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Abstract 

 

Aim: Conductance of graphene nanoribbons and carbon nanotubes are simulated by varying the bundle width 

from 100 nm to 2000 nm with the step size of 100 nm. Materials and Methods: Electrical conductance of 

Carbon nanotubes (n=100) was compared with graphene nanoribbons (n=100) by varying bundle width of both 

materials carbon nanotubes and graphene nanoribbons ranging from 100 nm to 2000 nm concerning the length 

ranging from 2 µm to 10 µm with the step size of 2 µm for each interval of the bundle width in the NANO HUB 

tool simulation environment. The pre-testing analysis was performed using clinicalc.com with G-power set to 

85%, the threshold set to 0.05 for each group, and the sample size set to 100. Results: Graphene nanoribbons 

have significantly higher conductance (120.487 mho, P<0.001) than carbon nanotubes (31.364 mho, P<0.001). 

The optimal bundle width for the maximum conductivity is 2000 nm for Carbon nanotubes and graphene 

nanoribbons. Conclusion: Within the scope of this study, Graphene nanoribbons with a bundle width of 2000 

nm offer the best conductivity. 
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1. Introduction 

 

The conductance of nanomaterials such as Novel 

graphene nanoribbons and Carbon nanotubes are 

being explored through simulation by varying the 

bundle width and length of the device. Carbon 

nanotubes and novel graphene nanoribbons are 

vital for improving the bulk polymer's mechanical, 

thermal, current, and voltage characteristics. 

(Todri-Sanial, Dijon, and Maffucci 2016). There 

are many applications for graphene nanoribbons 

some of the examples are Liquid crystals, Schottky 

diodes, Transparent conductive electrodes, Solar 

cell systems, Light emitting diodes, Field effect 

transistors, etc. (Katsnelson 2020). Examples for 

the application of Carbon nanotubes are carbon 

nanotubes based air, water filtration, thermal 

conductivity, energy storage, carbon nanotubes 

based MOSFETs, carbon nanotube biomedical 

applications, etc (Amin, Kumar, and Belharouak 

2020).  

 

In the past five years, several articles published in 

the field of nanoelectronics such as Carbon 

nanotubes 64 journal papers published in the IEEE 

explore and 1980 research articles were published 

in science direct and google scholar. Graphene 

nanoribbons feature low electrical resistivity, 

excellent thermal conductivity, and high current 

and voltage carrying capabilities, making graphene 

a viable alternative for replacing conventional 

materials in the fabrication of VLSI nano-

interconnects. (Todri-Sanial, Dijon, and Maffucci 

2016; Tiwari and Shukla 2014).Graphene 

nanoribbons are of potential use in the development 

of electronic and optoelectronic devices (Song and 

Zeng 2015). GNR shows a bandgap that can be 

tuned by tailoring its width and edge structure. 

Zigzag GNRs are always metallic, while armchair 

GNRs can be either metallic or semiconducting 

(Kausar 2021). Carbon nanotubes and novel 

graphene nanoribbons have both demonstrated 

excellent results in terms of thermal management, 

RC delay, and conductance at one or more 

interconnect levels. (Soldano, Talapatra, and Kar 

2013).  

Our institution is passionate about high quality 

evidence based  research and has excelled in 

various domains (Vickram et al. 2022; Bharathiraja 

et al. 2022; Kale et al. 2022; Sumathy et al. 2022; 

Thanigaivel et al. 2022; Ram et al. 2022; Jothi et al. 

2022; Anupong et al. 2022; Yaashikaa, Keerthana 

Devi, and Senthil Kumar 2022; Palanisamy et al. 

2022).Downsizing elements to less than 100 nm in 

size, as well as connectivity, present numerous 

significant obstacles. As the interconnect, 

dimensions approach the lateral dimension, grain 

boundary scattering, surface scattering, and a high 

resistivity diffusive barrier layer increase the total 

resistivity. This study aims to determine the best 

carbon allotropy such as carbon nanotubes or 

graphene nanoribbons for interconnecting 

applications and replace the conventional copper 

interconnect with it. 

