
Section A-Research paper Constant Monitoring of an Application Based on Micro-Services

Eur. Chem. Bull. 2023, 12 (S3), 1049 – 1054 1049

CONSTANT MONITORING OF AN APPLICATION

BASED ON MICRO-SERVICES

Dr. Purushottam Rohidas Patil1, Dr. Vivek N. Waghmare2, Mr. Mahesh

Vijayrao Korde3

Article History: Received: 12.12.2022 Revised: 29.01.2023 Accepted: 15.03.2023

Abstract

Because of smaller and faster deployments, simplicity, scalability, continuous integration, continuous delivery,

and increased fault isolation, the usage of microservices architecture in application development is gaining

popularity. Micro-Services have many benefits, but they also present certain difficulties. Teams can easily

manage and keep an eye on each individual service, but often lose track of the behaviour of the entire system.

The goal of this study is to create a centralised, continuous health monitoring system for a micro-services-based

application. The suggested system is created using Amazon Lambda, which is launched via an API Gateway in

response to each cron schedule. With Kibana, a dashboard displaying the current health condition of each

service in the application is visible. This created system keeps the developers informed if a certain service fails.

Keywords: API Gateway, Microservices, Serverless, AWS Lambda

1Associate Professor, Department of Computer Science, School of Engineering and Technology, Sandip

University, Nashik, Maharashtra 422213
2Associate Professor, Department of Computer Engineering, Sandip Institute of Technology & Research Centre,

Nashik, Maharashtra 422213
3Assistant Professor, Department of Computer Engineering, Sandip Institute of Engineering and Management,

Nashik, Maharashtra 422213

Email: 1purushottam.patil@sandipuniversity.edu.in, 2vivek.waghmare@sitrc.org, 3mahesh.korade@siem.org.in

DOI: 10.31838/ecb/2023.12.s3.118

Section A-Research paper Constant Monitoring of an Application Based on Micro-Services

Eur. Chem. Bull. 2023, 12 (S3), 1049 – 1054 1050

1. Introduction

Current changes in the cloud application ecosystem

indicate a move towards mercerization. Using

independent components that are separated from

one another and coordinating them into a

distributed architecture using a lightweight

container technology, such as Docker, is the goal of

microservices. Although Micro-Services,

Serverless, and Containers have many benefits,

they also have their own set of difficulties. Teams

can easily manage and keep an eye on individual

services and components, but often lose track of the

behavior of the entire system. Because there are

several services that make up the same

functionality that was previously covered by a

single application, traditional approaches of

monitoring are not appropriate for microservices.

Think of a situation when the application stops

functioning as it should, and a problem is reported

with a transaction that is split up among several

microservices, serverless processes, and teams. It is

challenging to distinguish between persons who are

impacted by the problem and the service or

component that is to blame. In order to make sure

that developers are rapidly informed of service

outages for mission-critical systems, it is crucial to

monitor the health of microservices. These health

checks offer a way to keep the API warm so that it

is prepared to respond to queries as soon as

feasible. As a result, it's crucial to build a unique,

simple, and efficient method of performing

distributed tracing through log collecting, log

aggregation, and log visualization.

2. Literature Review

The purpose of the study by C. Pahl and P.

Jamshidi was to talk about the architecture of

microservices. A microservice keeps its specifics a

secret from other microservices.(Ghofrani &

Lübke, 2018; Viggiato et al., 2018) The services

communicate with one another via clear APIs. As a

result, fewer queries are made of the programme.

Several programming languages and technologies

might be used to construct each microservice. Due

to the fact that each service may be deployed and

managed by a distinct team, microservices embrace

the idea of decentralisation.

A review study on the use of the microservices

architecture in practise was provided by M.

Viggiato et al. The application is divided into

several smaller, loosely connected, independently

deployable services under the microservices

design.(Pahl & Jamshidi, 2016) Microservices have

a number of benefits, including scalability,

maintainability, quick and simple deployment, and

no lock-in to a particular technology stack.

Developers must deal with issues like monitoring

the application and intricate service interactions

while using microservices.

According to a poll done by J. Ghofrani and D.

