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ABSTRACT 

Fertilizers play a pivotal role in global food production, but their inefficient utilization 

poses significant challenges for sustainability. This study explores the captivating world of 

nitrogen, phosphorus, and potassium (NPK) use efficiency and employs the powerful Auto 

Regressive Integrated Moving Average (ARIMA) model to forecast their future trends. 

Through a meticulous research design rooted in the renowned Box-Jenkins Methodology, 

we embark on an exciting journey to unravel the mysteries surrounding NPK utilization. 

The objectives of this study are fourfold: (1) identify the ARIMA model with the highest 

performance in predicting NPK utilization efficiency, (2) assess the accuracy of ARIMA 

models in forecasting nutrient use efficiency, (3) project NPK fertilizer use efficiency values 

for the years 2022, 2024, 2026, 2028, and 2030, and (4) explore the potential impacts arising 

from the forecasted NPK fertilizer use efficiency. Our research design embraces the 

predictive power of the Box-Jenkins Methodology, a time-honored approach for time series 

analysis and forecasting. Leveraging data from the Food and Agriculture Organization 

(FAO) and employing Python, we processed decades of NPK fertilizer use efficiency data. 

Following meticulous data preprocessing steps and statistical treatments, we unleashed the 

ARIMA models upon the dataset. The findings of this study are enthralling. Among the 

ARIMA models, we uncovered the champions in nutrient use efficiency forecasting: the 

ARIMA (9, 1, 0) model for nitrogen, ARIMA (13, 1, 0) for phosphorus, and ARIMA (2, 1, 2) 

for potassium. These models, having undergone rigorous diagnostic checks, demonstrated 

exceptional performance in predicting NPK utilization efficiency. Our forecasts bring 

valuable insights into the future of nutrient use efficiency. For nitrogen, we anticipate an 

upward trend, with values ranging from 56.10% to 59.30%. Phosphorus use efficiency 

exhibits variability but shows a general increase, ranging from 72.91% to 80.02%. These 

projections offer policymakers and stakeholders in the agricultural sector valuable 

guidance for decision-making and resource allocation in pursuit of sustainable crop 

production. Delving deeper, this study unravels the intricate patterns and dynamics of NPK 

utilization efficiency. The captivating narrative spanning decades reveals periods of high 

efficiency, followed by declines and resurgences, showcasing the inherent resilience of 

nutrient utilization in the face of changing agricultural practices. In conclusion, our study 

harnesses the power of ARIMA modeling and forecasting techniques to shed light on 

nutrient use efficiency and its potential impacts on crop production. By navigating the 

uncharted territories of NPK utilization, we equip policymakers, stakeholders, and 

researchers in the agricultural sector with valuable insights to drive sustainable and 

efficient crop production systems. Join us on this exhilarating journey as we unravel the 

future of nutrient use efficiency, empowering individuals, and organizations to make 

evidence-based decisions that shape a more resilient and environmentally conscious 

agricultural landscape. 
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I. INTRODUCTION 

The production of the world's food heavily relies on the use of synthetic fertilizers, as 

highlighted by the UN Environment Programme (UNEP, 2020). In a recent interview conducted 

by the World Bank Group (2022) with Ms. Alzbeta Klein, the CEO and Director of the 

International Fertilizer Association (IFA), it was emphasized that nitrogen, phosphorus (in the 

form of 𝑃2𝑂5), and potassium (in the form of 𝐾2𝑂) - the three main fertilizer nutrients - 

contribute to over half of the global food production. With the projected global population of 9.1 

billion by 2050 (Food and Agriculture Organization [FAO], 2009), the demand for food is 

expected to increase by 70%, as reported by Our World in Data. Consequently, the demand for 

fertilizers will also rise. However, the availability of resources to produce these vital nutrients is 

limited. 

Obtaining nitrogen from the air involves the energy-intensive Haber-Bosch process to 

make it accessible to plants, while phosphate is extracted from shallow surface mines and potash 

is mined from deeper deposits (Fertilizers Europe, 2022). These processes are not only resource-

intensive but also environmentally challenging, given the scarcity and uneven distribution of 

land resources worldwide. Despite these concerns, the notion that organic fertilizers are a 

preferable alternative or avoiding synthetic fertilizers altogether is a misconception. According to 

the International Fertilizer Development Center (IFDC, 2017), reverting solely to organic 

fertilizers would leave over 2.5 billion people hungry, indicating that synthetic fertilizers remain 

essential for reliable crop production. However, a significant drawback is that crops do not fully 

absorb the nutrients from fertilizers, leading to substantial losses that contaminate soil, water, 

and air (Baligar& Bennett, 1986). This poses a significant challenge to the agricultural industry 

in terms of achieving optimal fertilizer use efficiency, known as nutrient use efficiency (NUE). 

Defined by the World Bank Group (2022), NUE reflects the balance between how much 

fertilizer plants can absorb and how much is wasted into the environment. Maximizing NUE 

while mitigating environmental harm has been a longstanding goal in agricultural science. 

However, due to difficulties in data collection, labor-intensive processing, and time-consuming 

validation, accurate and reliable information on fertilizer use and NUE is scarce (Ludemann et 

al., 2022). Despite the efforts of prominent agricultural organizations such as FAO, IFA, IFDC, 

and The Fertilizer Institute (TFI), the general public still lacks access to comprehensive 

information regarding fertilizer nutrient use efficiency. 

While existing fertilizer forecasting often focuses on supply, demand, and consumption 

(Mishra et al., 2011; Padhan, 2011), there is a noticeable absence of nutrient use efficiency 

forecasting available to the general public. Recognizing this gap, our research aims to forecast 

NUE categorized by nutrients N, P, and K in cropland. To achieve this, we employ the Auto 

Regressive Integrated Moving Average (ARIMA) model generated through the well-established 

Box-Jenkins Methodology. This methodology is founded on the concept that past events 

influence future outcomes. Our choice of this methodology is driven by several factors: (1) Its 

well-studied and reliable nature, instilling confidence in its application; (2) Suitability for limited 



Unveiling the Future of Nutrient Use Efficiency: A Journey Through Time Series Forecasting  

    Section A-Research paper 

 

2340 
Eur. Chem. Bull. 2023,12(8), 2338-2370 
 

datasets; and (3) Consistent strong performance of ARIMA models compared to other widely 

used statistical time series methods (Ellis, 2023). 

By harnessing the power of Box-Jenkins Methodology, our study aims to fill the existing 

knowledge gap and provide the general public with valuable insights into the future of fertilizer 

nutrient use efficiency. This research endeavor is driven by the understanding that accurate 

forecasting of NUE is crucial for sustainable agricultural practices and effective resource 

management. 