 

2. Material and Methods 

 

This study was carried out at the Saveetha 

University, nano hub simulation lab, Saveetha 

School of Engineering, Saveetha Institute of 

Medical and Technical Sciences, Chennai. In this 

research, there are two groups in this study. Group 

1 refers to carbon nanotubes, whereas Group 2 

refers to novel graphene nanoribbons. The pre-

testing analysis was performed using clinicalc.com 

with G-power set to 85%, the threshold set to 0.05 

for each group, and the sample size set to 100. The 

overall sample size for the study project is 200, 

with an 80 percent pre-test power analysis. (Todri-

Sanial, Dijon, and Maffucci 2016). 

To prepare the sample for group 1, the bundle 

width is varied from 100 nm to 2000 nm using the 

nano hub tool at 100 nm step size, in order to 

analyze the electrical conductance of carbon 

nanotubes. To simulate the carbon nanotube 

conductance first open the Nano Hub in any one of 

the available search engines. Select the resources in 

the Nano hub home page then select the carbon in 

tags and select carbon nanotube interconnect in the 

next box and click on launch in the next box. After 

launching the tool select the carbon nanotube 

interconnects from the drop-down box, then go to 

the structure and vary the bundle width. For each 

change on the bundle width with an interval of 100 

nm, select on simulating to get results for the 

respective values. 

To prepare the sample for group 2, the bundle 

width is varied from 100 nm to 2000 nm using the 

nano hub tool at 100 nm step size, in order to 

analyze the electrical conductance of graphene 

nanoribbons. Similar to the sample preparation of 

group one, select the graphene nano to interconnect 

from the drop-down box, then go to the structure to 

vary the bundle width. For each change on the 

bundle width with an interval of 100 nm, select 

simulating to get the results based on the respective 

values. 

Nano hub consists of standard commercial 

nanoelectronics software packages which are 

simulation tools based on research as well as 

tutorials, and courses. Nano Hub is an open-source 

simulation tool. It produces precise, accurate 

findings since it is a software tool (Klimeck et al. 

2011). Carbon nanotubes and graphene 

nanoribbons are analyzed for their current-voltage 

characteristics. Keep the height as the constant ( h 

= 100 nm ) and note down the conductance from 

the plot obtained during simulation, concerning the 

https://paperpile.com/c/tYWzPi/muHK
https://paperpile.com/c/tYWzPi/kHdr
https://paperpile.com/c/tYWzPi/WH4A
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https://paperpile.com/c/tYWzPi/muHK+jrlE
https://paperpile.com/c/tYWzPi/muHK+jrlE
https://paperpile.com/c/tYWzPi/stfR
https://paperpile.com/c/tYWzPi/stfR
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https://paperpile.com/c/tYWzPi/PGkK
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length. Do the same procedure for both the carbon 

nanotube and graphene nanoribbons. The 

conductance of the carbon nanotubes and novel 

graphene nanoribbons are obtained. 

 

Statical analysis 

Origin and SPSS were the statistical tools used in 

this study. Plotting graphs for input values and 

comparing variables is done using Origin while 

determining the mean, standard deviation, and 

significant difference is done using SPSS (Landau 

2017). In this study, the bundle width and length 

are independent variables because they are inputs 

and remain constant even after the other parameters 

are changed, but the conductance is a dependent 

variable since it depends on the inputs and varies 

with each change in the input. This study's analysis 

is based on an independent T-Test that compares 

the conductivity of carbon nanotubes and graphene 

nanoribbons. 

 

3. Results 

 

Current-voltage characteristics of nanomaterials 

such as carbon nanotubes and graphene 

nanoribbons for the bundle width (50 nm to 1000 

nm) are shown in Fig. 1 and Fig. 2 respectively. 

For every change in the bundle width of the device, 

conductance is tabulated by keeping the height of 

the bundle constant 100 nm. Table 1 and Table 2 

refer to carbon nanotubes, In which Table 1 ranges 

from 100 nm to 1200 nm, Table 2 ranges from1300 

nm to 2000 nm. Table 3 and Table 4 refer to 

graphene nanoribbons, In which Table 3 ranges 

from 100 nm to 800 nm, Table 4 ranges from 900 

nm to 2000 nm. Fig. 1 and Fig. 2 represent the 

conductivity of the carbon nanotubes and novel 

graphene nanoribbons respectively. Fig. 3 

represents the comparison graph of conductance of 

carbon nanotubes and novel graphene nanoribbons. 

