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Abstract:

A polar molecular gas with a strong dipolar interaction is a system of great interest to both the atomic and
molecular physics and condensed-matter physics communities due to the versatile and promising potential
applications. With controllable, anisotropic and long range dipole—dipole interactions, they could be used in
quantum computation, quantum simulation, precision measurement and controlled cold chemistry. Here we
study the stability of trapped NaRb, NaCs and RbCs molecular BECs. For these molecules their electric
dipole moments can be polarized by an external electric field. As the applied electric field increases, the
dipole moment d continuously increases from zero to the permanent dipole moment. We model the dipolar
BEC using the mean-field Gross-Pitaevskii equation (GPE). We find that for a particular molecular BEC, the
maximum number of molecules for which the condensate will remain stabilized depends on (i) value of
dipole moment, (ii) value of contact interaction scattering length. We have also studied the case when the
polarizing field is perpendicular to the trap axis.
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1. Introduction

A dipolar molecular gas is one of the most widely
studied systems in the fields of atomic, molecular,
and condensed matter physics because of its broad
and promising applications [1,2]. With controllable
and anisotropic dipole and dipole interactions over
long distances, they can be used for quantum
computing [3,4], quantum simulation [5], precision
measurement [6, 7] and controlled cold chemistry
[8]. STIRAP (Stimulated Raman Adiabatic
Passage) is the most recent technique that has been
developed to generate almost degenerate gas of
KRb molecules in their rovibratory ground state [9,
10]. Unfortunately, the KRb molecules are not
stable against two-body decay into K2 and Rb2
molecules [11, 12]. Theoretical calculations
suggested that this issue could be overcome by
selecting other alkali-metal substituents such as
KCs, KNa, NaCs, NaRb, and RbCs [13]. The use
of STIRAP on these species is now widely used in
many laboratories around the world. Bosonic NaRb
molecules, with a constant electric dipole moment
of 3.3 debye, have been created by [14,15]. NaCs
molecules with dipole moments as large as 4.6 D
have been created by [16,17]. Ultracold RbCs
molecules have been created by [18]. With these
advances, a strong dipolar ground state molecule
BEC is now experimentally achievable. While
many aspects like rotonic excitation spectra [19-
27], anisotropic superfluidity [28,29], droplet
formation [30-32], crystallization in one dimension
(1D) [33-38], two dimension (2D) [39-43], and into
more exotic patterns [43,44] have been extensively
discussed for weakly dipolar magnetic atoms, So
far, systematic studies on molecules with their large
and adjustable electric dipole moment have been
rare. Previous theoretical studies have investigated
molecular Bose gasses with dipolar interactions in
various scenarios from the weakly to the strongly
interacting limit in lattices and in bulk systems [45-
54]. Purely dipolar systems have also been used to
study crystallization [55-57], localization [58] and
topological states [59].

2. Objectives

In this work, we leverage the comprehensive toolkit
we developed to explore dielectric BECs to
investigate the many-body properties that can be
predicted with a future molecular BEC. In addition,
we explain in detail how to attain collisional
stability of the molecules, so that the molecular
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losses can be disregarded in our simulations.
Finally, we show how the desired interaction
parameters (contact and dipolar) can be met in
experiments. In literature [60], fine-tuned
situations have been studied where small repulsive
beyond mean field LYH corrections dominate over
large attractive mean-field terms, leading to
stabilization of systems that are expected to
collapse on a pure mean-field level. Here, we study
the limit up to which systems can still be stabilized
within mean-field approximation.

3. Method
Here we consider dipolar BECs of NaRb, NaCs and
RbCs molecules. For these molecules, their electric
dipole moments can be polarized by an external
electric field (say, along the Z direction). As the
applied electric field increases, the dipole moment
d continuously increases from zero to the
permanent dipole moment, and different molecules
have different values of the permanent dipole
moment. From literature we see that the maximum
value of dipole moment of NaRb, NaCs and RbCs
molecules can be 3.31 D, 463 D, and 1.32 D
respectively [61]. The two-body dipole-dipole
interaction potential studied here can be modeled as
V. = d?(1-3co0s28)
D r3
_ d’m
Qaa = 12mh2e,
dipolar interaction. For dielectric molecules, azq4
can be of the order of 105a, depending on the
value of the external electric field. Along with this
long range dipolar interaction, we also consider the
s-wave contact interaction. The short-range contact
interaction between the molecules is characterized
by the coupling constant g = 4mh?ag/m. Where
as is the s—wave scattering length. As molecules
can be lost from two-body processes, as is in
general a complex quantity, with the imaginary part
related to the losses. We consider here the case with
no losses so the imaginary part of as is set to zero.
We model the dipolar BEC using the mean-field
Gross-Pitaevskii equation (GPE) as,

