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ABSTRACT: 

Classification of neurological diseases is a multidomain task, which involves parametric data 

collection, pre-processing, segmentation, feature extraction, feature selection, classification, 

and post processing. These tasks require highly efficient algorithms for an effective clinical 

system design. Due to saturation in data acquisition accuracy, initial steps of data collection, 

pre-processing, and segmentation are highly efficient, and have standard clinical operating 

performance. Most of the work in neurological disease classification is focussed on feature 

extraction, selection, classification & post processing, which is the directional area of this 

research. Electroencephalogram (EEG) is one of the most frequently used sensing devices for 

neurological classification, but its accuracy is limited by the number of leads used during data 

collection. In order to improve the accuracy of classification with limited number of EEG leads, 

this text proposes a Q-learning model that works on a reward mechanism. The proposed model 

is capable of augmented feature extraction, and variance-based feature selection with high 

efficiency of classification for Cerebral Aneurysm, Bell's Palsy, Amyotrophic Lateral 

Sclerosis (ALS), Acute Spinal Cord Injury, Brain Tumour, and Alzheimer's Disease (ALD). 

The proposed model is compared with various state-of-the-art methods, and it is observed that 

it outperforms them in terms of accuracy, precision, recall, fMeasure, and AUC performance. 

Furthermore, the proposed model is also observed to be scalable to a wide variety of diseases 

due to use of a highly efficient convolutional neural network (CNN) model which is based on 

the standard VGGNet architecture. Performance evaluation of the proposed model showcases 

that is has 98% accuracy, 93% precision, 90%, recall, and an AUC of 0.96 which makes it 

applicable for real-time clinical usage. 
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Introduction 

Handling of EEG signals is a multi-layered 

task, which includes plan and execution of 

signal handling calculations. These 

calculations incorporate but are not 

restricted to acquisition, separating, 

division, highlight extraction, selection, 

grouping, characterization and post-

handling [1]. To plan a powerful EEG 

handling framework, the plan of these 

calculations ought to be exceptionally 

precise, and the yield of one calculation 

should be processable by the fell square. A 

General-purpose EEG handling framework 

can be seen from figure 1, wherein every 

one of the blocks and their 

interdependencies can be seen. From the 

figure it very well may be seen that the 

information EEG signal goes through the 

accompanying interior cycles to recognize 

any neurological infections.  

In the initial stage, the EEG signal goes 

through expulsion, separating, band 

extraction and post sifting tasks. EEG signs 

can be defiled with power line impedance, 

direct current (DC) offset commotion, and 

so forth These commotion types should be 

separated utilizing channels like moving 

normal, wiener channel, and so forth After 

sifting, some extra exception groups may 

be appended to the EEG signal, which can 

be taken out utilizing a blend of limited 

motivation reaction (FIR) and endless drive 

reaction (IIR) channels. The yield of this 

square ought to be a commotion free EEG 

signal with high pinnacle signal-to-noise 

ratio (PSNR) execution. 

 

Figure 1. General-purpose EEG processing architecture 

Once noise is taken out from the EEG 

signal, then, at that point, they are 

fragmented to get locales of interests. These 

locales of interest are assessed utilizing 

thresholding, windowing, and fix based 

handling strategies. Yield of this square 

ought to be diverse EEG waves that address 

interesting waveform shapes which can be 

utilized for powerful grouping. The 

fragmented locales are given to highlight 

extraction block, wherein highlights like 

discrete wavelet change highlights (DWT), 

quick Fourier change (FFT) highlights, and 

so forth are assessed. These provisions 

should have the option to depict the EEG 

waveform into mathematical parts with 

high proficiency, to such an extent that 

elements of same neurological sickness 

class are comparable, while elements of 

various neurological infection class are 

exceptionally variation from one another.  

Element Selection: The separated 

provisions are given to an element 

determination block for eliminating excess 

or non-variation highlights from the set. 

These provisions are chosen utilizing 

calculations like autonomous part 

investigation (ICA), head part examination 
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(PCA), nearby discriminant examination 

(LDA), and so on The primary point of this 

square is to choose the elements separated 

by the component extraction block to get 

brief elements that are profoundly variation 

in nature. Utilization of this square enjoys 

2-overlap benefits, which are decrease in 

characterization postponement, and 

improvement in arrangement precision. It is 

strongly prescribed to consolidate this 

square during EEG signal handling.  