Fig. 4 represents the bar chart comparing the mean 

(+/- 1SD) conductance of carbon nanotubes and 

graphene nanoribbons. From Table 1 and Table 2 

the conductivity of carbon nanotubes was 

maximum when bundle width is 2000 nm and 

bundle length is 2 µm which is 31.3647 mho. From 

Table 3 and Table 4 the conductivity of the 

graphene nanoribbons was maximum when the 

bundle width is 2000 nm and bundle length is 2 µm 

which is 120.487 mho. 

Conductivity of the nanomaterial such as carbon 

nanotubes and graphene nanoribbons was 

increasing with the increase in the bundle width 

and decreases with the decrease in the bundle 

length because there is an increase in the number of 

free electrons on the surface with greater bundle 

width, resulting in improved electrical 

conductivity. From Fig. 3 graphene nanoribbons 

are more conductible than carbon nanoribbons at 

the same bundle width.  

 

There is a statistically significant difference 

between the conductance of the nanomaterial such 

as  carbon nanotubes and graphene nanoribbons 

since the value of p is less than 0.001 (p<0.001) 

from table 6. From table 5 the average conductance 

of the carbon nanotubes is 10.399022 is less than 

the average conductance of the Novel graphene 

nanoribbons of 14.577580, which indicates that 

graphene has better conductivity than carbon 

nanotubes.  

 

4. Discussion 

 

The conductivity of novel graphene nanoribbons 

and carbon nanotubes is explored by altering the 

device's bundle width. The electrical conductance 

characteristics have been simulated for different 

bundle widths of the device ranging from 100 nm 

to 2000 nm with a step size of 100 nm. After 

evaluating the simulation curves, it was found that 

an increase in the bundle width causes increases in 

the conductance for both carbon nanotubes and 

graphene nanoribbons, and graphene nanoribbons 

(120.487 mhos) has better electrical conductivity 

than the carbon nanotubes (31.364 mhos) for the 

maximum 2000 nm of bundle width. 

 

Hassen Dakhlaoui and Shaffa Almansour have 

researched the conductivity of graphene 

nanoribbons with multiple barriers when a voltage 

is supplied. The researcher concluded that the 

Electronic conductance of graphene nanoribbons is 

sensitive to the number of carbon atoms and 

external voltage and current in them, which allows 

us to tailor the electronic properties of the 

graphene-based devices (Wong et al., n.d.). The 

current conductance of graphene nanoribbons 

strongly depends on the structure of the graphene 

(zigzag and armchair) conductance of zigzag and 

armchair structured graphene nanoribbons V = 1.0 

eV and V = 0. eV respectively with a constant 

length of 14nm. Graphene nanoribbons can be 

either semiconducting or metallic, it depends on the 

shape. As a result, GNRs can be implemented as 

both a functional element and a connector in 

nanodevices, since it has better current and voltage 

properties (Gorjizadeh, Farajian, and Kawazoe 

2009). The growing interest in graphene nano-

interconnects drives the search for more precise 

and efficient models that can account for all 

quantum effects. such as quantum conductance, 

quantum capacitance, etc arising at the nanoscale 

(Lopes, Santos, and Bueno 2021). Giovanni Miano 

and Antonio Maffucci have researched the current 

and voltage properties of graphene for interconnect 

applications (Maffucci, Miano, and Villone 2008) 

https://paperpile.com/c/tYWzPi/382kb
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in the field of nanoelectronics. In nanotechnology, 

where a few hundreds or thousands of atoms are 

involved, It is crucial to analyze the nature of 

interfaces and any potential dynamics that happen 

at an interface. (Todri-Sanial, Dijon, and Maffucci 

2016; Soldano, Talapatra, and Kar 2013). 

