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Abstract: 

Constrained global optimization of stringent inequalities (or equations) utilizing multivariate 

polynomials can be used to solve the challenges posed by robust stability analysis. For the 

purpose of constrained global optimization of multivariate functions, we offer techniques 

that are constructed using B-spline expansion. The branch-and-bound structure serves as the 

foundation for the proposed algorithms. By taking into account the robust stability analysis 

problem, we put the suggested fundamental restricted global optimization algorithms 

through their paces. The results obtained are consistent with those that have been published 

in the relevant literature. 

Keywords:  B-spline expansion, Stability analysis, Global optimization. 

 

DOI: 10.48047/ecb/2023.12.8.692 

INTRODUCTION 

It is well knowledge that the solution to the characteristic equation gives us insight into the stability 

of the feedback system. The expression that describes the characteristics of a system, taking into 

account uncertainty in the parameters may be expressed in polynomial form, and the uncertainty 

boundaries may be seen as system constraints. Both of these can be accomplished through the use 

of a polynomial equation. Finding the zone of parameter uncertainty in a linear system that allows 

the controller to stabilizing any systemic turbulence is what meant by robust stability analysis [1]. 

Finding the optimum solution for a problem is referred to as nonlinear programming problems 

(NLP), which is an acronym that stands for global optimization with constraints of nonlinear 

programming problems. In general, the robust stability analysis issues reduce to this type of 

optimization. This is a statement of the global constrained optimization of NLPs: 
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𝑚𝑖𝑛
𝑦∈𝒚

𝑓(𝑧) 

                                                      s.t. 𝑐𝑝(𝑧) ≤ 0, 𝑝 = 1,2, . . . , 𝑛                                          (1) 

         𝑐𝑒𝑞𝑞(𝑧) = 0, 𝑞 = 1,2, . . . , 𝑚 

 

     The branch-and-prune structure is frequently utilized in practice for the resolution of 

limited global optimization issues [2]. This structure is utilized by a number of interval 

approaches [3][4] for the purpose of locating the local minimum. This paper present B-spline 

methods for addressing nonconvex NLP problem in control system. Where f  objective 

polynomial function and 𝑐𝑖,  𝑐𝑒𝑞𝑗
  are polynomial constraints functions. Polynomial B-splines are 

constructed using the original power-form polynomial [5][6].  After then, the bounds on the range 

of f and 𝑐𝑖 ,  𝑐𝑒𝑞𝑗
 using minimum and maximum coefficients values in B-spline expansion.  

        Within the article, we study one example of the fundamental global optimization under 

constraints. This example include the issue of stability analysis. The aforementioned issues are 

simplified down to the form of stringent inequalities that include multivariate polynomials, and 

then the suggested technique for constrained global optimization is applied to find a solution. 

       The proposed method has four advantages: (i) it doesn't need to evaluate f and constraints 

(𝑐𝑖 & 𝑐𝑒𝑞𝑗
); (ii) it doesn't need an initial guess to kick off optimization; (iii) it ensures that the local 

minimum will be located within an accuracy threshold set by the user; and (iv) it doesn't need 

prior knowledge of stationary points. 

 

II. BACKGROUND: B-SPLINE EXPANSION 

 

In the first place, we will provide a quick introduction to B-spline expansion. The range of in 

power from polynomial is obtained by using the B-spline expansion. After that, the B-spline 

shape is used as the foundation for the primary zero finding procedure in section 3.     

So as to acquire the B-spline expansion, we follow the approach described in [7] and [6]. 

Consider F(𝑥1, ⋯ 𝑥𝑣) represent a multivariate polynomial in 𝑣 real variables, where the 

polynomial has the largest degree (𝑑1 + ⋯ +𝑑𝑣) (2). 