Arrangement and Post handling: Selected 

components are sorted into neurological 

infections utilizing characterization 

calculations [2] like convolutional neural 

organizations (CNNs), repetitive neural 

organizations (RNNs), completely 

associated networks (FCNs), and so on The 

arrangement results are additionally broke 

down with the assistance of long-

momentary memory (LSTM) and gated 

intermittent units (GRUs) to distinguish 

movement of the neurological sickness. 

The greater part of the examination in EEG 

signal handling is finished advancement of 

the characterization and post-handling 

blocks.  

The following section portrays different 

calculations utilized for every one of these 

blocks, and assesses them based on 

execution and the sort of neurological 

sickness distinguished. This is trailed by a 

factual assessment of these calculations, 

and proposal of the Q-learning model 

which will help analysts researches to 

distinguish the best algorithmic blend for 

their given EEG handling application. At 

last, this text finishes up with certain 

fascinating perceptions about these 

calculations, and prescribes strategies to 

additionally work on their presentation. 

 

1. Literature Review 

A wide variety of algorithms are proposed 

for EEG classification, and each of them 

have a different area of application. For 

instance, the work in [1, 2, 3, 4] proposes 

fuzzy logic, Multiview convolutional 

neural networks (MVCNN), cross-day 

classification using transfer learning, and 

deep Gaussian Mixture hidden Markov 

model (DGMHMM) for classification of 

EEG signals. These models are observed to 

have high accuracy, and low delay for 

classification, and can be used for large 

scale EEG applications. Similarly, the 

models in [5, 6] use correlation EEG 

classification, and bidirectional gated 

recurrent unit (GRU) model for 

neurological disease detection. Both these 

models are showcased to have moderate 

levels of accuracy, with moderate delay, 

and thus are useful for medium scale EEG 

classification applications. The models 

discussed in [7] propose that deep learning 

with transfer learning can be used for 

effective EEG processing, and can be 

applied to a large variety of classification 

tasks. Moreover, the work proposed in [8, 

9, 10, 11] aim at optimizing neurological 

disease classification via deep transfer 

learning, multilevel weighted feature 

fusion, imaging data for classification, and 

Hybrid Deep Feature Selection Method 

with effective CNN models for high speed 

and low complexity EEG classification.  

Furthermore, deep transfer CNN models 

[12], sensor spatial configuration for EEG 

classification [13], Unified Novel Neural 

Network Approach [14], Bayesian 

Optimized Spectral Filters [15], and 

random forest [16] are proposed by 

researchers. These methods have good 

application specific performance, but lack 

in terms of large-scale EEG classification 

tasks. It is further recommended that these 

models must be combined for better 

classification performance, and can be used 

for solving complex stratification tasks. 

Based on this observation, a fused model 

that combines Q-learning with CNN is 

proposed in this text, and described in the 

next section. 

2. Proposed highly efficient Q-learning 

model for neurological disease 

classification 

 The proposed Q-learning model collects 

EEG datasets from a large number of data 



A highly efficient Q-learning model for neurological disease classification 
 

Section A-Research paper 

 

 

Eur. Chem. Bull. 2023, 12 (7), 4252-4262                         4297 

sources, and performs effective feature 

extraction & selection on them. The 

selected features are given to a Q-learning 

classification engine that utilizes CNN 

model for final disease detection. Thus, 

design of the proposed model is divided 

into 2 different parts, each of which are 

described in different sub-sections of this 

text. The proposed model is visualized 

using figure 2, wherein it is observed that 

after feature extraction & selection, a 

tagged database is created. This tagged 

database is used by the Q-learning model 

for final disease detection. Internal working 

of these blocks is described in different sub-

sections of this text. 

 

Figure 2. Block diagram of the proposed 

model 

 

3.1. Feature extraction & selection using 

Genetic Algorithm 

The input EEG data is given to a feature 

extraction module, wherein ensemble 

feature normalization is applied. In order to 

perform this task, a pool of discrete wavelet 

transform (DWT), discrete cosine 

transform (DCT), and discrete Fourier 

transform (DFT) features was evaluated. 