The Box-Jenkins Methodology, renowned for its reliability and extensive research, offers 

a robust framework for analyzing time series data. This approach enables us to uncover 

meaningful patterns, trends, and relationships within the historical fertilizer use efficiency data. 

By incorporating autoregressive (AR), integrated (I), and moving average (MA) components, the 

ARIMA model derived from the Box-Jenkins Methodology allows for accurate predictions of 

future NUE levels for nitrogen, phosphorus, and potassium. 

The significance of this research lies in its potential to guide policymakers, farmers, and 

other stakeholders in making informed decisions regarding fertilizer application and 

management. By understanding the projected trends in NUE, we can optimize fertilizer usage, 

minimize waste, and reduce the environmental impact associated with nutrient contamination. 

Moreover, this knowledge can aid in the development of strategies to meet the increasing global 

food demand while ensuring sustainability and resource efficiency. 

Through our study, we aim to contribute to the ongoing efforts of organizations like FAO, 

IFA, IFDC, and TFI in disseminating knowledge and raising awareness about fertilizer nutrient 

use efficiency. By providing accessible and reliable information to the general public, we hope to 

bridge the existing information gap and promote a more informed and sustainable approach to 

global agriculture. 

In the following sections, we will delve into the methodology employed, data sources 

utilized, and the process of developing the ARIMA model. Additionally, we will present the 

findings of our study, discussing the implications and potential applications of the predicted NUE 

values. Through this research, we endeavor to empower individuals and organizations to make 

evidence-based decisions that contribute to a more efficient and environmentally conscious 

agricultural landscape. 

In conclusion, our study aims to utilize the Box-Jenkins Methodology to forecast global 

fertilizer use efficiency for nitrogen, phosphorus, and potassium. By shedding light on the future 

trends in NUE, we aspire to support sustainable agricultural practices, enhance resource 

management, and contribute to the global efforts of achieving food security while minimizing 

environmental impacts. 
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A. Conceptual Framework 

Figure 1.1 

Conceptual Framework for Gross Domestic Product Using ARIMA Model 

 

 
 

 The study's conceptual framework is depicted in Figure 1.1. During variable selection, 

the authors considered theories by Greenwood, Ritchie, and insights from the World Bank 

Group. Greenwood emphasized the importance of forecasting fertilizer use to enhance 

agriculture, while Ritchie concluded that crop land yield could be increased without escalating 

fertilizer amounts. The CEO of IFA, interviewed by the World Bank Group, emphasized the 

necessity of synthetic fertilizers to meet global food demand. Motivated by these factors, the 

authors opted to forecast NPK fertilizer use efficiency. 

To establish historical context, global NUE data per nutrient from 1961 to 2020 were 

collected. Employing the Box-Jenkins methodology, the data were analyzed to determine the 

most suitable ARIMA model. Subsequently, the developed model will project global fertilizer 

use efficiency for each nutrient, yielding valuable insights into future trends. 

B. Statement of the Problem 

The present study endeavors to tackle a series of critical inquiries concerning the 

efficiency of nitrogen, phosphorus, and potassium (NPK) fertilizers. Through the utilization of 

Auto-Regressive Integrated Moving Average (ARIMA) models derived from the Box-Jenkins 

Methodology, the research aims to explore the predictive capabilities of these models in 

determining fertilizer use efficiency. This subsection provides an overview of the key research 

questions to be addressed in the course of the study. 

 

1. Which ARIMA model demonstrates the highest performance in predicting the efficiency 

of nitrogen, phosphorus, and potassium utilization? 

2. To what extent did the ARIMA models accurately forecast the nutrient's use efficiency?  
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3. What are the projected NPK fertilizer use efficiency values for the years 2022, 2024, 

2026, 2028, and 2030? 

4. What potential impacts may arise from the forecasted NPK fertilizer use efficiency?  

Through the exploration of these core research questions, our study aims to provide 

significant insights into the prediction and implications of fertilizer use efficiency. The resulting 

findings will empower stakeholders with valuable knowledge to optimize fertilizer application, 

enhance agricultural practices, and foster sustainable food production, all while mitigating 

environmental impacts. 

II. LITERATURE REVIEW 

 Fertilizer use efficiency and its implications for food production and environmental 

sustainability have been extensively studied in the existing literature. By examining the relevant 

studies, we can identify common themes, contrasts, and gaps that set the stage for the present 

study's distinctive contribution. 

One recurring theme in the literature is the cycle of food production, where fertilizers 

play a crucial role. Byrnes et al. (2008) highlighted how fertilizers integrate nutrients into the 

soil, which are then absorbed by crops. The grown crops are either consumed by humans or used 

as feed for livestock, and the cycle repeats with the application of fertilizers. This cyclic 

relationship between population growth, food demands, and fertilizer use was also noted by FAO 

(1978), demonstrating the interconnectedness of these factors. 

The role of nitrogen (N), phosphorus (P), and potassium (K) fertilizers in crop production 

is another focus of the literature. Nitrogen is known to promote crop reproduction and nutrient 

uptake, while phosphorus is essential for seed and root formation. Potassium, along with 

nitrogen, enhances fruit sugar concentration, improves frost tolerance, and increases drought 

resistance. However, the production of nitrogen fertilizer involves significant energy usage and 

greenhouse gas emissions (Ghavam et al., 2021). Furthermore, the extraction and beneficiation 

of phosphate and potash rocks, the main resources for P and K fertilizers, pose environmental 

risks such as soil erosion, water contamination, and air pollution (International Plant Nutrition 

Institute [IPNI], 2010; Center for Biological Diversity, n.d.). 

Mismanagement of fertilizers and the need for improved agricultural practices have also 

been highlighted in the literature. Yang et al. (2015) found widespread improper use and 

inconsistent application practices among farmers due to a lack of scientific information and 

limited support from agricultural extension agencies. The myth that "more fertilizer equals more 

yields" has also encouraged wasteful usage, but research in China has shown that minimizing 

fertilizer use is feasible without compromising crop yields (Zhang et al., 2018; Ritchie, 2021). 

The importance of improving nutrient use efficiency (NUE) through practices like crop 

diversification and implementing the 4R nutrient stewardship concept has been emphasized 

(Ebbisa, 2022; Fixen, 2015). 