Lübke, one of the biggest problems with

developing an application using a microservices

architecture is that it is hard to debug problems

because of how scattered the design is. Because

monitoring microservices-based applications

entails sifting through enormous amounts of data, it

takes more work. With application logging and

tracing, operators may troubleshoot

issues.(Ghofrani & Lübke, 2018)

In their review article, V. Ivanov and K. Smolander

discuss how serverless computing has affected

DevOps procedures. The study's findings indicate

that the serverless method has a significant impact

on a number of automated techniques, including

application deployment, test execution, and

monitoring.(Ivanov & Smolander, 2018) Using

serverless technology lowers infrastructure costs

and offers built-in scalability. Also, it cuts down on

the time needed for server management and

maintenance.

H. Andi spoke on the idea of a serverless cloud

computing architecture, as well as its advantages

and applications in the IT sector.(Andi, 2021)

According to the investigation, serverless cloud

computing provides good security while reducing

execution time and maintenance costs.(Choudhary

et al., 2020) B. Choudhary et al. created the

serverless chat application to talk about how other

services, such as Amazon Web Services' (AWS)

lambda, operate. The created concept could be

expanded in terms of users as needed and did not

require any server upkeep or management.

In the article, M. Villamizar et al. compared

Amazon Web Services to other cloud computing

services based on a number of criteria, including

price, performance, and response time.(Villamizar

et al., 2016) After comparing the cost per million

requests of the cloud computing service-

implemented designs, it was discovered that

Amazon Lambda may lower costs per scenario by

up to 77.08% when compared to other cloud

computing services.(Villamizar et al., 2016, 2017)

It was discovered that the response time was lower

in comparison with the architecture run using

Amazon lambda. The study's findings suggest that

with Amazon lambda, higher performance may be

attained at reduced prices.

The implementation of a file upload stream on

AWS Lambda is the main topic of the work by L.

Muller et al., which also discusses the performance

metrics affecting traffic on serverless computing.

The study discovered that the lambda function's

execution time and overall round-trip latency are

what affect how well it performs. Furthermore, it

was discovered that adding other cloud services to

the lambda function, such an API gateway,

increased latency. A serverless architecture, on the

other hand, enables faster deployment, higher

Section A-Research paper Constant Monitoring of an Application Based on Micro-Services

Eur. Chem. Bull. 2023, 12 (S3), 1049 – 1054 1051

scalability, and lower architectural

costs.(Mukherjee, 2019)

A review study on the necessity of the

Elasticsearch system for system monitoring and

large data analysis is presented by (Rajan, 2018)

The present status of the Elasticsearch, Logstash,

and Kibana (ELK) stack and potential machine

learning extensions to the Elasticsearch system to

automate elastic technology are the main topics of

this study. Machine learning techniques can aid in

root cause investigation and, with further

development, they may even be able to recommend

potential mitigation measures based on prior

incidents.

The effectiveness of Elastic Stack in log analysis

for large data processing was explored by P.

Bavaskar et al. Finding system malfunctions is the

goal of monitoring and analysing the logs. Based

on the investigation, it can be said that

Elasticsearch is most suited for data visualization

since it offers centralised data processing, powerful

search capabilities, and helps visualise logs using

pie charts, graphs, dashboards, etc. (Van et al.,

2015)

Users may store, search, and analyse large volumes

of data with Elasticsearch, which is based on the

Lucene search engine. Representational State

Transfer (REST) API was used in its construction.

A. Neumann et al. claim in their article that a

REST service is a server-client approach that

makes it simple to use an API.(Van et al., 2015)

The research of Elasticsearch by O. V. R. Nikita

Kathare and D. V. Prabhu is thorough. It offers

various characteristics, including full text search

engine, index management, high availability, and

scalability. Elasticsearch enables a wide range of

datatypes in addition to querying that is optimised

and aggregated in search indices and eventual

consistency.(Muller et al., 2020) Users may store,

search, and analyse large volumes of data with

Elasticsearch, which is based on the Lucene search

engine. Representational State Transfer (REST)

API was used in its construction. A. Neumann et al.

claim in their article that a REST service is a

server-client approach that makes it simple to use

an API.(Muller et al., 2020) The research of

Elasticsearch by O. V. R. Nikita Kathare and D. V.

Prabhu is thorough. It offers various characteristics,

including full text search engine, index

management, high availability, and scalability.

Elasticsearch enables a wide range of datatypes in

addition to querying that is optimised and

aggregated in search indices and eventual

consistency.

