leq k)$. Otherwise, $e_{i} \notin S$ for any $i(1 \leq i \leq k)$. Since S is an edge-to-vertex strong geodetic set and the vertex x is not incident with any element of S, x lies on exactly one geodesic joining two elements say $h, f \in S$. Let $h=x_{1} x_{2}$ and $f=x_{l} x_{m}$. Then $x \neq x_{1}, x_{2}, x_{l}, x_{m}$ and $d(h, f) \geq 1$. Assume without loss of generality that $P: x_{0}=$ $x_{1}, y_{1}, y_{2}, \ldots, y_{t}, y_{t+1}=x, y_{t+2}, \ldots, y_{s-1}, y_{s}=x_{l}$ be a $h-f$ geodesic, where $y_{1} \neq x_{2}$ and $y_{s-1} \neq x_{m}$. Since x is an extreme vertex, y_{t} and y_{t+2} are adjacent and so $Q: x_{0}=$ $x_{1}, y_{1}, y_{2}, \ldots, y_{t}, y_{t+1}, y_{t+2}, y_{t+3}, \ldots, y_{s-1}, y_{s}=x_{l}$ is a shorter $h-f$ path than P, which is a contradiction. Hence, $e_{i} \in S$ for some $i(1 \leq i \leq k)$.

Remark 2.7. For the graph G given in Figure 2.1, $S=\left\{v_{1} v_{2}, v_{4} v_{5}, v_{1} v_{6}\right\}$ is an edge-tovertex strong geodetic set of G which does not contain the extreme edge $v_{3} v_{4}$. Thus all theextreme edges of a graph need not belong to an edge-to-vertex stronggeodetic set of G.

The following corollary shows that there are certain edges in a connected graph G that are edge-to-vertex stronggeodetic edges of G.
Corollary 2.8.Everyend-edge of a connected graph G belongs toevery edge-to-vertex stronggeodetic set of G.
Proof.This follows from Theorem 2.6.
Theorem 2.9.If G is any connected graph of size m with number of end-vertices k, then $\max \left\{2, k \leq s g_{e v}(G) \leq m\right\}$.
Proof.This follows from Theorem 2.6 and Corollary 2.8.
Theorem2.10.Let G be a tree with k end vertices. Thens $g_{e v}(G)=k$.
Proof.This follows from Corollary 2.8
Theorem 2.11.For the cycle $C_{n}(n \geq 4), s g_{e v}\left(C_{n}\right)=3$.
Proof.Sincen $\geq 4, s g_{e v}\left(C_{n}\right) \geq 3$. Suppose that n is even. Let $n=2 k$ and let $C_{n}: v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{k+1, \ldots}, v_{2 k}, v_{1}$ be the cycle. Then v_{k+1} isthe antipodal vertex of v_{1} and
v_{k+2} is the antipodal vertex of v_{2}. Let $v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{k+1}$ be a fixed geodesic. Let $v_{k+2}, v_{k+3}, \ldots, v_{2 k}, v_{1}$ be a $v_{k+1}-v_{1}$ geodesic. Then $S=\left\{v_{1} v_{2}, v_{k+1} v_{k+2}\right\} \cup\left\{v_{k+2} v_{k+3}\right\}$ is an edge-to-vertex strong geodesic set of G so that $g_{e v}\left(C_{n}\right)=3$.Suppose that n is odd.Let $n=2 k+1$ and $\operatorname{let} C_{p}: v_{1}, v_{2}, v_{3}, \ldots, v_{k}, v_{k+1, \ldots}, v_{2 k}, v_{2 k+1}, v_{1}$ be the cycle.Let v_{k+1} and v_{k+3} be the antipodal vertices of v_{1}. Then $S_{1}=\left\{v_{1} v_{2}, v_{k+1} v_{k+2}, v_{k+2} v_{k+3}\right\}$ is an edge-to-vertex strong geodetic set of G so thats $g_{e v}\left(C_{n}\right)=3$.
Theorem2.12.For the wheel $G=W_{n}=K+C_{n-1}(n \geq 6)$,

$$
s g_{e v}(G)=\left\{\begin{array}{l}
\left\lfloor\frac{n+1}{2}\right\rfloor ; n-1 \text { is even } \\
\left\lceil\frac{n+1}{2}\right\rceil ; n-1 \text { is odd }
\end{array}\right.
$$

