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Abstract 

Let G be a non-abelian group and Ω ⊂ G. The Non-Commuting graph Γ = 

(G, Ω), has Ω as its vertex set with two distinct elements of Ω joined by an 

edge when they do not commute in G. In this article, we investigate among 

some properties of Non-Commuting graphs and the degree of all vertices in Γ. 

We also study a necessary and sufficient condition for Γ to be Eulerian. 
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1 Introduction 

The study of algebraic structures, using the properties of graphs, becomes an 
exciting research topic in the last twenty years, leading to many fascinating results 

and questions. For example, the study zero-divisor graphs, total graph of 
commutative rings and commuting graph of groups has attracted many researchers 

towards this dimension. One can refer [2, 3] for such studies. The concept of non-
commuting graph has been studied in [1], where as the concept of commuting graph 

has been found in [4]. For basic defns one can refer                                       [5, 6, 7, 9]. Before 
starting let us introduce some necessary notation and definitions. 

Let G be a group. The center of a group G is denoted by Z(G). Let Ω be any 
nonempty subset of G. The centralizer of Ω in G is the set of elements of G which 

commutes with every element of Ω and it is denoted by CΩ(G). Here we consider 

the following way: Take G \ Z(G) as the vertices of G and join two distinct vertices x 
and y whenever x and y do not commute with each others. Note that if G is 

abelian, then Γ is the null graph. For any integer n ≥ 3, the Dihedral group 2n is 
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given by D2n = ⟨r, s : s
2
 = r

n
 = 1, rs = sr

−1⟩. 
In this article, we consider the Non-Commuting graphs in the context of 

dihedral group D2n. For any subset Ω of D2n, the Non-Commuting graph 

Γ = (G, Ω) has Ω as its vertex set G \ Z(G) with two distinct vertices in Ω are 
adjacent if they do not commute with each other in D2n. 

We consider simple connected undirected graphs, with no loops or multiple edges.  
For any graph Γ, we denote the sets of the vertices and the edges of by V (Γ) and 

E(Γ), respectively. The degree degΓ(v) of a vertex v in Γ is the number of edges 

incident to v and if the graph is understood, then we denote d{Γ}(v) simply by degΓ.   
The order of Γ is defined |V (Γ)| and its maximum and its minimum degrees will 

be denoted, respectively, by ∆(Γ) and δ(Γ). A graph Γ is regular if the degrees of 
all vertices of Γ are the same. A subset X of the vertices of Γ is called a clique if the 

induced subgraph on X is a complete graph. The maximum size of a clique in a 
graph Γ is called the clique number of Γ and denoted by ω(Γ). 

A path P is a sequence v0e1v1e2 . . . ekvk whose terms are alternately distinct vertices 
and distinct edges, such that for any i, 1 ≤ i ≤ k, the ends of ei are vi1 and vi. In 

this case P is called a path between v0 and vk. The number k is called the length 

of P. If v0 and vk are adjacent in Γ by an edge ek+1, then P ∪ {ek+1} is called a 
cycle. The length of a cycle defined the number of its edges. The length of the 

shortest cycle in a graph Γ is called girth of Γ and denoted by girth (Γ).  A 
Hamilton cycle of Γ is a cycle that contains every vertex of Γ. If v and w are 

vertices in Γ, then d(v, w) denotes the length of the shortest path between v and w. 

The largest distance between all pairs of the vertices of Γ is called the diameter of 
Γ, and is denoted by diam(Γ). A graph Γ is connected if there is a path between 

each pair of the vertices of Γ. A planar graph is a graph that can be embedded in 
the plane so that no two edges intersect geometrically except at a vertex which 

both are incident. 
It is well known that any compact surface is either homeomorphic to a sphere, 

or to a connected sum of g tori, or to a connected sum of k projective planes       
(see [8], Theorem 5.1). We denote by Sg the surface formed by a connected sum of 

g tori. The number g is called the genus of the surface Sg. Also a graph Γ is called 
planar if γ(G) = 0, and it  is  called  toroidal  if  γ(G) = 1. Note that, a graph G is 

perfect if neither G nor G contains any induced odd cycle of degree at least five. 

In Section 2 of the paper, we study some graph properties of the non- 
commuting graph Γ of D2n. We see that Γ is always connected, its diame- 

ter,perfect matching, number of triangles and number of C4. We also study a 
necessary and sufficient condition for Γ to be Eulerian. 
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2 Main Results 
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