. Now, we take dipolar strength

to characterize the strength of the

ihdgp = (Ho + gl|*> + Vp)y (1)

where the wavefunction (7, t) is normalized to
. 2

the molecule number N and H, = —Z—nf+

Vot (). In presence of harmonic trapping potential
Vert () = %(a)xzxz + w,%y? + w,%z%). By
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Figure 1: (a) variation of Nmax with dipole moment, (b) variation of amin with dipole moment

controlling the electric field, one can make the
dipole energy comparable to the Fermi energy.
The dipole-dipole interaction is inherently
anisotropic. We may choose the polarizing electric
field direction not to coincide with the trap axis.
They may make an angle and the stability of the
BEC should depend on it. When the electric field
makes an angle ¢ with the trap axis, the DDI
potential takes form,

2 2 2
VD(T_')) _ a=(1 sgcos 0) 3cosz¢> 1

)

We have studied two extreme cases, ¢ = 0, when
the polarizing electric field is along the trap axis
and ¢ = 90° when the polarizing electric field is
perpendicular to the trap axis.

4. Results

We solve the GP equation for NaRb, NaCs and
RbCs molecular BEC for different values of N, a4
and ag and find the limit where systems are
stabilized. Our results show, for a particular value
of ayq there is a maximum number of molecules
Nynax Which can produce stable BEC in a trap. To
achieve this BEC with N,,,,, number of molecules,
a, has to be set greater than a value called a,,;;, -

The ratio ‘Z"—”l is fixed for a particular trap and for
dd

a quasi-two dimensional trap CZ”—‘” = % Figure 1
dd

z

shows the variation of Ny, 4, and a,,;, With dipole

moment

We find the following results:

eFor a particular molecular BEC, N,,,, depends
on (i) value of dipole moment, i.e., a4 , (ii) value
of contact interaction scattering length, ay , (iii)
trap geometry

eKeeping everything else fixed, if we decrease
value of a, then the number of molecules in the
stable condensate, N , decreases. And if we
increase a then N also increases. But for a fixed
value of a;; we cannot increase N beyond N4
without making the condensate unstable.

eFor same molecule and same value of agq , Niax
can be changed by changing the trap geometry

e For the same trap and same dipole moment, N,
is inversely proportional to the mass of the
molecule.

e For all the three molecules and all dipole moment
values, the values of |1(0,0)|? at trap center and

‘Z”—"" are same and depends on trap geometry
dd

only.

To determine the stability of the BCE, we have
checked whether the wavefunction is still gaussian
or not. For ¢ = 90°, we find the BEC becomes
less stable with an increase in dipole moment and
number of molecules. In Table-1 we provide the
results.

Table-1. Nmax for different angles between trap axis and polarizing electric field

Molecule

NaRb

Dipole moment | Nimax for @ = 0° | Nmax for @ = 90°
0.1 1430000 2600

0.2 300700 600

0.3 146400 290

0.4 88300 170

0.5 57200 100

5. Discussion

In conclusion, we have studied the stability of
trapped molecular BECs having electric dipole
moments. We have considered BECs of NaRb,
NaCs, and RbCs molecules as examples and
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explored the requirements to create stable BECs of
those molecules in a harmonic trap. We have
prepared our dipolar BEC using mean-field GPE
where we have taken into account both the short-
range contact interaction and long-range dipole-

227



Stability Of Electric Dipole Molecular Condensate

dipole interaction among the molecules. While the
contact interaction is isotropic, the dipole-dipole
interaction is inherently anisotropic. Initially, we
have done the calculations considering the
polarizing electric field along the direction of the
trap axis. Then, we have also studied the situation
considering the polarizing electric field as
perpendicular to the trap axis. We solve the GPE to
find stable solutions for different values of (i)
number of molecules in the Condensate, (ii) electric
dipole moments of the molecules, (iii) strength of
the contact interaction. We draw the following
conclusions: (a) For a particular molecular BEC,
the maximum number of molecules present in the
stable condensate, N, depends on (i) value of
dipole moment , (ii) value of contact interaction
scattering length, (iii) trap aspect ratio. (b) Keeping
everything else fixed, if we decrease the strength of
the contact interaction then the number of
molecules in the stable condensate, N decreases.
And if we increase the strength of the contact
interaction then N also increases. But for a fixed
value of the dipole moment we cannot increase N
beyond N,,., Without making the condensate
unstable. (c) However, for same molecule and same
value of the dipole moment, N,,,,, can be changed
by changing the trap geometry. (d) Again, if we
consider different molecules for the same trap and
same dipole moment, Np,, IS inversely
proportional to the mass of the molecule. (¢) for all
the three molecules and all dipole moment values,
the values of probability density at trap center and

the ratio 'Z"—"‘ are same and depends on trap aspect
dd

ratio only. The potential applications of this study
covers broad fields including quantum
computation, quantum simulation and controlled
cold chemistry. This work opens up path to perform
studies like condensate phases and dynamics with
dipolar anisotropy [62] and interaction of
molecular BEC with optical vortex beams [63].
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