The Haar wavelet was used in order to 

estimate approximate entropy of EEG 

signals using equation 1, 

𝐷𝑊𝑇𝑖 =
𝐸𝐸𝐺𝑖 + 𝐸𝐸𝐺𝑖+1

2
…                  (1) 

While, DCT was evaluated using equation 

2 as follows, 

𝐷𝐶𝑇𝑖

=
1

√2 ∗ 𝑁
∗ 𝐶𝑖 ∗∑

𝑁

𝑗=1

𝐸𝐸𝐺𝑖

∗
𝑐𝑜𝑠 𝑐𝑜𝑠 (2 ∗ 𝑗 + 1) 

2 ∗ 𝑁
…           (2) 

Where, 𝐶𝑖 represents constant of DCT, and 

is estimated using equation 3, 

𝐶𝑖 =
1

√2
,𝑤ℎ𝑒𝑛 𝐸𝐸𝐺𝑖

= 0, 𝑒𝑙𝑠𝑒 1…                   (3) 

Similarly, DFT is evaluated using equation 

4, 

𝐷𝐹𝑇𝑖 = ∑

𝑁−1

𝑗=1

𝐸𝐸𝐺𝑖 ∗

𝑒𝑥𝑝 𝑒𝑥𝑝 (−2 ∗ √−1
2

∗ 𝑝𝑖

∗ 𝑗 ∗
𝑛

𝑁
) …   (4) 

These features are combined using a 

singular feature vector, and the final feature 

vector is normalized using equation 5 as 

follows, 

𝐹𝑛𝑜𝑟𝑚𝑖
=

𝐹𝑖 − (𝐹) 

(𝐹)  − 𝑚𝑖𝑛 (𝐹)
…       (5) 

Where, 𝐹𝑖 is the fused feature vector 

evaluated using equation 6, while 𝐹𝑛𝑜𝑟𝑚𝑖
 is 

normalized feature vector in the range of 0 

to 1, which allows the Q-learning model to 

estimate neurological diseases with good 

accuracy. 

𝐹𝑖
= ⋃ 𝐷𝑊𝑇𝑖, 𝐷𝐶𝑇𝑖, 𝐷𝐹𝑇𝑖 …                                                                                                                                                         (6) 

Based on the normalized feature vector, a 

feature variance is evaluated using equation 

7, 

𝑉𝑎𝑣𝑔
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=
√
  
  
  
  
 

∑𝑚𝑎=1 (𝑓𝑛𝑜𝑟𝑚𝑎
−
∑𝑚𝑖=1

√∑
𝑛
𝑗=1 (𝑓𝑛𝑜𝑟𝑚𝑗

−
∑𝑛𝑘=1 𝑓𝑛𝑜𝑟𝑚𝑘

𝑛 )2

𝑛 − 1
𝑚 )2

𝑚 − 1
…               (7) 

Where, 𝑚, 𝑛 represents features of one 

class, and features of other classes 

respectively. If the variance of any feature 

vector is lower than 𝑉𝑎𝑣𝑔 then that feature 

vector is discarded, while others are 

selected for final classification. 

3.2. Classification using Q-learning 

In order to classify the EEG samples using 

Q-learning, a reward function is evaluated. 

This reward function is represented using 

equation 8, 

𝑄𝑛𝑒𝑤 = 𝑄𝑜𝑙𝑑 + 𝜕 ∗ 𝑅 + ∅
∗ (𝑄𝑜𝑙𝑑
− 𝑄𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) …  (8) 

Where, 𝑄𝑛𝑒𝑤, 𝑄𝑜𝑙𝑑, 𝜕, 𝑅, ∅, 𝑎𝑛𝑑 𝑄𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 

represents new Q-value, old Q-value, 

learning rate, reward for current Q-value, 

discount rate, and all previous Q-values 

evaluated by the system. The initial Q-

value is evaluated using equation 9, and 

represents difference between normalized 

input features, and the database features. 

𝑄𝑖𝑛𝑖𝑡 = 𝐹𝑛𝑒𝑤 − 𝐹𝑑𝑏 …           (9) 

The value of Q is evaluated until it is 

saturated for a given feature vector. Once 

saturated, then it is given to a standard 

VGGNet-16 architecture for classification. 

The VGGNet model is trained using 

normalized features, and evaluated using 

the saturated Q-learning features. Due to 

which, weighted classification is 

performed, and the model is able to obtain 

better recognition results. Architecture of 

the VGGNet-16 model is visualized in 

figure 3, wherein all the convolutional, max 

pooling, and dense layers are showcased. 