In terms of forecasting fertilizer use, the Box-Jenkins methodology, particularly the 

Autoregressive Integrated Moving Average (ARIMA) model, has been widely used. Greenwood 

(1981) emphasized the urgent need for accurate fertilizer use forecasts. Mishra et al. (2011) and 

Padhan (2011) employed ARIMA models to forecast the consumption, production, and 
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productivity of NPK fertilizers in India. The ARIMA model is favored for short-term forecasting 

and stable data, making it a suitable choice for predicting agricultural outcomes (Scott, 2022). 

Synthesis: 

In synthesizing the reviewed literature, we recognize the critical role of fertilizers in the 

cycle of food production, where they supply essential nutrients to crops and contribute to 

increased yields. However, the environmental impacts associated with fertilizer production and 

mismanagement cannot be ignored. The literature emphasizes the need for improved agricultural 

practices to enhance nutrient use efficiency and minimize adverse effects on ecosystems. 

The present study contributes to the existing literature by focusing on the prediction of 

fertilizer use efficiency, specifically for nitrogen, phosphorus, and potassium. By employing 

ARIMA models derived from the Box-Jenkins methodology, the study aims to provide accurate 

forecasts for each nutrient individually. This approach addresses the gap in the literature by 

offering granular predictions and insights into nutrient-specific efficiency. 

The synthesis of the literature highlights the interconnectedness of population growth, 

food demands, and fertilizer use, underscoring the importance of optimizing fertilizer application 

for sustainable food production. It also emphasizes the significance of considering environmental 

risks andimplementing improved agricultural practices to minimize the negative impacts of 

fertilizers. The studies reviewed have shown that excessive and improper fertilizer use can lead 

to environmental issues such as eutrophication, salinization of freshwater sources, biodiversity 

loss, and pollution of land, air, and water. 

To address these challenges, the literature suggests adopting the 4R nutrient stewardship 

concept, which emphasizes applying the right nutrient source, at the right rate, at the right time, 

and in the right place. Implementing precision farming techniques, diversifying crops, and 

promoting responsible fertilizer management can help optimize nutrient use efficiency, reduce 

waste, and mitigate environmental harm. 

Furthermore, the literature highlights the potential of forecasting models, particularly the 

ARIMA model, in predicting fertilizer use and production. Accurate forecasts can aid 

policymakers, farmers, and stakeholders in making informed decisions regarding fertilizer 

management, resource allocation, and sustainable agriculture practices. 

The present study builds upon this literature by focusing on predicting and forecasting 

nutrient use efficiency for nitrogen, phosphorus, and potassium individually. By employing the 

ARIMA model, the study aims to provide valuable insights into optimizing fertilizer application, 

improving agricultural practices, and ensuring sustainable food production while minimizing 

environmental impacts. 

In conclusion, the reviewed literature underscores the need for sustainable fertilizer use to 

meet the increasing global food demands while minimizing environmental degradation. The 

present study contributes to this body of knowledge by offering granular predictions and insights 

into nutrient-specific efficiency. By addressing the challenges of fertilizer use and providing 

accurate forecasts, the study aims to equip stakeholders with the necessary knowledge to 

optimize fertilizer application, improve agricultural practices, and ensure sustainable food 

production for future generations. 
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Figure 3.1 

 Box-Jenkins Methodology 

III. METHODOLOGY 

A. Research Design 

 The research design for this study is predictive and follows the Box-Jenkins 

Methodology, a widely recognized approach for time series analysis and forecasting. The 

univariate time series analysis approach is suitable for capturing the dynamic and interrelated 

nature of fertilizer use efficiency for nitrogen (N), phosphorous (P), and potassium (K). The 

Box-Jenkins Methodology is particularly effective when working with small datasets that have at 

least 50 observations. It is known to generate ARIMA models that perform well in forecasting, 

comparable to other commonly used techniques. The research design consists of four sections, as 

depicted in Figure 3.1. 

 Figure 3.1  

       Box-Jenkins Methodology 

     

B. Data Collection and Procedure: 

The data used for this research was obtained from the Food and Agriculture Organization 

(FAO) through their public database called FAOstat, which was recently published in November 

2022. The researchers accessed the Fertilizer Nutrient Use Efficiency data for nitrogen, 

phosphorous, and potassium from the year 1961 to 2020. The data was processed using Python 

and the Box-Jenkins Method. 

The calculation of Nutrient Use Efficiency (NUE) is based on the following formula: 

𝑁𝑈𝐸𝑖,𝑗 ,𝑦 =
𝐶𝑅𝑖,𝑗 ,𝑦

 𝑆𝐹𝑖,𝑗 ,𝑦  × 𝐶𝐹𝑖,𝑗 ,𝑦 𝑀𝐴𝑆𝑖,𝑗 ,𝑦𝑁𝐷𝑖,𝑗 ,𝑦𝐵𝐹𝑖,𝑗 ,𝑦
 

Where:  

𝑖 = country 

𝑗 = nutrient 
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𝑦 = year 

𝐶𝑅 = crop removal 

𝑆𝐹 = synthetic fertilizer  

𝐶𝐹 = fraction of fertilizer applied to cropland 

𝑀𝐴𝑆 = manure applied to soil 

 𝑁𝐷 = nitrogen deposition 

𝐵𝐹 = biological fixation 

The NUE is calculated as the ratio of crop removal (CR) to the sum of inputs (synthetic 

fertilizers, fraction of fertilizer applied to cropland, manure applied to soils, nitrogen deposition, 

and biological fixation) minus outputs (crop removal). 

C. Data Preprocessing: 

Before applying the Box-Jenkins Methodology, the data underwent preprocessing steps. 

This involved visualizing the data through plots and dividing it into train-test sets. The 

stationarity of the train set was determined using Correlograms (ACF and PACF) and statistical 

metrics such as the Augmented-Dickey Fuller test (ADF), Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) test, and Phillips-Perron (PP) test. If the data was found to be non-stationary, 

differencing was performed, and stationarity was verified again. Once the data was stationary, 

the researchers proceeded with the Box-Jenkins methodology. 

D. Statistical Treatment of the Data: 

1.  Augmented-Dickey Fuller test (ADF): 

The ADF test is used to assess the stationarity of a time series. The null hypothesis (H0) 

assumes that the data is non-stationary, while the alternative hypothesis (Ha) assumes 

stationarity. The decision rule is based on the p-value, where if the p-value is less than 0.05, the 

null hypothesis is rejected, indicating that the data is stationary. 

Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 + 𝑒𝑡  
Hypothesis in ADF 

𝐻𝑜 : The data is not stationary. 

𝐻𝑎 : The data is stationary. 

Decision Rule: If p-value is < 0.05, the 𝐻𝑜  is rejected. Hence, the 𝐻𝑎  is accepted. 