 

                                              F(𝑥1, ⋯ 𝑥𝑣) = ∑ ⋯
𝑑1
𝑝1=0 ∑ 𝑐𝑝1⋯𝑝𝑣

𝑥1
𝑝1 ⋯

𝑑𝑣
𝑝𝑣=0 𝑥𝑣

𝑝𝑣 . (2) 

 

2.1 Univariate polynomial  

 

Lets consider univariate polynomial case first, (3) 

 

 𝐹(𝑥) = ∑ 𝑐𝑣𝑡𝑥𝑣𝑑
𝑝=0 , 𝑥 ∈ [𝑎, 𝑏], (3) 

 

 

For a given degree m, this is equivalent to an order of m+1. The B-spline expansion is defined 
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on a compact interval I=[a,b],  where the condition 𝑚 ≥ 𝑑 holds. The splines with a degree of m 

on a partition of the uniform grid is referred to as the Periodic or Closed knot vector, and it is 

denoted by the letter, 𝒘, and denoted as Ω𝑚(J, 𝒘), and 𝒘 is given as, 

 

                                               𝒘: = {𝑥0 < 𝑥1 < ⋯ < 𝑥𝑠−1 < 𝑥𝑠}. (4) 

 

The value of 𝑥𝑗: = 𝑎 + 𝑗𝑧, 0 ≤ 𝑗 ≤ 𝑠, where 𝑠 denotes number segments of B-spline and 𝑧: =

(𝑏 − 𝑎)/𝑠. 

Let's say that 𝑵𝑞 represents the space occupied by splines of degree 𝑞. The degree q splines 

with 𝐶𝑞−1 continue on [𝑎, 𝑏] and  𝒘 as knot vector is thus designated by the following notation: 

 

 Ω𝑞(𝐼, 𝒘 ): = {Ω ∈ 𝐶𝑞−1(𝐼): Ω|[𝑧𝑗 , 𝑧𝑗+1] ∈ 𝑵𝑞 ,  𝑗 = 0, ⋯ , 𝑠 − 1}. (5) 

 

Since Ω𝑞(𝐼, 𝒘) is (𝑠 + 𝑞) dimension linear space [8]. To provide a foundation for locally 

supported splines, Ω𝑞(𝐼, 𝒘) , we required some extra knots 𝑧−𝑞 ≤ ⋯ ≤ 𝑧−1 ≤ 𝑎 and 𝑏 ≤ 𝑧𝑠+1 ≤

⋯ ≤ 𝑧𝑠+𝑞 clamed at the ends of knot vector which are called as Clamped knot vectors, (6). 

Elements of Open or Clamped knot vector 𝒘 is obtained as 𝑧𝑗: = 𝑎 + 𝑗𝑢 for 𝑗 ∈ {−𝑞, ⋯ , −1} ∪

{𝑠 + 1, ⋯ , 𝑠 + 𝑞}, 

 

 𝒘: = {𝑧−𝑞 ≤ ⋯ ≤ 𝑧−1 ≤ 𝑎 = 𝑧0 < 𝑧1 < ⋯ < 𝑧𝑠−1 < 𝑏 = 𝑧𝑠 ≤ 𝑧𝑠+1 ≤ ⋯ ≤ 𝑧𝑠+𝑞}. (6) 

 

The B-spline basis {𝐵𝑗
𝑞(𝑧)}

𝑗=1

𝑠−1
of Ω𝑞(𝐼, 𝒘) is defined in terms of divided differences: 

 

 𝐵𝑗
𝑞(𝑧): = (𝑧𝑗+𝑞 − 𝑧𝑗)[𝑧𝑗, 𝑧𝑗+1, ⋯ , 𝑧𝑗+𝑞+1](. −𝑧)+

𝑞
, (7) 

 

where (. )+
𝑞

 represent degree truncation. This can be simply shown as 

 

                                         𝐵𝑗
𝑞(𝑧): = 𝛺𝑑 (

𝑧−𝑎

ℎ
− 𝑖) , −𝑞 ≤ 𝑗 ≤ 𝑠 − 1, (8) 

 

where 

 

                                           

∆𝑞(𝑧): =
1

𝑞!
∑(−1)𝑖

𝑞+1

𝑖=0

(
𝑞 + 1

𝑣
) (𝑧 − 𝑣)+

𝑞
, 

    (9) 