Based on this model, classification results 

were evaluated for multiple neurological 

diseases. The results of this classification 

can be observed from the next section of 

this text. 

3. Result & Comparison 

In order to evaluate the proposed model, the 

following datasets were used, 

● EEG Lab List: 

https://sccn.ucsd.edu/~arno/fam2data/

publicly_available_EEG_data.html 

● Ming Wandering Dataset: 

https://drive.google.com/open?id=0B0

LQHOLfcq-hMFlhOEFKUXFPTkE 

● Psychophysics Dataset: 

ftp://www.sccn.ucsd.edu/pub/eeglab_

data.set 

● Temple University Dataset: 

https://www.isip.piconepress.com/proj

ects/tuh_eeg/html/downloads.shtml 

All these sets were evaluated for [4], [6], 

[12], & the proposed model, and results for 

accuracy (A), precision (P), recall (R), and 

computational delay (D) were evaluated. 

Based on these results, it was observed that 

the proposed model outperforms the given 

models in terms of accuracy, precision, and 

recall, but requires larger delay when 

compared to some of these methods. 

Results for accuracy can be observed from 

table 1, wherein various EEG samples were 

used for evaluation, and Cerebral 

Aneurysm, Bell's Palsy, Amyotrophic 

Lateral Sclerosis (ALS), Acute Spinal Cord 

Injury, Brain Tumour, and Alzheimer's 

Disease (ALD) were classified. 

https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
https://sccn.ucsd.edu/~arno/fam2data/publicly_available_EEG_data.html
https://drive.google.com/open?id=0B0LQHOLfcq-hMFlhOEFKUXFPTkE
https://drive.google.com/open?id=0B0LQHOLfcq-hMFlhOEFKUXFPTkE
ftp://www.sccn.ucsd.edu/pub/eeglab_data.set
ftp://www.sccn.ucsd.edu/pub/eeglab_data.set
https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
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Figure 3. Architecture of the VGGNet-16 model 

 

Table 1. Accuracy of different models 

EEG 

Samples 

Acc. (%) [4] Acc. (%) [6] Acc. (%) [12] Acc. (%) Proposed 

1000 86.50 75.60 83.13 90.83 

2000 86.70 75.90 83.38 91.11 

3000 88.20 76.30 84.36 92.17 

4000 89.10 76.90 85.13 93.01 

5000 89.30 77.30 85.44 93.35 

8000 88.84 77.16 85.13 93.01 

10000 89.31 77.48 85.53 93.45 

12000 89.84 77.80 85.97 93.93 

14000 90.17 78.10 86.29 94.28 

16000 90.39 78.34 86.53 94.54 

18000 90.61 78.56 86.75 94.78 

20000 90.96 78.84 87.08 95.14 

25000 91.30 79.11 87.39 95.48 

30000 91.59 79.38 87.68 95.79 

40000 91.88 79.63 87.96 96.10 

50000 92.18 79.89 88.24 96.41 

60000 92.50 80.16 88.54 96.74 

70000 92.81 80.43 88.84 97.07 

80000 93.11 80.70 89.13 97.39 

90000 93.42 80.97 89.43 97.71 

100000 93.73 81.24 89.73 98.04 
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From table 1 and figure 4, it is observed that the proposed model has at least 5% better accuracy 

than [4], 15% better accuracy than [6], and 8% better accuracy than [12] on different EEG 

sample sets. Similar performance was measured for precision, and can be observed from table 

2 as follows, 

 

Figure 4 depicts accuracy of different models 

Table 2. Precision of different models 

EEG 

Samples 

Prec. (%) [4] Prec. (%) [6] Prec. (%) 

[12] 

Prec. (%) 

Proposed 

1000 82.18 71.82 78.97 86.28 

2000 82.37 72.11 79.22 86.55 

3000 83.79 72.49 80.14 87.56 

4000 84.65 73.06 80.87 88.36 

5000 84.84 73.44 81.16 88.68 

8000 84.40 73.31 80.87 88.36 

10000 84.85 73.61 81.26 88.78 

12000 85.35 73.91 81.67 89.23 

14000 85.66 74.20 81.98 89.57 

16000 85.87 74.43 82.20 89.81 

18000 86.08 74.63 82.41 90.04 

20000 86.42 74.89 82.72 90.38 

25000 86.73 75.16 83.02 90.71 

30000 87.01 75.41 83.29 91.00 

0
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40000 87.29 75.65 83.56 91.29 

50000 87.57 75.90 83.83 91.59 

60000 87.87 76.16 84.12 91.91 

70000 88.17 76.41 84.40 92.21 

80000 88.46 76.66 84.68 92.52 

90000 88.75 76.92 84.96 92.82 

100000 89.05 77.17 85.24 93.13 

From table 2, it is observed that the proposed model has at least 4% better precision than [4], 

14% better precision than [6], and 6% better precision than [12] on different EEG sample sets. 