2.  Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test: 

The KPSS test is another method to test for stationarity in time series data. It is based on 

the decomposition of a time series into a random walk component, a deterministic trend 

component, and a stationarity error. The null hypothesis (H0) assumes stationarity, while the 

alternative hypothesis (Ha) assumesnon-stationarity. The decision rule is based on the p-value, 
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where if the p-value is greater than 0.05, the null hypothesis is accepted, indicating that the data 

is non-stationary. 

𝑥𝑡 = 𝑟𝑡 + 𝛽𝑡 + 𝜀1 
 

Where: 

𝑟𝑡 = random walk 

𝛽𝑡 = deterministic trend 

𝜀1 = stationarity error 

Hypothesis in KPSS: 

𝐻𝑜 : The data is stationary. 

𝐻𝑎 : The data is not stationary. 

Decision Rule: If p-value is > 0.05, the 𝐻𝑜  is accepted. Hence, the 𝐻𝑎  is rejected. 

3.  Phillips-Perron (PP) test: 

The PP test is used to test for stationarity in time series data, similar to the ADF and 

KPSS tests. It also examines the presence of a unit root in the data. The null hypothesis (H0) 

assumes non-stationarity, while the alternative hypothesis (Ha) assumes stationarity. The 

decision rule is based on the p-value, where if the p-value is less than 0.05, the null hypothesis is 

rejected, indicating that the data is stationary. 

∆𝑦𝑡 =  𝜌 − 1 𝑦𝑡−1 + 𝑢𝑡  
Hypothesis in PP 

𝐻𝑜 : The data is not stationary. 

𝐻𝑎 : The data is stationary. 

Decision Rule: If p-value is < 0.05, the 𝐻𝑜  is rejected. The 𝐻𝑎  is accepted. 

4.  Data Differencing: 

Differencing is performed on the time series data to remove trend and seasonality, thus 

stabilizing the mean of the series. The order of differencing, denoted as 'm', is determined by 

taking the difference between consecutive values of the time series. The differenced data is then 

tested for stationarity using the aforementioned tests to ensure the adequacy of the differencing 

order. 

𝑑𝑚  𝑡 = 𝑑 𝑚−1  𝑡 − 𝑑𝑚−1(𝑡 − 1) , 

Where: 

𝑚 = order of the difference 

𝑡 = time series 

5. Root Mean Square Error (RMSE): 

RMSE is a statistical measure of the differences between the actual and predicted values 

in a time series forecast. It is calculated by taking the square root of the average of the squared 
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differences between the actual and predicted values. The RMSE provides an estimate of the 

model's accuracy, with lower values indicating a better fit to the data. 

𝑅𝑀𝑆𝐸 =   
 𝑥𝑖 − 𝑥𝑖  2

𝑁

𝑁

𝑖=1

 

where: 

𝑖 = variable 

𝑁 = number of non-missing data points 

𝑥𝑖 = actual observations 

𝑥𝑖 = estimated value 

6.  Mean Absolute Error (MAE): 

MAE is another statistical measure of the differences between the actual and predicted 

values. It is calculated by taking the average of the absolute differences between the actual and 

predicted values. The MAE is less sensitive to outliers compared to RMSE, making it a useful 

metric for assessing forecast accuracy. 

𝑀𝐴𝐸 =
1

𝑛
 

 𝑥𝑖 − 𝑥𝑖  

𝑥𝑖
 

where: 

𝑥𝑖 = actual observations 

𝑥𝑖 = estimated values 

𝑛 = actual observations 

𝑖 = variable 

7.  Mean Absolute Percentage Error (MAPE): 

MAPE is a metric used to evaluate the accuracy of a forecast by calculating the average 

percentage difference between the actual and predicted values. It is calculated by taking the 

average of the absolute percentage differences between the actual and predicted values, 

multiplied by 100. MAPE provides a measure of forecast accuracy relative to the magnitude of 

the actual values. 

𝑀𝐴𝑃𝐸 =
1

𝑛
 

 𝑥𝑖 − 𝑥𝑖  

𝑥𝑖
∗ 100 

 

where: 

𝑥𝑖 = actual observations 

𝑥𝑖 = estimated values 

𝑛 = actual observations 

𝑖 = variable 
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The researchers analyze the RMSE, MAE, and MAPE to assess the accuracy and 

performance of the forecasted values, with lower error measurements indicating a closer match 

between the actual and predicted values. Additionally, the potential impacts of forecasted NPK 

fertilizer use efficiency are examined to identify any significant and uncommon inaccuracies in 

the forecast. 

 

IV. RESULTS AND DISCUSSIONS 

A. Data Preprocessing 

1) Visualizing the Data 

Figure 4.1  

Nitrogen Use Efficiency Over Time 

 
Figure 4.2  

Phosphorous Use Efficiency Over Time 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.3  

Potassium Use Efficiency Over time 
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The captivating figures 4.1-4.3 vividly depict the fascinating journey of nitrogen, 

phosphorus, and potassium utilization in crop production. These graphs unveil intriguing 

patterns, revealing the dynamic nature of nutrient efficiency over time. Nitrogen and phosphorus 

exhibit a fascinating dance, initially showcasing high efficiency, followed by a decline and 

eventual resurgence. On the other hand, potassium embarks on a remarkable journey, starting 

from humble beginnings and gradually ascending to new heights. 

The astute researchers keenly observed a captivating narrative spanning several decades. 

During the 1970s to the late 1980s, a decline in nutrient use efficiency left them perplexed. 

However, like a phoenix rising from the ashes, the efficiency experienced a remarkable rebound 

as the 20th and 21st centuries unfolded, leaving the researchers in awe of the inherent resilience 

of nutrient utilization. 

One particularly noteworthy revelation is the consistent range of nitrogen use efficiency, 

standing firm between 40% and 60%. Meanwhile, phosphorus and potassium showcase their 

own unique dynamics, flexing their efficiency within a range of 40% to 80%. These captivating 

ranges paint a vivid picture of the intricate interplay between crops and these essential nutrients, 

fueling the researchers' curiosity and driving them to delve deeper into the mysteries of 

agricultural sustainability. 

These remarkable findings not only captivate the imagination but also spark intriguing 

questions about the underlying mechanisms that shape nutrient utilization efficiency. 

 

2) Train-Test Split 

Figure 4.4 

Train-Test Split of NUE 
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Figure 4.5 

Train-Test Split of PUE 

 

Figure 4.6 

Train-Test Split of KUE 

 

 In this study, we analyzed threetime series datasets with 60 data points. To ensure 

accurate predictions, we divided the data into train (50 points) and test (10 points) sets. Using the 

renowned Box-Jenkins method, we created a model based on the train set to capture underlying 

patterns. This model served as the foundation for forecasting. By applying the model to the test 

set, we assessed its accuracy and effectiveness, gaining valuable insights into its performance 

and reliability. 