 

𝐵𝑗
𝑞(𝑧): = (𝑧𝑗+𝑞 − 𝑧𝑗)[𝑧𝑗, 𝑧𝑗+1, ⋯ , 𝑧𝑗+𝑞+1](. −𝑧)+

𝑞
, is degree 𝑞 basis function. The expression for 

basis in B-spline form is facilitated by following Cox-deBoor recursion formula, 
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                             𝐵𝑗
𝑞(𝑧): = 𝛽𝑗,𝑞(𝑧)𝐵𝑗

𝑞−1(𝑧) + (1 − 𝛽𝑗+1,𝑞(𝑧)) 𝐵𝑗+1
𝑞−1(𝑧),  𝑞 ≥ 1, (10) 

 

where  

 𝛽𝑗,𝑞(𝑧) = {

𝑧−𝑥𝑗

𝑧𝑗+𝑞−𝑧𝑗
,     if  𝑧𝑗 ≤ 𝑧𝑗+𝑞 ,

0,     otherwise,
 (11) 

and 

 

                                             𝐵𝑗
0(𝑧): = {

1,     if  𝑧 ∈ [𝑧𝑗 , 𝑧𝑗+1),

0,     otherwise.
 (12) 

 

The spline basis set {𝐵𝑗
𝑞(𝑧)}

𝑗=1

𝑠−1
 has the following desirable characteristics: 

1. Every 𝐵𝑗
𝑞(𝑧) is greater than zero on  [𝑧𝑗, 𝑧𝑗+𝑞+1]. 

2. The spline basis set {𝐵𝑗
𝑞(𝑧)}

𝑗=1

𝑠−1
  shows a partition of unity, i.e. 

∑ 𝐵𝑗
𝑞(𝑧)

𝑠−1

𝑗=1

= 1. 

 The following relation may be used to express the {𝑧𝑙}𝑙=0
𝑚  in (3) in terms of B-spline. 

 

                                              

𝑧𝑙: = ∑ 𝜋𝑟
(𝑙)

𝑣−1

𝑟=−𝑞

𝐵𝑟
𝑞(𝑧), 𝑙 = 0, ⋯ , 𝑞, 

  (13) 

 

and the symmetric polynomial 𝜋𝑟
(𝑙)

 defined as 

 

                                       𝜋𝑟
(𝑙)

: =
Sym𝑠(𝑟+1,⋯,𝑟+𝑞)

𝑠𝑙(
𝑞
𝑙

)
,  𝑙 = 0, ⋯ , 𝑞. (14) 

Then by substituting (13) in (3) we get the power form polynomial (3)'s B-spline extension 

as follows: 

𝐹(𝑧): = ∑ 𝑐𝑝

𝑚

𝑝=0

∑ 𝜋𝑟
(𝑙)

𝑣−1

𝑟=−𝑞

𝐵𝑟
𝑞(𝑧) = ∑ [∑ 𝑐𝑝𝜋𝑟

(𝑙)

𝑚

𝑝=0

]

𝑣−1

𝑟=−𝑞

𝐵𝑟
𝑞(𝑧) = ∑ 𝐷𝑛

𝑣−1

𝑟=−𝑞

𝐵𝑟 
𝑞(𝑧), 

  (15) 

 

where   
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𝐷𝑛: = ∑ 𝑐𝑝𝜋𝑟
(𝑙)

𝑚

𝑝=0

. 