Users may store, search, and analyse large volumes

of data with Elasticsearch, which is based on the

Lucene search engine. Representational State

Transfer (REST) API was used in its construction.

A. Neumann et al. claim in their article that a

REST service is a server-client approach that

makes it simple to use an API.(Zamfir et al., 2019)

The research of Elasticsearch by O. V. R. Nikita

Kathare and D. V. Prabhu is thorough. It offers

various characteristics, including full text search

engine, index management, high availability, and

scalability. Elasticsearch enables a wide range of

datatypes in addition to querying that is optimised

and aggregated in search indices and eventual

consistency.

3. Suggested approach for tracking health

The lambda function offered by Amazon Web

Services was used to construct the centralized and

continuous health monitoring system, and Kibana

was used to display the data. Cron jobs are used to

continually monitor the services.

The system is implemented as seen in Fig. 1. The

following stages are involved in creating the

continuous health monitoring system:

1. By building an Amazon lambda function, you

may check the status of every component of

the programmed.

2. Building a CI pipeline to launch the Amazon

lambda function on a regular basis.

3. Delivering to the ELK stack the results of the

lambda function's health status query in the

appropriate manner.

4. Producing a report using Kibana metrics that

details the services' state of health.

Section A-Research paper Constant Monitoring of an Application Based on Micro-Services

Eur. Chem. Bull. 2023, 12 (S3), 1049 – 1054 1052

Figure 1: Project Planning

3.1 Lambda Function in Python
With the aid of the microservice endpoints, an

Amazon lambda function is developed to obtain

and query the health status from the application's

services. The necessary Python libraries are

imported in order to transmit the logs to the ELK

stack and make HTTP queries. The endpoints for

the microservices are used to initialise an array.

These endpoints must send HTTP queries in order

to verify the status of a service. The Kibana logs

are initialised as key value pairs for each service.

One key value pair logs the success count, while

the other logs the failure count. There are two key

value pairs.

When the lambda is called, the function handler is

also called. The API gateway, which is inserted as

a trigger, calls this lambda function. The CI

pipeline calls the API gateway, which causes the

lambda function to be regularly activated. The

method check endpoint is defined, and it takes two

arguments: the name of the service and the

endpoint for the microservice. This function

verifies the health of the service. When a GET call

is made to the microservice endpoint, a GET HTTP

request is made and the response is returned.

Similarly, when a POST call is made to the

microservice endpoint, a POST HTTP request is

made and the response is returned.

Another function, send logs, is defined to send key-

value pairs containing the status of the answer

received to a topic in the ELK stack. The value 1 is

attached to the success key if the service is

operating correctly, and the value 1 is appended to

the failure key if the service is not operating

correctly. The Kibana logs are initialised each time

the handler is run, and the ELK stack is informed

of the services' current state of health.

3.2.1 Cron Jobs and API Gateway

Developers may link non-AWS apps to Amazon

backend resources, such as code and servers, by

building an API Gateway. The REST API is used

in order to regulate different API management

features, such as per-client rate limitation and API

keys, and to cache endpoint answers. The lambda

function is then given the API Gateway as a

trigger. The Event Bridge service offered by

Amazon Web Services creates a cron task. The

cron period is five minutes since the Amazon

lambda is called every five minutes. The rule type

is schedule, and the event bus is set to default. The

target of the newly formed cron job is then changed

to include the lambda function.

4. Results and Discussion

4.1 Outcomes from AWS Lambda
Every five minutes, the lambda function is carried

out. The logs are transmitted to the ELK stack each

time the lambda is invoked. The results displayed

in the AWS interface are as seen in Fig. 2. The logs

are initialised first in the form of key-value pairs.

By sending HTTP requests to the microservices

endpoints, the lambda function checks the state of

each service's health. The status of each service's

response is then shown. Ultimately, these key value

pairs that include the data pertaining to the

Section A-Research paper Constant Monitoring of an Application Based on Micro-Services

Eur. Chem. Bull. 2023, 12 (S3), 1049 – 1054 1053

functionality of the application's services are

transmitted to Kibana.

Figure 2: Amazon Lambda Function Result

4.2. Kibana Dashboard
The Amazon Lambda health status results are seen

through the Kibana Dashboard. As seen in Fig. 3,

each pie-chart in the Kibana dashboard displays the

success rate of a service provided by the

application over time.