Similar performance was measured for recall, and can be observed from table 3 as follows, 

Table 3. Recall of different models 

EEG 

Samples 

Rec. (%) [4] Rec. (%) [6] Rec. (%) [12] Rec. (%) 

Proposed 

1000 84.34 73.71 81.05 88.55 

2000 84.53 74.00 81.30 88.83 

3000 86.00 74.39 82.25 89.87 

4000 86.87 74.98 83.00 90.69 

5000 87.07 75.37 83.30 91.01 

8000 86.62 75.23 83.00 90.69 

10000 87.08 75.54 83.40 91.12 

12000 87.59 75.85 83.82 91.58 

14000 87.92 76.15 84.14 91.93 

16000 88.13 76.39 84.37 92.18 

18000 88.34 76.59 84.58 92.41 

20000 88.69 76.87 84.90 92.76 

25000 89.02 77.13 85.20 93.09 

30000 89.30 77.39 85.48 93.40 

40000 89.58 77.64 85.76 93.70 

50000 89.88 77.90 86.04 94.00 

60000 90.19 78.16 86.33 94.32 

70000 90.49 78.42 86.62 94.64 

80000 90.79 78.68 86.91 94.95 

90000 91.09 78.94 87.19 95.27 

100000 91.39 79.20 87.48 95.58 

From table 3, it is observed that the proposed model has at least 3% better recall than [4], 10% 

better recall than [6], and 4% better recall than [12] on different EEG sample sets. Similar 

performance was measured for average computational delay, and can be observed from table 4 

as follows, 
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Table 4. Average computational delay for different models 

EEG Samples Delay (s) [4] Delay (s) [6] Delay (s) [12] Delay (s) 

Proposed 

1000 3.95 3.62 2.88 3.76 

2000 3.94 3.60 2.87 3.75 

3000 3.88 3.58 2.84 3.71 

4000 3.84 3.56 2.81 3.68 

5000 3.83 3.54 2.80 3.66 

8000 3.85 3.54 2.81 3.68 

10000 3.83 3.53 2.80 3.66 

12000 3.81 3.52 2.78 3.64 

14000 3.79 3.50 2.77 3.63 

16000 3.78 3.49 2.77 3.62 

18000 3.77 3.48 2.76 3.61 

20000 3.76 3.47 2.75 3.59 

25000 3.74 3.46 2.74 3.58 

30000 3.73 3.45 2.73 3.57 

40000 3.72 3.43 2.72 3.56 

50000 3.71 3.42 2.71 3.55 

60000 3.70 3.41 2.70 3.53 

70000 3.68 3.40 2.69 3.52 

80000 3.67 3.39 2.68 3.51 

90000 3.66 3.38 2.68 3.50 

100000 3.65 3.37 2.67 3.49 

 

Figure 5 depicts Average computational delay for different models 
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From the delay comparison, it can be 

observed that the proposed model performs 

better than [4], and closely matches the 

delay performance of [6], while has higher 

delay than [12], thereby making it suitable 

for moderate to high-speed clinical 

applications. 

4. Conclusion & future scope 

From the result evaluation it is observed 

that the proposed model has 4% to 10% 

better accuracy than models proposed in 

[4], [6], and [12], while it has 3% to 8% 

better precision, and 3% to 6% better recall 

than these models. But the delay 

performance of the proposed model is only 

better than [4], while it is similar to [6], and 

the model has higher delay than [12], which 

makes it suitable for moderate to high-

speed clinical deployments. Moreover, the 

model showcases 98% accuracy, which is 

higher than most the reviewed models, and 

has 93% precision & 95% recall, which 

makes it suitable for high precision 

neurological classification applications. 

The model’s performance can be further 

improved via use of deep learning methods 

like recurrent neural networks (RNNs), and 

combination of long-short-term memory 

(LSTM) with gated recurrent unit (GRU) 

based models. 
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