  (16) 

 

 

2.2 Multivariate polynomial case 

 

Let us now investigate B-spline form of following power form polynomial in a number of 

variables (17),  

                                        

𝑃(𝑧1, ⋯ , 𝑧𝑣): = ∑ ⋯

𝑘1

𝑔1=0

∑ 𝑐𝑔1⋯𝑔𝑣
𝑧1

𝑘1 ⋯

𝑘𝑣

𝑔𝑣=0

𝑧𝑣
𝑘𝑣 = ∑ 𝑎𝒈

𝒈≤𝒌

𝑧𝒌, 

  (17) 

 

      where 𝒈: = (𝑔1, ⋯ , 𝑔𝑣) and 𝒌: = (𝑘1, ⋯ , 𝑘𝑣). Substituting (13) for each 𝑧𝑘, (17) may also 

be expressed as 

                           

𝐹(𝑧1, 𝑧2, . . . , 𝑧𝑣) = ∑ . . . ∑ 𝑐𝑙1...𝑙𝑣
∑ 𝜋𝑢1

(𝑙1)
𝐵𝑢1

𝑞1(𝑧1)

𝑘1−1

𝑢1=−𝑞1

𝑚𝑣

𝑙𝑣=0

𝑚1

𝑙1=0

 . . . ∑ 𝜋𝑢𝑣

(𝑙𝑣)
𝐵𝑢𝑣

𝑞𝑣(𝑧𝑣)

𝑘𝑣−1

𝑢𝑣=−𝑞𝑣

, 

  

                                            

= ∑ .

𝑘1−1

𝑢1=−𝑞1

. . ∑ ( ∑ . . .

𝑚1

𝑙1=0

∑ 𝑐𝑙1...𝑙𝑣
𝜋𝑢1

(𝑙1)
. . . .

𝑚𝑣

𝑙𝑣=0

𝜋𝑢𝑣

(𝑙𝑣)
)

𝑘𝑣−1

𝑢𝑣=−𝑞𝑣

𝐵𝑢1

𝑞1(𝑧1). . . 𝐵𝑢𝑣

𝑞𝑣(𝑧𝑣), 

  (18) 

                                            

= ∑ . . . ∑ 𝐷𝑢1...𝑢𝑣

𝑘𝑣−1

𝑢𝑣=−𝑞𝑣

𝑘1−1

𝑢1=−𝑞1

𝐵𝑢1

𝑞1(𝑧1). . . 𝐵𝑢𝑣

𝑞𝑣(𝑧𝑣), 

  

 

     we can write (18) as 

 

                                                        

𝐹(𝑧): = ∑ 𝐷𝑢

𝑢≤𝑘

𝐵𝑢
𝑘(𝑧). 

  (19) 

 

     where 𝑢: = (𝑢1, ⋯ , 𝑢𝑣) and 𝐷𝑢is B-spline coefficient given as 
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𝐷𝑢1...𝑢𝑣
= ∑ . . .

𝑚1

𝑙1=0

∑ 𝑐𝑙1...𝑙𝑣
𝜋𝑢1

(𝑙1)
. . . .

𝑚𝑣

𝑙𝑣=0

𝜋𝑢𝑣

(𝑙𝑣)
. 

  (20)  

 

Equation (18) gives B-spline expansion of equation (17). A polynomial derivative in a 

specific direction may be determined by using the values of 𝐷𝑢, these are the coefficients of the 

equation (18) for 𝒚 ⊆ 𝐼. The derivative of  𝐹(𝑥) in direction 𝑥𝑟 is represented by equation (21). 

          

                         

𝐹𝑟
′(𝒚) =

𝑚𝑟

𝒘𝑠+𝑚𝑟+1 − 𝒘𝑠+1
× ∑ [𝐷𝒔𝑟,1

(𝒚) − 𝐷𝑠(𝒚)]𝐵𝒎𝑟,−1,𝒔(𝑥),

𝐼≤𝒎𝑟,−1

 1 ≤ 𝑟 ≤ 𝑣, 𝑥 ∈ 𝒚, 

                                                                                                                                                 (21) 

 

If 𝒘 is a knot vector then partial derivative 𝐹𝑟
′(𝒚) gives the bound of the range enclosure for 

the derivative of 𝐹 with respect to 𝒚. In their work, Lin and Rokne proposed (14) for symmetric 

polynomials, using a closed or periodic knot vector.  As a result of the modification in the knot 

vector from (4) to (6), we suggest a revised formulation of (14) in the subsequent manner,         

 

                                            𝜋𝑢
(𝑙)

: =
Sym𝑣(𝑢+1,⋯,𝑢+𝑞)

(
𝑞
𝑙

)
. (22) 

 

2.3 B-spline range enclosure property  

 

                                                  

𝐹(𝑧): = ∑ 𝐷𝑖𝐵𝑖
𝑞

𝑚

𝑖=1

(𝑧), 𝑧 ∈ 𝒚. 