Proof.Let $V\left(K_{1}\right)=x, V\left(C_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$. Let us assume that $n-1$ is even. Let $n-1=2 k$. Then $S=\left\{v_{1} v_{2}, v_{4} v_{5}, \ldots v_{k+1} v_{k+2}, \ldots v_{2 k-1} v_{2 k}, x v_{1}\right\}$ is an edge-tovertex strong geodetic set of G and so $s g_{e v}(G) \geq \frac{n-1}{2}+1=\left\lfloor\frac{n+1}{2}\right\rfloor$. We prove that $s g_{e v}(G)=\left\lfloor\frac{n+1}{2}\right\rfloor$. On the contrary, suppose that $s g_{e v}(G)<\left\lfloor\frac{n+1}{2}\right\rfloor$. Then there exists a $s g_{e v}$-set S^{\prime} such that $\left|S^{\prime}\right| \leq\left\lfloor\frac{n+1}{2}\right\rfloor$. Hence there exists $f \in S$ such that $f \notin S^{\prime}$. Let $f=$ $u v$, then either u or $v \notin \bar{I}\left[S^{\prime}\right]$, which is a contradiction. Therefore, $s g_{e v}(G)=\left\lfloor\frac{n+1}{2}\right\rfloor$.

Now, let us assume that $n-1$ is odd. Let $n-1=2 k+1$. Then $S=\left\{v_{1} v_{2}, v_{4} v_{5}, \ldots v_{k+1} v_{k+2}, \ldots v_{2 k-1} v_{2 k}, x v_{1}\right\}$ is an edge-to-vertex strong geodetic set of G and so $s g_{e v}(G) \geq \frac{n-1}{2}+1=\left\lceil\frac{n+1}{2}\right\rceil$. We prove that $s g_{e v}(G)=\left\lceil\frac{n+1}{2}\right\rceil$. On the contrary, suppose that $s g_{e v}(G)<\left\lceil\frac{n+1}{2}\right\rceil$. Then there exists a $s g_{e v}$ - set $S^{\prime \prime}$ such that $\left|s^{\prime \prime}\right| \leq\left\lceil\frac{n+1}{2}\right\rceil$. Hence there exists $h \in S$ such that $h \notin S^{\prime \prime}$. Let $h=u^{\prime} v^{\prime}$, then either u^{\prime} or $v^{\prime} \notin \bar{I}\left[S^{\prime \prime}\right]$, which is a contradiction. Therefores $g_{e v}(G)=\left\lceil\frac{n+1}{2}\right\rceil$.
Theorem 2.13.For the complete graph $K_{n}(n \geq 4), s g_{e v}\left(K_{n}\right)=\left\{\begin{array}{l}\frac{n}{2} \text { if } n \text { is even } \\ \frac{n+1}{2} \text { if } n \text { is odd. }\end{array}\right.$.
Proof.Since every edge-to-vertex strong geodetic set is an edge-to-vertex geodetic set of G, the result follows from Theorem 1.2
Theorem 2.14.Forthe complete bipartite graph $G=K_{m, n}(2 \leq m \leq n), s g_{e v}(G)=n$.
Proof.Since every edge-to-vertex strong geodetic set is an edge-to-vertex geodetic set of G, the result follows from Theorem 1.3.
In the following we characterize graphs G for which $s g_{e v}(G)=2, m-1$ or m.
Theorem 2.15.For a connected graph of order $n \geq 2, s g_{e v}(G)=2$ if and only if $G=$ $P_{n}(n \geq 2)$.
Proof. Let $G=P_{n}(n \geq 2)$. Then by Theorem 2.10, $s g_{e v}(G)=2$. Conversely, let $s g_{e v}(G)=2$. We prove that $G=P_{n}$. On the contrary, suppose that $G \neq P_{n}$. Then G is not a tree. Therefore, G contains a cycle say, C. Let $S=\{e, f\}$ be a $s g_{e v}(G)$-set of G. Let $e=u v$ and $f=x y$. Without loss of generality, let us assume that $d(u, x)$ is the shortest $e-f$ path. Let $P: u=u_{0}, u_{1}, u_{2}, \ldots, u_{l}=x$ be the shortest $e-f$ path. We fix P.