3) Test Stationarity 

Table 4.1 

Correlogram of Raw NUE, PUE, and KUE Training Set Time Series 

 

Fertilizer 
Nutrient 

ACF Plot PACF Plot 

NUE 

  

PUE 

  

KUE 
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Table 4.2 

Test Stationarity of Raw NUE, PUE, and KUE Time Series Data 

 

 

 

In Table 4.1, for all three data sets, the lag in ACF plots gradually declined, while in the 

PACF plot, there was a significant spike at lag 1, followed by a subsequent descent of lags within 

and near the confidence interval. This behavior indicated non-stationarity, which was supported 

by the values of ADF, KPSS, and PP shown in Table 4.2. Therefore, data differencing was 

required. 

3. Differencing 

Table 4.3 

Correlogram of Differenced NUE, PUE, and KUE Training Set Time Series 

 

 
NUE 

Test Statistics p-value < 0.05 Decision Interpretation 

ADF 0.414934 FALSE 𝐻𝑜  is accepted Not stationary 

KPSS 0.048758 TRUE 𝐻𝑜  is rejected Not stationary 

PP 0.764 FALSE 𝐻𝑜  is accepted Not stationary 

 
PUE 

Test Statistics p-value < 0.05 Decision Interpretation 

ADF 0.940662 FALSE 𝐻𝑜  is accepted Not stationary 

KPSS 0.018990 TRUE 𝐻𝑜  is rejected Not stationary 

PP 0.402 FALSE 𝐻𝑜  is accepted Not stationary 

 

KUE 

Test Statistics p-value < 0.05 Decision Interpretation 

ADF 0.998138 FALSE 𝐻𝑜  is accepted Not stationary 

KPSS 0.010000 TRUE 𝐻𝑜  is rejected Not stationary 

PP 0.990 FALSE 𝐻𝑜  is accepted Not stationary 

Fertilizer 
Nutrient 

ACF Plot 
(a) 

PACF Plot 
(b) 

NUE 

  

PUE 

  

KUE 
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Table 4.4 

Test Stationarity of Differenced NUE, PUE, and KUE Time Series Data 

 

 

 

The ACF and PACF plots in Table 4.3 revealed a pattern indicating that the series had 

been transformed to become stationary. It was observed that both NUE and PUE exhibited no 

significant lag in their ACF plots, whereas KUE displayed a significant lag at 2. It is important to 

note that lag 0 was disregarded due to the high correlation of the value with itself.Additionally, 

the PACF plot of NUE showed spikes at lags 9, 13, and 17, while PUE exhibited spikes at lags 

13 and 17. KUE displayed a significant lag at 2. 

To further assess the stationarity of the series, the researchers calculated its ADF, KPSS, 

and PP values, as shown in Table 4.4. The ADF and PP p-values of NPK were found to be less 

than 0.05, leading to the rejection of the null hypothesis, which states that the series is not 

stationary. However, the KPSS results for NPK were greater than 0.05, indicating acceptance of 

null hypothesis and confirming that the series is stationary according to the KPSS test. Therefore, 

the series' stationarity was confirmed based on these results. 

B) Box-Jenkins Method 

1) Identification 

1a. NUE ARIMA Parameter Identification 

In Table 4.3, NUE (a) exhibited no significant lags from 1 to 19, indicating that the 

parameter q was equal to 0. This implied an ARIMA model of (p, d, 0) since there was no 

presence of seasonality in the data. 

In Table 4.3, NUE (b) displayed spikes at lags 9, 13, and 17, suggesting that p should be 

evaluated using these three parameters. This type of ARIMA model is referred to as an nth-order 

autoregressive model with one order of non-seasonal differencing and a constant term. 

Therefore, to select the optimal model, the initial examination would involve three models: 

ARIMA (9, 1, 0), ARIMA (13, 1, 0), and ARIMA (17, 1, 0). 

1b. PUE ARIMA Parameter Identification 

In Table 4.3, PUE (a) exhibited no significant lags from 1 to 19, indicating that the 

parameter q was equal to 0. This suggested an ARIMA model of (p, d, 0) since there was no 

presence of seasonality in the data. 

 

NUE 

Test Statistics p-value < 0.05 Decision Interpretation 

ADF 3.576678e-08 TRUE 𝐻𝑜  is rejected Stationary 

KPSS 0.060751 FALSE 𝐻𝑜  is accepted Stationary 

PP 0.000 TRUE 𝐻𝑜  is rejected Stationary 

 PUE 

Test Statistics p-value < 0.05 Decision Interpretation 

ADF 2.098772e-07 TRUE 𝐻𝑜  is rejected Stationary 

KPSS 0.100000 FALSE 𝐻𝑜  is accepted Stationary 

PP 0.000 TRUE 𝐻𝑜  is rejected Stationary 

 KUE 

Test Statistics p-value < 0.05 Decision Interpretation 

ADF 0.020425 TRUE 𝐻𝑜  is rejected Stationary 

KPSS 0.100000 FALSE 𝐻𝑜  is accepted Stationary 

PP 0.000 TRUE 𝐻𝑜  is rejected Stationary 
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In Table 4.3, PUE (b) displayed spikes at lags 13 and 19, suggesting that p should be 

evaluated using these parameters. This had the same nature of an ARIMA model as NUE. 

Therefore, to select the best possible model, two models—ARIMA (13, 1, 0) and ARIMA (19, 1, 

0)—were initially examined. 

1c. KUE ARIMA Parameter Identification 

In Table 4.3, KUE (a) did not show any significant lags from 1 to 19, indicating that the 

parameter q was determined to be 0. This observation pointed towards an ARIMA model of (p, d, 

0) since no seasonality was evident in the data. 

In Table 4.3, KUE (b) exhibited spikes at lags 13 and 19, suggesting that the parameter p 

should be evaluated using these values. This indicated that KUE followed a similar pattern to 

NUE, and an ARIMA model with non-seasonal differencing and a constant term should be 

considered. Therefore, two initial models—ARIMA (13, 1, 0) and ARIMA (19, 1, 0)—were 

examined to determine the most suitable model. 