  (23) 

 

    Consider the B-spline expansion (23) representing the polynomial 𝑔(𝑡) in power form. Let 

𝑔̄(𝒚) indicate the range of 𝑔(𝑡) on subbox 𝒚. The array D(𝒚) consists B-spline coefficients. Then 

for D(𝒚) it holds 

 

                                          𝑔̄(𝒚) ⊆ D(𝒚) = [𝑚𝑖𝑛 D (𝒚), 𝑚𝑎𝑥 D (𝒚)]. (24) 

 

The interval formed by the lowest and maximum values of B-spline coefficients gives bound 

for the range of equation (17) 𝑔 on 𝒚. 
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2.4 Domain division procedure 

 

The enclosure of range achieved by B-spline expansion may be enhanced by using the 

technique of domain division of subbox 𝒚. Let  

 

                                   𝒚: = [𝒚̱1, 𝒚̄1] × ⋯ × [𝒚̱𝑟, 𝒚̄𝑟] × ⋯ × [𝒚̱𝑣 , 𝒚̄𝑣], 

 

the box that has to be consider for domain subdivison in the 𝑟th direction (1 ≤ 𝑟 ≤ 𝑣). It 

results in two subboxes 𝒚𝑨 and 𝒚𝑩 as follows 

 

                                   𝒚𝑨: = [𝒚̱1, 𝒚̄1] × ⋯ × [𝒚̱𝑟, 𝑚(𝒚𝑟)] × ⋯ × [𝒚̱𝑣, 𝒚̄𝑣],  

                                   𝒚𝑩: = [𝒚̱1, 𝒚̄1] × ⋯ × [𝑚(𝒚𝑟), 𝒚̄𝑟] × ⋯ × [𝒚̱𝑣, 𝒚̄𝑣], 

  

where 𝑚(𝒚𝑟) is a midpoint of [𝒚𝑟, 𝒚
𝑟

].
 

 

 

III. SUMMARY OF THE PROPOSED ALGORITHM 

The underlying B-spline algorithm approach is similar to the one described in [9] for global 

optimization of nonlinear polynomials. This is a summary of the algorithm. 

 

Step 1: The algorithm makes use of the array of polynomial coefficients of the objective 

function, denoted by 𝐴𝑜, as well as the arrays denoting the inequality constraints, denoted by 

𝐴𝑔𝑖
 and the equality constraints, denoted by 𝐴ℎ𝑗

. A cell structure known as 𝐴𝑐 is used to hold 

these arrays of coefficients. 

Step 2:  Consider 𝑁𝑐 comprises degree vectors 𝑁, 𝑁𝑐𝑖
and  𝑁𝑐𝑒𝑞𝑗

, 𝑖 = 0, … , 𝑛. How often a 

certain variable occurs in f and constraints (𝑐𝑖 & 𝑐𝑒𝑞𝑗
)   is represented by the length of the 

corresponding degree vector. 

Step 3: Since the B-spline is having order of the B-spline plus one segments equal, the 

degree vector is used to calculate the number of segments. The vectors 𝐾𝑜, 𝐾𝑐𝑖
, and 𝐾𝑐𝑒𝑞𝑗

are 

computed as  𝐾 = 𝑁 + 2 using degree vectors 𝑁, 𝑁𝑐𝑖
 and 𝑁𝑐𝑒𝑞𝑗

 and entered in 𝐾𝑐   cell like 

structure. 

