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Abstract 
 

Zinc is a critical component in a number of conserved processes that regulate female germ cell growth, fertility, 

and pregnancy. During follicle development, a sufficient intracellular concentration of zinc in the oocyte 

maintains meiotic arrest at prophase I until the germ cell is ready to undergo maturation. An adequate supply of 

zinc is necessary for the oocyte to form a fertilization-competent egg as dietary zinc deficiency or chelation of 

zinc disrupts maturation and reduces the oocyte quality. Following sperm fusion to the egg to initiate the 

acrosomal reaction, a quick release of zinc, known as the zinc spark, induces egg activation in addition to 

facilitating zona pellucida hardening and reducing sperm motility to prevent polyspermy. Symmetric division, 

proliferation, and differentiation of the preimplantation embryo rely on zinc availability, both during the oocyte 

development and post-fertilization. Further, the fetal contribution to the placenta, fetal limb growth, and neural 

tube development are hindered in females challenged with zinc deficiency during pregnancy. In this review, we 

discuss the role of zinc in germ cell development, fertilization, and pregnancy with a focus on recent studies in 

mammalian females. 
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1. INTRODUCTION 
 

Despite its singular unique ability to give rise to an 

entirely new creature, the oocyte shares many of the 

signalling mechanisms and biochemical environment 

as the somatic cells. Till now, transition metal 

physiology within the oocyte has been studied 

exclusively using non-mammalian model systems 

where the cell is larger and easily isolated in 

significant quantities, such as Xenopus laevis and 

Caenorhabditis elegans [1-3]. Zinc is accumulated 

during oocyte growth in these systems and is thought 

to be stored in lipoproteins in preparation for later 

stages such as embryonic development [4,5]. 

Additionally, zinc-dependent kinases have been 

implicated in the control of cell cycle progression in 

maturing X. laevis oocytes [3]. 

The bulk of the embryo's cytoplasm originates from 

the oocyte -in fact-,it is the oocyte that provides the 

necessary components to support development (such 

as mRNA and proteins) until the embryo's own 

genome is activated and it is able to sustain its own 

growth [6], therefore, the fate of the embryo relies 

heavily on the integrity of its oocyte predecessor  

 

 

[7,8] . An understanding of the biological processes 

that create a “good egg” in vitro is really important. 

Under physiological conditions, fusion of the sperm 

and oocyte plasma membranes leads to repetitive 

increases in the intracellular free calcium (Ca2+) 

concentration in the oocyte cytoplasm [5, 6]. These 

transient increases (termed oscillations) result from 

the release of phospholipase C-ζ (PLC-zeta) from the 

sperm head [7]. The Ca2+ oscillations activate 

Ca2+/calmodulin-dependent protein kinase II 

(CaMKII) [8] and the CaMKII phosphorylates early 

mitotic inhibitor 2 (EMI2, a.k.a. FBXO43) thus 

relieving the anaphase-promoting 

complex/cyclosome (APC/C) from FBXO43-

mediated inhibition [9-11]. These events lead to the 

degradation of cyclin B [12, 13], a subunit of the M-

phase promoting factor (MPF). These signalling 

pathways demonstrate that Ca2+ signalling is 

essential in the process of oocyte activation and in 

fact, disruption of Ca2+ signalling during oocyte 

activation can cause developmental defects [14]. 
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 Most artificial activation methods induce an increase 

in the intracellular free Ca2+ levels in the oocyte that 

mimic sperm-induced Ca2+ signalling. However, 

most methods are able to induce only a single Ca2+ 

rise in the ooplasm [15]. Compared to the repetitive 

Ca2+ increases observed after sperm-induced oocytes 

activation, a single Ca2+ spike is a relatively poor 

activator of oocytes. Different approaches have been 

attempted to increase the efficiency of oocyte 

activation. For example, it is possible to incubate 

activated oocytes with inhibitors in order to reduce 

the level of MPF [16, 17]; however, these inhibitors 

are not very specific toward MPF, and while they do 

degrade MPF, they also have a number of side 

effects. 

Zinc (Zn2+) is important to maintain oocytes arrested 

at the MII stage. In mice there is a 50% increase in 

the intracellular amount of Zn2+ as oocytes develop 

from the germinal vesicle to MII stage [18]. Zn2+ is 

necessary in activating MPF as Zn2+ regulates the 

activity of CDC25 [19], a phosphatase that can 

dephosphorylate and thus activate cyclin-dependent 

kinase 1, a component of MPF. In addition, EMI2 

(official gene symbol, FBXO43), a zinc-binding 

protein, is required to maintain high MPF activity 

during the MII arrest [12], and the increase in total 

intracellular Zn2+ during oocyte maturation directly 

controls FBXO43 activity [20]. A previous report 

demonstrated that removal of Zn2+ from MII stage 

oocytes can successfully induce oocyte activation, 

and thus permit oocytes to exit the MII stage [21]. 

Zn2+ is released from oocytes after fertilization 

indicating that removal of Zn2+ is a natural part of 

oocyte activation [22]. TPEN (N, N, N′, N′-tetrakis 

(2-pyridylmethyl) ethane-1,2-diamine), known to 

have a high specificity toward Zn2+, was used to 

lower the level of available Zn2+ to activate mouse 

oocytes [21]. In this study, we developed an efficient 

method to activate pig oocytes by reducing the 

intracellular level of Zn2+ using TPEN. We found 

that a combination of proper Ca2+ signal and TPEN 

treatment can increase the developmental potential of 

activated oocytes. 
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