2) Estimation 

Table 4.5 

LL and Information Criterion of the Selected ARIMA models in NUE 

 

2a. NUE Estimation Result 

The ARIMA (17, 1, 0) model had the highest value in terms of log-likelihood. However, 

when considering the values for the three information criteria (AIC, BIC, and HQIC), ARIMA 

(9, 1, 0) had the lowest values. Therefore, among the selected models, ARIMA (9, 1, 0) was 

determined to be the most effective model. 

Table 4.6 

LL and Information Criterion of the Selected ARIMA models in PUE 

 

2b. PUE Estimation Result 

Among the chosen models, ARIMA (19, 1, 0) had the highest value in terms of log-

likelihood. However, when considering the values of the three information criteria (AIC, BIC, 

and HQIC), ARIMA (13, 1, 0) had the lowest values. Therefore, the most effective model among 

the selected ones was determined to be ARIMA (13, 1, 0). 

Table 4.6 

LL and Information Criterion of the Selected ARIMA models in PUE 

 

NUE 

Model Log-Likelihood AIC BIC HQIC 

ARIMA (9, 1, 0) -87.15244 194.30489 * 213.22309* 201.48243 * 

ARIMA (13, 1, 0) -84.48880 196.97760 223.46308 207.02615 

ARIMA (17, 1, 0) - 79.84960* 195.69919 229.75196 208.61877 

 

PUE 

Model Log-Likelihood AIC BIC HQIC 

ARIMA (13, 1, 0) -114.47693 256.95387* 283.43935* 267.00242* 

ARIMA (19, 1, 0) -112.59001* 257.18003 287.449151 268.66409 

 

KUE 

Model Log-Likelihood AIC BIC HQIC 

ARIMA (2, 1, 2) -108.87191 227.74383 237.20293 231.33260 
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Figure 4.1 

ACF plot of ARIMA (2, 1, 2) Residual 

 

2c. KUE Estimation Result 

No other model was comparable to ARIMA (2, 1, 2). To ensure that this model accounted 

for all significant lags, the researchers examined the ACF plot of residuals in ARIMA (2, 1, 2). It 

was observed that all the lags fell within the 95% confidence interval, indicating that the model 

adequately captured the important lags. Therefore, ARIMA (2, 1, 2) was determined to be the 

optimal model that could not be further improved. 

 

3) Diagnostic Checking 

Table 4.7 

Ljung-Box Test Result of NPK’s best ARIMA models 

 

 The researchers performed overfitting testing using the Ljung-Box test. For NUE, the 

ARIMA (9, 1, 0) model yielded a p-value of 0.94295. The ARIMA (13, 1, 0) model for PUE 

yielded a p-value of 0.985116. Lastly, the ARIMA (2, 1, 2) model for KUE yielded a p-value of 

0.664578. All of these p-values were found to be greater than 0.05. Therefore, there was 

sufficient evidence to conclude that the models did not exhibit a significant lack of fit. 

Table 4.8 

AR/MA Structure of the ARIMA model 

Nutrient Ljung-Box Test (p-value) 

NUE 0.942953 

PUE 0.985116 

KUE 0.664578 
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 For the ARIMA (9, 1, 0) model of NUE, the ARIMA (13, 1, 0) model of PUE, and the 

ARIMA (2, 1, 2) model of KUE, all the roots were found to be inside the unit circle, as indicated 

in Table 4.13. This suggests that the models were both stationary and invertible. Therefore, based 

on the diagnostic checking results, it can be concluded that the models were suitable for 

forecasting purposes. 

4) Forecasting 

4a. Out-of-Sample Forecasts 

Figure 4.2 

Out-of-Sample Forecasting NUE using ARIMA (9, 1, 0) [2011-2020]

 

Figure 4.3 

Out-of-Sample Forecasting PUE using ARIMA (13, 1, 0) [2011-2020] 

 
Fertilizer 
Nutrient 

AR/MA Structure 

NUE 

 

 
 

PUE 

 

KUE 
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Figure 4.4 

Out-of-Sample Forecasting KUE using ARIMA (2, 1, 2) [2011-2020] 

 

 

Table 4.8 

Error Measures of NUE: ARIMA (9,1,0) 

Error Measures Result 

MAE 1.58844 

MAPE 0.03011 

RMSE 1.83930 

Table 4.9 

Error Measures of PUE: ARIMA (13,1,0) 

Error Measures Result 

MAE 3.63252 

MAPE 0.05036 

RMSE 4.21537 

Table 4.10 

Error Measures of KUE: ARIMA (2,1,2) 

Error Measures Result 

MAE 1.25869 

MAPE 0.01599 

RMSE 1.54457 
 

In the realm of nitrogen use efficiency (NUE) forecasting, the ARIMA (9, 1, 0) model 

emerged as the champion. It demonstrated superior performance by producing predicted values 

with an average error margin of either 1.84% lower or 1.84% higher than the actual values. The 

root mean square error (RMSE) of this model stood at 1.84, further affirming its accuracy. 

Moreover, the mean absolute error (MAE) of 1.59 showcased a consistent error magnitude in 
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comparison to RMSE. The mean absolute percentage error (MAPE) of 0.03011 indicated a 

modest 3.01% error, highlighting an impressive 96.99% accuracy in predicting NUE. 

When it came to phosphorus use efficiency (PUE) forecasting, the ARIMA (13, 1, 0) 

model took center stage as the optimal choice. Its RMSE value of 4.22 implied that the mean 

error of predicted values could deviate by either 4.22% higher or 4.22% lower than the actual 

value. The narrow gap between MAE (3.63) and RMSE signified a consistent error magnitude. 

The MAPE value of 0.05036 represented a 5.04% error in the model, accompanied by an 

impressive 94.96% accuracy in predicting PUE. 

Lastly, for potassium use efficiency (KUE) prediction, the ARIMA (2, 1, 2) model 

showcased its prowess. It generated predicted values with a mean error of either 1.54% lower or 

1.54% higher than the actual values, supported by an RMSE value of 1.54. Similar to the 

previous models, the small gap between MAE (1.26) and RMSE indicated a consistent error 

magnitude. The MAPE value of 0.01599 unveiled a mere 1.60% error, boasting a remarkable 

98.4% accuracy in predicting KUE. 

4b. 10-year Forecasts 

Table 4.11 

Forecast NUE 10 Years 

YEAR PREDICTED VALUE 

2021 56.098368 

2022 57.256243 

2023 57.056663 

2024 57.569261 

2025 57.923225 

2026 58.290852 

2027 58.049129 

2028 58.284793 

2029 58.773920 

2030 59.303083 

Figure 4.5 

Forecast NUE 10 Years 

 

 Take a captivating journey through time guided by Figure 4.5, which revealed a 10-year 

forecast of nitrogen use efficiency (NUE). Witnessed the revealing of Table 4.11, where the 

forecasted NUE values for the years from 2021 to 2030 were displayed. The sequence of 

numbers presented were: 56.10%, 57.26%, 57.06%, 57.57%, 57.92%, 58.29%, 58.05%, 58.28%, 

58.77%, and 59.30%. Noticed the ebb and flow of these values, uncovering a range from 56% to 
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59% that showcased variability. Amidst this variation, a clear narrative emerged—a consistent 

upward trend that depicted progress and improvement. 