Step 4: Using the proposed method coefficients of B-spline for  f  and constraints 

(𝑐𝑖 & 𝑐𝑒𝑞𝑗
)  on the starting search box 𝒙 are then calculated and kept in the arrays 𝐷𝑜(𝒚), 𝐷𝑔𝑖

(𝒚) 

and 𝐷ℎ𝑗
(𝒚), respectively.  

Step 5: We begin by setting current lowest estimate, denoted by 𝑒̃ as largest coefficient of 

polynomial B-spline form of  f  on 𝒙, i.e. 𝑒̃ = 𝑚𝑎𝑥 𝐷𝑜 (𝒚). 
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Step 6: The next step is to zero out all of the components of a flag vector designated as 

𝐹: = (𝐹1, … , 𝐹𝑝, 𝐹𝑝+1, … , 𝐹𝑝+𝑞) = (0, … ,0). The efficiency of the method is improved by the use 

of the flag vector F. Consider, 𝑐𝑖 (𝑦) ≤ 0  meets the requirement on 𝑦 in the box 𝐲, i.e. 𝑐𝑖 (𝑦) ≤

0 for  𝑦 ∈ 𝐲. If such is the case, there is no requirement to verify it once again 𝑐𝑖(𝑦) ≤ 0 for all 

other subbox 𝐲
0

⊆ 𝐲. The same can be said about 𝑐𝑒𝑞𝑗
. We make use of flag vector in order to 

manage this information 𝐹 = (𝐹1, … , 𝐹𝑝, , 𝐹𝑝+1, … , 𝐹𝑝+𝑞) where the elements of 𝐹𝑓, takes either 

the value 0 or 1, as will be seen below: 

a) 𝐹𝑓 = 1 In either case if the 𝑓𝑡ℎ, 𝑐𝑖  or 𝑐𝑒𝑞𝑗
 is met.  

b) 𝐹𝑓 = 0 In either case if the 𝑓𝑡ℎ, constraint of 𝑐𝑖   or 𝑐𝑒𝑞𝑗
 is not met. 

Step 7: Consider a running list ℒ assigned with the item ℒ ← {𝒚, 𝐷𝑜(𝒚), 𝐷𝑔𝑖
(𝒚), 𝐷ℎ𝑗

(𝒚), 𝐹}, 

and a list of possible solutions ℒ𝑠𝑜𝑙to the empty list. 

Step 8: Place items in descending order of (𝑚𝑖𝑛 𝐷𝑜 (𝒚)) order in ℒ.  

Step 9: Start the algorithm. If ℒ has no item to process then implement Step 14. Else select 

the last item from ℒ, represent it as {𝐲, 𝐷𝑜(𝐲), 𝐷𝑔𝑖
(𝐲), 𝐷ℎ𝑗

(𝐲), 𝐹}, and discard it’s entry from ℒ. 

Step 10: Implement cut-off test as: the bounds of the function's range enclosure is 

determined by the lowest and maximum B-spline coefficients. Let 𝑒̃  is a current lowest 

estimate, and {𝐲, 𝐷(𝐲)} be the item that is being processed at the moment, in which case 𝑒̃ ≤

𝑚𝑖𝑛 𝐷 (𝐲). Then, this item surely the global minimizer cannot be contained and must be discard 

the item {𝒚, 𝐷𝑜(𝒚), 𝐷𝑔𝑖
(𝒚), 𝐷ℎ𝑗

(𝒚), 𝐹} if 𝑚𝑖𝑛 𝐷𝑜 (𝒚) > 𝑝̃ and return to Step 9. 

Step 11: Decision on subdivision. If 

(wid 𝐲) and (𝑚𝑎𝑥 𝐷𝑜 (𝐲) − 𝑚𝑖𝑛 𝐷𝑜 (𝐲)) < 𝜖 

then augment the item {𝐱,min 𝐷0(𝐱)} to ℒ𝑠𝑜𝑙and go to step 9. Else go to Step 12. Here 𝜖 

represents a margin of error. 

Step 12: Domain subdivision results into two sub boxes. Domain subdivision is done in 

the most distant direction of 𝐲 at midpoint.  It results into two subboxes 𝐲1 and 𝐲2 such that 

𝐲 = 𝐲1 ∪ 𝐲2. 