Then there exists at least one vertex, say w in $V(S) \backslash V(P)$. Then S is not a $s g_{e v}(G)$-set of G, which is a contradiction. Therefore, $G=P_{n}$.
Theorem 2.16. If G is a connected graph such that it is not a star, then $s g_{e v}(G) \leq m-$ 1.

Proof.Let e be an edge such that it is not an end-edge of G. Then $S=E(G)-\{e\}$ is an edge-to-vertex strong geodetic set of G so that $s g_{e v}(G) \leq m-1$.
Remark 2.17.The bound in Theorem 2.16 is sharp. For double star G given in Figure $2.2, s g_{e v}(G)=4=m-1$.

Theorem 2.18. For any connected graph $G, s g_{e v}(G)=m$ if and only if G is a star.
Proof.Let G be a star. Then by Theorem 2.10, $s g_{e}$
m. Conversely, let $s g_{e v}(G)=m$. If G is not a star, then by Theorem 2.16, $s g_{e v}(G) \leq m-1$, which is a contradiction. Therefore, G is a star.
Theorem 2.19.Let G be a connected graph which is not a tree. Then, $s g_{e v}(G) \leq m-$ 2 ($m \geq 4$).
Proof.If the graph G is a cycle $C_{n}(n \geq 4)$, then by Theorem 2.11, $s g_{e v}(G) \leq m$ - 2. If the graph G is not a cycle, let $C: x_{1}, x_{2}, x_{3}, \ldots, x_{k}, x_{1}(k \geq 3)$ be a smallest cycle in G and let x be a vertex such that x is not on C and x is adjacent to x_{1}, say. Now, $S=$ $E(G)-\left\{x_{1} x_{2}, x_{1} x_{k}\right\}$ is an edge-to-vertex strong geodetic set so that $s g_{e v}(G) \leq m-2$.
Remark 2.20.The bound in Theorem 2.19 is sharp. For the graph G given in Figure 2.3, $S=\left\{v_{1} v_{2}, v_{2} v_{5}, v_{3} v_{4}\right\}$ is an edge-to-vertex strong geodetic set of G so that $s g_{e v}(G)=$ $2=m-2$.

Theorem 2.21.For a connected graph G with $m \geq 2, s g_{e v}(G) \leq m-d+2$, where d is the diameter of G.
Proof.Let x and y be vertices of G for which $d(x, y)=d$, where d is the diameter of G and let $P: x=x_{0}, x_{1}, x_{2}, \ldots, x_{d}=y$ be a $x-y$ path of length d. Let $e_{i}=$ $x_{i-1} y_{i}(1 \leq i \leq d)$.Let $S=E(G)-\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{d-2} v_{d-1}\right\}$. Let u be any vertex of G. If $u=v_{i}(1 \leq i \leq d-1)$, then u lies on the $e_{1}-e_{d}$ geodesic $P_{1}: v_{1}, v_{2}, \ldots, v_{d-1}$.If $u \neq v i(1 \leq i \leq d-1)$, then u is incident with an edge of S. Therefore, S is an edge-tovertex strong geodetic set of G. Consequently, $g_{e v}(G) \leq|S|=m-d+2$.
Remark 2.22. The bound in Theorem 2.21 is sharp. For the star $G=K_{1, m}(m \geq 2)$, $d=2$ and $s g_{e v}(G)=m$, by Theorem 2.10 so that $s g_{e v}(G)=m-d+2$.
We give below a characterization theorem for trees.
Theorem 2.23.For any nontrivial tree T with $m \geq 2, s g_{e v}(T)=m-d+2$ if and only if T is a caterpillar.
Proof. Let $P: x=x_{0}, x_{1}, x_{2}, \ldots, x_{d-1}, x_{d}=y$ be a diametral path of length d. Let $e_{i}=x_{i-1} x_{i}(1 \leq i \leq d)$ be the edges of the diametral path P. Let k be the number of end edges of T and l be the number of internal edges of T other than $e_{i}(2 \leq i \leq$ $d-1$).Then $d-2+l+k=m$. By Theorem2.10, $s g_{e v}(T)=k$ and so $s g_{e v}(T)=m-$ $d+2-l$. Hence $s g_{e v}(T)=m-d+2$ if and only if $l=0$, if and only if all internal vertices of T lie on the diametral path P, if and only if T is a caterpillar.
Theorem 2.24. For any connected graph G with $m \geq 3, s g_{e v}(G)=m-1$ if and only if G is either C_{3} or a double star.
Proof. If G is C_{3}, then $s g_{e v}(G)=2=m-1$. If G is a double star, then by Theorem 2.10, $s g_{e v}(G)=m-1$. Conversely, let $s g_{e v}(G)=m-1$. Let $m=3$. If G is a tree, then $G=P_{4}$ or $K_{1,3}$. For $G=K_{1,3}$, by Theorem 2.18, $s g_{e v}(G)=3=m$, which is a contradiction. If $G=P_{4}$, it is a double star and by Theorem 2.10, $s g_{e v}(G)=2=m-1$. If G is not a tree, then $G=C_{3}$, which satisfies the requirements of the theorem. Thus the theorem follows.