Figure 3: Services' Success Rate

For each service, there is a time series graph on the

Kibana dashboard. Figure 4 depicts the time series

graph for one of the services. A red vertical bar

represents the number of failures, and a green

vertical bar the number of successes. Moreover, the

total success and failure rates are shown.

Figure 4: Service Time Series Graph

5. Conclusion

This project's continuous health monitoring

solution offers end-to-end visibility, quick and

simple customer issue troubleshooting, and

automatic SLA tracking. The health condition of

each service of the application can be seen in real

time on the Kibana dashboard thanks to the

established centralised health monitoring system.

Moreover, the total success and failure rates are

Section A-Research paper Constant Monitoring of an Application Based on Micro-Services

Eur. Chem. Bull. 2023, 12 (S3), 1049 – 1054 1054

shown. By using the time filter, it is also possible

to see the health condition of each service for a

certain period of time. When a certain component

stops working, the developers are informed via the

system's continuous health monitoring.

Other microservices-based apps can use the created

centralised and continuous health monitoring

system. When an individual component stops

working, alerts may be issued via Amazon SNS

thanks to the created continuous health monitoring

system that can be integrated with an alerting

system. To collect more precise measurements, the

health monitoring system can potentially be

integrated with distributed tracing.

6. Reference

Andi, H. K. (2021). Analysis of serverless

computing techniques in cloud software

framework. Journal of IoT in Social, Mobile,

Analytics, and Cloud, 3(3), 221–234.

Choudhary, B., Pophale, C., Gutte, A., Dani, A., &

Sonawani, S. S. (2020). Case Study: use of

AWS lambda for building a serverless chat

application. Proceeding of International

Conference on Computational Science and

Applications, 237–244.

Ghofrani, J., & Lübke, D. (2018). Challenges of

Microservices Architecture: A Survey on the

State of the Practice. ZEUS, 2018, 1–8.

Ivanov, V., & Smolander, K. (2018).

Implementation of a DevOps pipeline for

serverless applications. International

Conference on Product-Focused Software

Process Improvement, 48–64.

Mukherjee, S. (2019). Benefits of AWS in modern

cloud. ArXiv Preprint ArXiv:1903.03219.

Muller, L., Chrysoulas, C., Pitropakis, N., &

Barclay, P. J. (2020). A traffic analysis on

serverless computing based on the example of

a file upload stream on aws lambda. Big Data

and Cognitive Computing, 4(4), 38.

Pahl, C., & Jamshidi, P. (2016). Microservices: A

Systematic Mapping Study. CLOSER (1),

137–146.

Rajan, R. A. P. (2018). Serverless architecture-a

revolution in cloud computing. 2018 Tenth

International Conference on Advanced

Computing (ICoAC), 88–93.

Van, L. P., De Praeter, J., Van Wallendael, G., De

Cock, J., & Van de Walle, R. (2015). Machine

learning for arbitrary downsizing of pre-

encoded video in HEVC. 2015 IEEE

International Conference on Consumer

Electronics (ICCE), 406–407.

Viggiato, M., Terra, R., Rocha, H., Valente, M. T.,

& Figueiredo, E. (2018). Microservices in

practice: A survey study. ArXiv Preprint

ArXiv:1808.04836.

Villamizar, M., Garces, O., Ochoa, L., Castro, H.,

Salamanca, L., Verano, M., Casallas, R., Gil,

S., Valencia, C., & Zambrano, A. (2016).

Infrastructure cost comparison of running web

applications in the cloud using AWS lambda

and monolithic and microservice architectures.

2016 16th IEEE/ACM International

Symposium on Cluster, Cloud and Grid

Computing (CCGrid), 179–182.

Villamizar, M., Garcés, O., Ochoa, L., Castro, H.,

Salamanca, L., Verano, M., Casallas, R., Gil,

S., Valencia, C., & Zambrano, A. (2017). Cost

comparison of running web applications in the

cloud using monolithic, microservice, and

AWS Lambda architectures. Service Oriented

Computing and Applications, 11(2), 233–247.

Zamfir, V.-A., Carabas, M., Carabas, C., & Tapus,

N. (2019). Systems monitoring and big data

analysis using the elasticsearch system. 2019

22nd International Conference on Control

Systems and Computer Science (CSCS), 188–

193.