Step 13: For 𝑟 = 1,2 

1. Set 𝐹𝑟: = (𝐹1
𝑟, … , 𝐹𝑝

𝑟, 𝐹𝑝+1
𝑟 , … , 𝐹𝑝+𝑞

𝑟 ) = 𝐹 

2. Calculate the objective and constraints polynomial B-spline coefficient arrays on 𝐲r and 

get range enclosure 𝔻𝑜(𝐲r), 𝔻𝑔𝑖
(𝐲r), and 𝔻ℎ𝑗

(𝐲r) for for  f  and constraints (𝑐𝑖 & 𝑐𝑒𝑞𝑗
).  

3. Consider 𝑒̃𝑙𝑜𝑐𝑎𝑙 = 𝑚𝑖𝑛( 𝔻𝑜(𝐲r)). 

4. If 𝑒̃𝑙𝑜𝑐𝑎𝑙 > 𝑒̃   then go to Step 9. 

5. for 𝑖 = 1, … , 𝑝 if 𝐹𝑖 = 0 then 

a. If 𝔻𝑔𝑖
(𝒃𝑟) > 0 then implement Step 6. 

b. If 𝔻𝑔𝑖
(𝒃𝑟) ≤ 0 then set 𝐹𝑖

𝑟 = 1. 
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6. for 𝑗 = 1, … , 𝑞 if 𝐹𝑝+𝑗 = 0 then 

a. If 0 ∉ 𝔻ℎ𝑗
(𝒃𝑟) then implement Step 9. 

b. If 𝔻ℎ𝑗
(𝒃𝑟) ⊆ [−𝜖𝑧𝑒𝑟𝑜, 𝜖𝑧𝑒𝑟𝑜] then set 𝐹𝑝+𝑗

𝑟 = 1. 

7. If 𝐹𝑟 = (1, … ,1) then set 𝑒̃: = 𝑚𝑖𝑛( 𝑒̃, 𝑚𝑎𝑥( 𝔻𝑜(𝒃𝑟))). 

8. Add item {𝒃𝑟, 𝐷𝑜(𝒃𝑟), 𝐷𝑔𝑖
(𝒃𝑟), 𝐷ℎ𝑗

(𝒃𝑟), 𝐹𝑟} to the list ℒ. 

9. For loop End  

Step 14: Equalize global minimum to current minimum estimate as, 𝑒̂ = 𝑒̃. 

Step 15: Set all global minimizer(s) 𝒛(𝑖) as the initial entries of items in ℒ𝑠𝑜𝑙 for which 

𝑚𝑖𝑛 𝐷𝑜 (𝐱) = 𝑒̂.   

Step 16: Terminate the algorithm and retrieve the global minimum 𝑒̂ and all minimizers 

𝒛(𝑖)found. 

 

IV. TEST RESULTS 

The calculations are carried out on a personal computer with an PC having i3-370M, 2.40 

GHz processor and 6 GB of RAM, while the techniques themselves are performed in MATLAB 

[10]. For the purpose of determining the 𝑒̂ and 𝒛(𝑖), an accuracy of at least 𝜖 = 10−6 is required. 

The computation time in seconds is reported. Consider 𝐺𝑃(𝑠) as plant transfer functions and 𝐺𝐶(𝑠) 

as controller transfer functions. The fundamental characteristic equation of a control system is  

 

𝑑𝑒𝑡( 𝐼 − 𝐺𝑃(𝑠)𝐺𝐶(𝑠)) = 0. 

 

Now, let us take into consideration the presence of uncertainty in parameters, where 𝒒 

represents the vector of unknown parameters. Consider 𝐺𝑃(𝑠, 𝒒) and 𝐺𝐶(𝑠, 𝒒) as transfer functions 

for the plant and controller respectively, exhibiting a certain level of uncertainty. The equation 

that represents the characteristics of the system under consideration, taking into account the 

associated uncertainties, is expressed as follows: 

 

𝑑𝑒𝑡( 𝐼 − 𝐺𝑃(𝑠, 𝒒)𝐺𝐶(𝑠, 𝒒)) = 0. 