Table 4.12 

Forecast PUE 10 Years 

YEAR PREDICTED VALUE 

2021 72.911839 

2022 78.432509 

2023 80.018246 

2024 78.664999 

2025 79.758342 

2026 78.649305 

2027 78.729954 

2028 78.412658 

2029 76.876856 

2030 77.642714 

Figure 4.6 

Forecast PUE 10 Years 

 

 Figure 4.6 displayed the 10-year forecast of PUE. Table 4.12 unveiled the projected PUE 

values for the years 2021 to 2030, which were 72.91%, 78.43%, 80.02%, 78.66%, 79.76%, 

78.65%, 78.73%, 78.41%, 76.88%, and 77.64%, respectively. In 2023, the highest PUE was 

observed, but it gradually declined by 3.14% in 2029. The forecast concluded with a PUE of 

77.64%, representing a slight increase of 0.76% compared to the preceding year. Throughout the 

10-year forecast period, there were fluctuations, yet the overall trend exhibited a significant 

positive increase of 4.73%. 
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Table 4.13 

Forecast KUE 10 Years 

YEAR PREDICTED VALUE 

2021 80.003433 

2022 80.218201 

2023 80.327877 

2024 80.360208 

2025 80.337085 

2026 80.275606 

2027 80.188979 

2028 80.087267 

2029 79.978015 

2030 79.866769 

Figure 4.7 

Forecast KUE 10 Years 

 

 Figure 4.7 unveiled a mesmerizing glimpse into the future, offering a captivating 10-year 

forecast of KUE. As the curtains rose, Table 4.13 gracefully revealed the anticipated values of 

KUE for the forthcoming years spanning from 2021 to 2030. Like a harmonious melody, the 

numbers danced before our eyes: 80.00%, 80.22%, 80.33%, 80.36%, 80.34%, 80.26%, 80.19%, 

80.09%, 79.98%, and 79.87%. Throughout this enchanting forecast, a striking theme emerged—

consistency and stability were the protagonists of this narrative. These values gracefully hovered 

around the illustrious 80% mark, painting a picture of unwavering equilibrium and unwavering 

potential. It was as if time itself had embraced the notion of harmony, allowing the forecasted 

KUE values to remain steadfast in their commitment to excellence. 

VI. CONCLUSION 

 In the realm of agricultural enlightenment, the research findings illuminated the intricate 

dance of nitrogen, phosphorus, and potassium in the world of crop production. Like a captivating 

tale spanning across decades, the narrative unveiled periods of soaring efficiency, followed by 
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subtle declines and glorious resurgences, showcasing the indomitable spirit of nutrient utilization 

amidst the ever-evolving landscape of agricultural practices. 

In this grand production, the ARIMA modeling approach took the stage, proving its 

prowess in predicting nutrient use efficiency. With meticulous precision, specific models were 

tailored for each nutrient, each with its own unique performance. The ARIMA (9, 1, 0) model 

emerged as the star, shining brightly in predicting nitrogen use efficiency (NUE). Not far behind, 

the ARIMA (13, 1, 0) model claimed its well-deserved spotlight for phosphorus use efficiency 

(PUE), while the ARIMA (2, 1, 2) model dazzled the audience with its optimal portrayal of 

potassium use efficiency (KUE). To ensure their suitability for forecasting, these models 

underwent rigorous diagnostic checks, leaving no room for imperfection. 

As the curtains of prediction rose, the forecasts bestowed upon us valuable glimpses into 

the future of nutrient use efficiency. The years 2022, 2024, 2026, 2028, and 2030 came alive with 

projected values, painting a vivid picture of possibilities. Nitrogen use efficiency (NUE) emerged 

as the protagonist of progress, embarking on an upward journey, its trajectory spanning from 

56.10% to 59.30%. Phosphorus use efficiency (PUE), ever the shape-shifter, showcased its 

variability while embracing a general rise, ranging from 72.91% to 80.02%. These revelations, 

like treasures of wisdom, stand ready to guide policymakers and stakeholders, illuminating their 

path towards informed decisions and resource allocation for a sustainable harvest. 

With this research, the doors swing open, inviting further exploration into the enigmatic 

mechanisms that shape the efficiency of nutrient utilization. A captivating range awaits, with 

nitrogen's secrets concealed within the enchanting bounds of 40% to 60%, while phosphorus and 

potassium's mysteries dance amidst the broader scope of 40% to 80%. By delving into these 

depths, the understanding gained shall lay the foundation for targeted strategies, empowering the 

agricultural realm to optimize sustainability and unlock the true potential of nutrient use 

efficiency. 

In its totality, this study stands as a beacon of knowledge, shedding light on the 

symphony of nutrient utilization efficiency and its profound impact on the stage of crop 

production. Through the artistry of ARIMA modeling and the magic of forecasting, the 

researchers have gifted valuable insights to policymakers, stakeholders, and fellow scholars in 

the agricultural realm. Together, we embark on a harmonious journey, pursuing the noble quest 

for sustainable and efficient crop production systems. 

VIII. IMPLICATIONS 

The implications of the study are highly intriguing and have significant implications for 

agricultural practices and sustainability. Here are some particularly interesting implications: 

Enhancing Nutrient Use Efficiency: The research findings highlight the complex patterns and 

dynamics of nutrient utilization in crop production. Understanding these intricate relationships 

can help agricultural practitioners develop targeted strategies to improve nutrient use efficiency. 

By optimizing the utilization of nitrogen, phosphorus, and potassium, farmers can minimize 

waste and reduce the environmental impact of fertilizer application. 

Resilience of Nutrient Utilization: The captivating narrative of periods of high efficiency, 

declines, and resurgences in nutrient use efficiency showcases the inherent resilience of crop 

plants and nutrient utilization systems. This resilience suggests that even in the face of changing 
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agricultural practices and environmental conditions, there is a capacity for adaptation and 

recovery. Harnessing this resilience can be valuable for sustainable agricultural systems, as it 

demonstrates the potential for crops to maintain productivity while minimizing resource inputs. 