Factors affecting nanomaterials such as graphene 

nanoribbons are Novel GNRs that have two open 

edges at both sides in their structure; this boundary 

structure makes GNRs more vulnerable to defects 

than carbon nanotubes. Every GNRs contains local 

defects or extended disorders, whereas graphene 

sheets commonly contain few defects (Soldano, 

Talapatra, and Kar 2013). The limitations to this 

study are the width of a graphene nanoribbon and a 

carbon nanotube cannot be increased over 1000 nm 

(Gorjizadeh, Farajian, and Kawazoe 2009).  

Copper, which is currently employed as an 

interconnecting material, is affected by two major 

issues: One is due to its inability to handle high 

current density, while the other is due to higher 

electrical resistance caused by surface dispersion of 

electronics, as well as issues caused by grain 

boundaries. In the future, the problems with copper 

interconnect can be overcome by replacing the 

copper interconnect with graphene interconnect for 

better conductivity and thermal performance.  

 

5. Conclusion 

 

Graphene nanoribbons have significantly higher 

conductance (120.487 mho, p<0.001) than carbon 

nanotubes (31.3647 mhos, p<0.001). Conductivity 

increases with increasing width in graphene 

nanoribbons and carbon nanotubes, so the bundle 

width should be maximum for optimal 

conductance.  
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Table 1. Conductivity of carbon nanotubes by varying the width ranging from 100 nm to 1200 nm, In which the 

highest conductivity is 18.9 mho at 1200 nm width and 2 µm length. 
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100 

2 1.51765 

200 

2 3.12 

300 

2 4.17157 

400 

2 6.23922 

4 1.23062 4 2.5299 4 3.8286 4 5.055922 

6 0.871644 6 1.7919 6 2.7117 6 3.58343 

8 0.654209 8 1.3449 8 2.03532 8 2.58952 

10 0.523367 10 1.0759 10 1.62825 10 2.15162 

500 
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2 9.35922 

700 

2 10.9608 

800 
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8 6.06977 8 6.76015 8 7.14436 8 8.10509 

10 4.85582 10 5.4081 10 5.93149 10 6.46407 

 

Table 2. Conductivity of carbon nanotubes by varying the width ranging from 1300 nm to 2000 nm, In which 

the highest conductivity is 31.3 mho at 2000 nm width and 2 µm length. 
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Table 3. Conductivity of graphene nanoribbons by varying the width ranging from 100 nm to 800 nm, In which 

the highest conductivity is 6.8 mho at 800 nm width and 2 µm length. 
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10 0.315868 10 0.554188 10 0.926475 10 1.365484 

 

Table 4. Conductivity of graphene nanoribbons by varying the width ranging from 900 nm to 2000 nm, In which 

the highest conductivity is 120.5 mho at 2000 nm width and 2 µm length. 
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Table 5. Comparison of Drain conductance of carbon nanotubes and novel graphene nanoribbons. Carbon 

nanotubes have mean conductance of 10.399022. Graphene nanoribbons have mean conductance of 14.577580. 

 Group N Mean std.Deviation std.Error mean 

conductance 

Carbon 

nanotubes 
100 10.399022 7.34437461 0.7344376 

Graphene 

nanoribbons 
100 14.577580 21.8920676 2.1892068 

 

Table 6. T-test comparison of conductance of carbon nanotubes and novel graphene nanoribbons. Since p < 

0.001, there is a considerable difference between the two groups (Independent sample T-Test). 
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0.3929

472 

 

 
Fig. 1. Simulation of conductance of carbon nanotubes with widths ranging from 50 nm to 2000 nm. The black 

line represents the conductance of carbon nanotubes. 
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Fig. 2. Simulation of conductance of novel graphene nanoribbons with widths ranging from 50 nm to 2000 nm. 

The black line represents the conductance of graphene nanoribbons. 

 

 
Fig. 3. comparison graph of conductance of carbon nanotubes and novel graphene nanoribbons. The Black line 

represents the carbon nanotubes and the Red line represents the graphene nanoribbons. 

 

 
Fig. 4. Bar chart comparing the mean (+/- 1SD) conductance of carbon nanotubes and graphene nanoribbons. 

The mean conductance of novel graphene nanoribbons is better than carbon nanotubes. X-Axis: carbon 

nanotubes vs graphene nanoribbons. Y-Axis: Mean of conductance. 