Let $m \geq 4$. If G is not a tree, then by Theorem 2.19, $s g_{e v}(G) \leq m-2$, which is a contradiction. Hence G is a tree. Now it follows from Theorem 2.21 that $d \leq 3$. Therefore $d=2$ or 3 . If $d=2$, then G is the star $K_{1, m}$. By Theorem $2.10, s g_{e v}(G)=$ m, which is contradiction to the hypothesis. If $d=3$, then G is a double star, which satisfies the requirements of the theorem. Thus the theorem is proved.

3. Realization results

In the following, we give some realization results.
The following theorem shows the existence of the edge-to-vertex strong geodetic number of a graph.

Theorem 3.1. For each pair of integers k and m with $2 \leq k \leq m$, there exists a connected graph G of order $m+1$ and size m with $s g_{e v}(G)=k$.

Proof. For $2 \leq k \leq m$, let P be a path of order $m-k+3$. Let G be the graph obtainedfrom P by adding $k-2$ new vertices to P and joining them to any cut-vertex of
P.Clearly, G is a tree of order $m+1$ and size m with k end-edges and so by Theorem2.10, $s g_{e v}(G)=k$.

For every connected graph, radG $\leq \operatorname{diam} G \leq 2 \operatorname{radG}$.Ostrand[10] showed that every two positive integers a and b with $a \leq b \leq 2 a$ are realizable as the radius and diameter, respectively, of some connected graph. Now, Ostrand's theorem can be extended so that the edge - to- vertex strong geodetic number can also be prescribed, when $a \leq b<2 a$.

Theorem 3.2. For positive integers r, dand $l \geq 3$ with $r \leq d<2 r$, there exists a connected graph G with $r a d G=r$, diamG $=d$ and $s g_{e v}(G)=l$.

Proof. When $r=1$, let $G=K_{1, l}$. By Theorem 2.10, $s g_{e v}(G)=l$. Let $r \geq 2$.Let $C_{2 r}: x_{1}, x_{2}, \ldots, x_{2 r}, x_{1}$ be a cycle of order $2 r$ and let $P_{d-r+1}: y_{0}, y_{1}, y_{2}, \ldots, y_{d-r}$ be a pathof order $d-r+1$. Let H be the graph obtained from $C_{2 r}$ and y_{0} in P_{d-r+1} by identifying x_{1} in $C_{2 r}$ and y_{0} in P_{d-r+1}. Now, add ($l-3$) new vertices $z_{1}, z_{2}, \ldots, z_{l-3}$ to H and join each vertex $z_{i}(1 \leq i \leq l-3)$ to the vertex y_{d-r+1} and obtain the graph G of Figure 3.1. Then $r a d G=r$ and $\operatorname{diamG}=d$. Let $S=\left\{y_{d-r-1} z_{1}, y_{d-r-1} z_{2}, \ldots, y_{d-r-1} z_{l-3}, y_{d-r-1}\right.$, $\left.y_{d-r}\right\}$ be the set of end-edges of G. By Corollary $2.8, S$ is contained in every edge-tovertex strong geodetic set of G. It is clear that S is not an edge-to-vertex strong geodetic set of G. It is also seen that $S \cup\{e\}$, where $e \in E(G) \backslash S$ is not an edge-to-vertex strong geodetic set of G. However, the set $S_{1}=S \cup\left\{x_{r} x_{r+1}, x_{r+1} x_{r+2}\right\}$ is an edge-to-vertex strong geodetic set of G so that $s g_{e v}(G)=l-3+3=l$.