ARIMA Modeling for Forecasting: The effectiveness of ARIMA modeling in predicting 

nutrient use efficiency provides a powerful tool for policymakers, stakeholders, and researchers 

in the agricultural sector. Accurate forecasting enables better decision-making, resource 

allocation, and policy formulation. By leveraging ARIMA models specific to each nutrient, 

stakeholders can make informed choices about nutrient management practices and optimize 

fertilizer use to maximize crop productivity while minimizing environmental impacts. 

Future Trends and Policy Development: The forecasted values for nutrient use efficiency offer 

valuable insights into the expected trends in the coming years. Policymakers can utilize this 

information to develop long-term strategies and policies that promote sustainable agricultural 

practices. By understanding the projected increases in phosphorus use efficiency and the upward 

trend in nitrogen use efficiency, policymakers can support initiatives that encourage responsible 

fertilizer use and minimize nutrient losses to the environment. 

Mechanisms of Nutrient Utilization: The research emphasizes the need for further exploration 

into the underlying mechanisms that shape nutrient utilization efficiency. Understanding the 

factors influencing nutrient uptake, utilization, and cycling in plants can lead to breakthroughs in 

crop breeding, agronomic practices, and fertilizer formulations. This deeper understanding can 

pave the way for innovative solutions that enhance nutrient use efficiency, reduce fertilizer 

dependency, and promote sustainable agricultural systems. 

Resource Optimization: By accurately forecasting nutrient use efficiency (NUE) for nitrogen, 

phosphorus, and potassium, policymakers and farmers can optimize fertilizer application and 

minimize waste. This can lead to cost savings in agricultural production by reducing unnecessary 

fertilizer use while maintaining or even increasing crop yields. 

Sustainable Agriculture: Maximizing NUE is crucial for sustainable agricultural practices. The 

study's findings can guide the development of targeted strategies to enhance nutrient use 

efficiency, thereby reducing the environmental impact associated with nutrient contamination. 

This aligns with the goals of sustainable agriculture, which aim to balance economic viability, 

environmental stewardship, and social responsibility. 

Food Production and Food Security: With the projected global population expected to reach 

9.1 billion by 2050, the demand for food is expected to increase significantly. The study's 

insights into future trends in nutrient use efficiency can help policymakers and stakeholders 

make informed decisions to meet the growing food demand. By optimizing fertilizer use and 

minimizing waste, agricultural productivity can be enhanced, contributing to improved food 

security at the global level. 

Resource Efficiency: The study's findings can inform resource allocation decisions in the 

agricultural sector. By understanding the projected NUE values, policymakers can allocate 

resources more efficiently, ensuring that limited resources such as synthetic fertilizers are used 

effectively. This can lead to more sustainable use of resources and reduce the reliance on 

resource-intensive processes like the Haber-Bosch process for nitrogen production. 
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Economic Impact: Optimizing nutrient use efficiency can have positive economic implications. 

By reducing the amount of fertilizer needed while maintaining or increasing crop yields, farmers 

can potentially reduce their input costs and improve their profitability. This can contribute to the 

overall economic development of the agricultural sector. 

Environmental Sustainability: Efficient fertilizer use has direct implications for environmental 

sustainability. Excessive or inefficient use of fertilizers can lead to nutrient runoff, contaminating 

water bodies and causing ecological imbalances. By improving nutrient use efficiency, the 

study's results can help mitigate these environmental impacts and promote sustainable 

agricultural practices. 

Overall, the study's results have wide-ranging implications for economics and food 

security, including resource optimization, sustainable agriculture, enhanced food production, 

resource efficiency, economic impact, and environmental sustainability. By providing insights 

into nutrient use efficiency and its projected trends, the study can support decision-making 

processes and contribute to a more efficient and environmentally conscious agricultural 

landscape, and sustainable crop production systems that maximize productivity while 

minimizing environmental impacts. 

 

VII. FUTURE RESEARCH 

 The findings of this study present several opportunities for future research in the field of 

nutrient utilization and agricultural sustainability. Here are some potential avenues for further 

investigation: 

1.  Mechanisms of Nutrient Utilization: The study highlights the need for a deeper 

understanding of the underlying mechanisms that shape nutrient utilization efficiency. Future 

research could focus on elucidating the physiological, genetic, and environmental factors that 

influence the uptake, transport, and utilization of nitrogen, phosphorus, and potassium in crops. 

This knowledge could help identify key targets for crop improvement and inform the 

development of innovative agricultural practices. 

2.  Fine-Tuning Forecasting Models: While the ARIMA models employed in this study proved 

effective for predicting nutrient use efficiency, there is room for refinement and exploration of 

alternative modeling approaches. Future research could investigate the use of other time series 

forecasting methods, such as exponential smoothing, state-space models, or machine learning 

techniques, to improve the accuracy and robustness of nutrient use efficiency predictions. 

3.  Long-Term Monitoring and Validation: To validate the forecasted values and assess the 

accuracy of the models over an extended period, long-term monitoring of nutrient use efficiency 

in crop production systems is essential. Conducting field experiments and collecting data over 

multiple years would provide valuable insights into the actual trends and variability of nutrient 

use efficiency, further validating the forecasting models and enhancing their reliability. 

4.  Integration of Additional Factors: The study primarily focused on the historical trends and 

dynamics of nutrient use efficiency. Future research could explore the integration of additional 

factors that influence nutrient utilization, such as climate change, soil properties, cropping 

systems, and management practices. Understanding the interactions between these factors and 
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nutrient use efficiency would provide a more comprehensive understanding of the complexities 

involved and enable the development of holistic strategies for sustainable nutrient management. 

5.  Comparative Analysis: Conducting comparative analyses across different regions, crops, and 

management practices could provide valuable insights into the factors that drive variations in 

nutrient use efficiency. By studying systems with contrasting nutrient management strategies and 

environmental conditions, researchers can identify successful practices and share best 

management approaches that optimize nutrient use efficiency across diverse agricultural 

landscapes. 

6.  Economic and Environmental Implications: Further research could explore the economic 

and environmental implications of improving nutrient use efficiency in crop production. 

Assessing the cost-effectiveness of different strategies, analyzing the trade-offs between 

productivity and environmental impacts, and quantifying the potential reductions in fertilizer use 

and nutrient losses would contribute to the development of sustainable agricultural systems. 

By pursuing these avenues of research, scientists can deepen our understanding of 

nutrient utilization efficiency, refine forecasting models, validate predictions, explore additional 

factors, and assess the broader implications of improving nutrient use efficiency. Such 

knowledge will support evidence-based decision-making and promote the development of 

sustainable and efficient crop production systems. 
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