 

Polynomial form of above determinant can be expressed in following form. 

 

𝐹(𝑠, 𝒒) = 𝑎𝑛(𝒒)𝑠𝑛 + 𝑎𝑛−1(𝒒)𝑠𝑛−1+. . . +𝑎1(𝒒)𝑠 + 𝑎0(𝒒). 

 

The coefficients 𝑎𝑖(𝒒), 𝑖 = 0, … , 𝑛 are polynomial functions that involve more than one 

variable. One definition of a stability margin 𝑘𝑚 is,  

 

𝑘𝑚(𝑗𝜔) = inf{𝑘: 𝐹(𝑗𝜔, 𝐛(𝑘)) = 0, ∀ 𝐛 ∈ 𝑄}. 
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        If 𝑘𝑚 ≥ 1, then the stability margin is robust. Obtaining a stable solution with relation to a 

linear system that has a characteristic equation 𝐹(𝑗𝜔, 𝒒), is a optimization problem that takes the 

form of the following. 

               𝑚𝑖𝑛
𝒃𝑖,𝑧≥0,𝜔≥0

𝑧 

s.t. 𝐹(𝑗𝜔, 𝐛) = 0, 

     𝐹(𝑗𝜔, 𝐛) = 0, 

𝑏𝑖
𝑁 −△ 𝑏𝑖

−𝑧 ≤ 𝑏𝑖 ≤ 𝑏𝑖
𝑁 +△ 𝑏𝑖

+𝑧,  𝑖 = 1, . . . , 𝑛, 

 

The point 𝑞𝑁 is considered stable in the presence of unknown parameters, whereas the 

estimated limits △ 𝑞𝑖
+, △ 𝑞𝑖

− represent the range of possible values [1]. The aforementioned issue 

may be classified as a constrained global optimization problem, specifically considering 

multivariate polynomial functions. 

In this problem, the global minimum must be determined in such case, the safety margin 

would be overestimated. An overestimate may lead to the incorrect conclusion that a certain 

system is stable when it is not stable [1]; this is an error. For the purpose of ensuring that the 

local minimum of k is, in fact, discovered, it is necessary to employ a well-established global 

optimization strategy. This capability is illustrated by the accompanying example. 

 

Example : Examine the closed-loop system's 𝑙∞ stability margin The issue with global 

optimization is presented by 

               min 𝑧 

s.t. 𝑞1
4𝑞2

4 − 𝑞1
4 − 𝑞2

4𝑞3 = 0, 

     1.4 − 0.25𝑧 ≤ 𝑞1 ≤ 1.4 + 0.25𝑧, 

     1.5 − 0.20𝑧 ≤ 𝑞2 ≤ 1.5 + 0.20𝑧, 

     0.8 − 0.20𝑧 ≤ 𝑞3 ≤ 0.8 + 0.20𝑧. 

 

There are four continuous variables 𝑞1, 𝑞2, 𝑞3, and z. With one and six,  𝑐𝑒𝑞  and 𝑐𝑖 constraints. 

The suggested approach has an accuracy of 10−6, and results are z = 1.0899, as the global 

minimum and 𝑞1 = 1.1275, 𝑞2 = 1.282, 𝑞3 = 1.018 as a global minimizer. 

 

These findings are consistent with what was described in [1]. The amount of time necessary 

to find a solution to this issue is 58.85 seconds. 
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V. CONCLUSION 

 

In this study, we have put forward a novel approach for addressing the robust stability 

analysis issue. Our suggested method involves the use of a constrained global optimization 

algorithm. Specifically, we employ the inclusion function in the form of a polynomial B-spline 

to establish bounds on the range of the multivariate nonlinear polynomial function.  Proposed 

approach does not need the use of linearization and relaxing methods, but it is capable of 

solving the issue with the desired level of precision. 
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