In view of Theorem 2.4, we have the following realization result.
Theorem.3.3. For any positive integers a and b with $2 \leq a<b$ and $b>2 a$, there exists a graph G such that $g_{e v}(G)=a$ and $s g_{e v}(G)=b$.
Proof. Let $P: x, y$ be a path on two vertices and $P_{i}: u_{i}, v_{i}(1 \leq i \leq b-a+1)$ be a copy
of a path on two vertices. Let G be the graph obtained from P and $P_{i}(1 \leq i \leq b-a+$ 1) by adding the new vertices $z, z_{1}, z_{2}, \ldots \ldots z_{a-1}$ and introducing the edges $y u_{i}, z v_{i}(1 \leq$ $i \leq b-a+1)$ and $z z_{i}(1 \leq i \leq a-1)$. The graph G is shown in Figure 3.2.

Figure3.2

First we prove that $g_{e v}(G)=a$. Let $Z=\left\{x y, z z_{1}, z z_{2}, \ldots . z z_{a-1}\right\}$ be the set of end edges of G. Then by Theorem1.1, Z is a subset of every edge-to-vertex geodetic set of G and so $g_{e v}(G) \geq a$. Since every vertex of G is incident with an element of Z or lies on a geodesic joining a pair of edges of Z, Z is an edge-to-vertex geodetic set of G so that $g_{e v}(G)=a$.

Next we prove that $s g_{e v}(G)=b$. Now fix the $x y-z z_{1}$ geodesic $P: y, u_{1}, v_{1}, z$. By Corollary $2.8, Z$ is a subset of every edge-to-vertex strong geodetic set of G. Since the vertices $u_{i}, v_{i}(2 \leq i \leq b-a+1)$ do not lie on a geodesic joining pair edges of Z, Z is not an edge-to-vertex strong geodetic set of G. It is easily observed that the edge $u_{i} v_{i}(2 \leq i \leq b-a+1)$ belongs to every edge-to-vertex strong geodetic set of G and so $s g_{e v}(G) \geq b-a+a-1+1=b$.Let $S=Z \cup\left\{u_{2} v_{2}, u_{3} v_{3}, \ldots, u_{b-a+1}\right.$
$\left.v_{b-a+1}\right\}$. Then S is an edge-to-vertex strong geodetic set of G so that $s g_{e v}(G)=b$.

REFERENCES

[1]F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
[2]G. Chartrand, F. Harary and P. Zhang, On the Geodetic Number of a Graph, Networks,39(1), (2002), 1-6.
[3] V. Gledel, V. Irsic, and S. Klavzar, Strong geodetic cores and cartesian product graphs, arXiv:1803.11423 [math.CO] (30 Mar 2018).
[4] HuifenGe, Zao Wang-and JinyuZou Strong geodetic number in some networks, Journal of Mathematical Resarch,11(2), (2019), 20-29.
[5] V.Irsic, Strong geodetic number of complete bipartite graphs and of graphs with specified diameter, Graphs and Combin., 34, (2018), 443-456.
[6] V. Irsic, and S. Klavzar, Strong geodetic problem on Cartesian products of graphs,

RAIRO Oper. Res., 52, (2018), 205-216.
[7]J. John, A Vijayan and S Sujitha, The upper edge-to-vertex geodetic number of a graph, Int. J. Math. Arch.,3 (4), (2012), 1423-1428.
[8] J. John, A Vijayan and S Sujitha, Extreme Edge-to-vertex Geodesic Graphs, Int. J. of Math Res., 6 (3), (2014), 279-288
[9] P. Manuel, S. Klavzar, A. Xavier, A. Arokiaraj, and E. Thomas, Strong edge geodetic problem in networks, Open Math. 15, (2017), 1225-1235.
[10]P.A. Ostrand, Graphs with specified radius and diameter, Discrete Mathematics 4,(1973), 71 - 75.
[11] A.PSanthakumaran and J. John, On the edge-to-vertex geodetic number of a graph, Miskolc Mathematical Notes, 13 (1), (2012), 107-119.

