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Abstract 

Epilepsy is the most prevalent neuro disorder in the world, may impair brain function 

or even put the patient's life in peril. Seizure control requires epilepsy prediction, which 

enables preventative actions to lessen harm or manage seizures. It has been shown that 

abnormal brain activity begins in the pre-ictal state, that occurs before a seizure begins. In 

this research, the pre-ictal period's temporal span was reevaluated and split into many 

temporal windows. Then it was suggested to use deep neural network to create a specific 

seizure prediction method. By making use of the strategy, the temporal dependence of the 

signal across several time frames throughout the pre-ictal phase is represented. Additionally, 

by implementing a soft threshold blurring and focusing procedure inside the neural network, 

seamless feature extraction is made possible. The outcomes of our approach are contrasted 

with those of more contemporary epilepsy prediction techniques. Our approach still has 

certain shortcomings when compared to the finest methods, but it also exhibits several novel 

ideas and benefits. 
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1.Introduction 

Epilepsy, a brain illness, affects all 

ages. Epilepsy is world's most prevalent 

neurological illnesses, affects millions of 

individuals worldwide. If detected and 

treated with anti-epileptic medications, 

70% of epilepsy patients might live 

seizure-free.Mostly drug-resistant patients 

need surgery and/or electrical 

stimulation.This disease's cause is 

unknown. Seizures may be treated if 

caught early. Patients cannot drive or work 

due to this ailment. Thus, a device that 

predicts seizure could improve their lives. 

This warning gadget alerts the patient to 

prevent mishaps or take seizure-

suppressing medicines when it anticipates 

a seizure.Epilepsy diagnosis relies on the 

electroencephalogram (EEG). Electrodes 

on the patient's scalp capture brain 

impulses for EEG recordings[1]. Experts 

visually evaluate seizure signals obtained 

during EEG sessions to diagnose utilizing 

EEG signals. This method is costly, error-

prone, and sluggish. Two independent 

specialists often view the same 

electroencephalogram differently. This 

might lead to mistreatment. 

Gibbs' electroencephalogram (EEG) of the 

scalp has been used to detect partial-onset 

seizures (PWE) since its invention in 1935. 

[2]. Long-term clinical significance 

requires several days of observation. It 

requires experience for an epileptologist to 

interpret an EEG and detect a seizure. 

Therefore, it is crucial for EEG reading 

efficiency to have automatic seizure 

detection. With automated seizure 

detection, neurostimulation and 

medication delivery on demand may be 

feasible. 

Time-frequency analysis, wavelet 

transform, and nonlinear analysis may 

depict seizures in EEG signals. The 

success of most of these conventional 

techniques is patient-specific since 

epileptic EEG patterns vary[3-5]. Seizure 

identification by EEG is difficult since 

seizures are usually recorded for just a few 

minutes in 24 h because EEG includes 

noise and abnormalities. Thus, no hand-

crafted features seem universal yet. Deep 

learning technology automatically learns 

important features in supervised learning 

to tackle these challenges. Recent research 

showed that deep learning can classify 

EEG data[6-9]. 

We hypothesized that experienced 

epileptologists, rather than relying on 

automatic seizure diagnosis using spectro-

temporal or complicated, non-stationary 

EEG signals, would perform visual 

analysis of EEG plot images to detect 

seizure states[10,11]. If this is the case, 

CNNs that mimic the performance of 

human visual recognition experts might be 

useful in the identification of seizures. In 

this study, epileptologists manually 

categorized EEG data into seizure and 

non-seizure categories before feeding them 

into a CNN.Predicting seizures was first 

studied in the 1970s.Epileptic EEGs have 

four phases: preictal, ictal, postictal, and 

interictal is illustrated in figure 1.  

 

Fig. 1: Epileptic EEG activity States. 
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The preictal phase is before the 

seizure start, the ictal phase is the seizure 

itself, and postictal period is immediately 

after, and another interictal phase is the 

seizure-free time between one seizure and 

the next. Interictal-to-preictal transition 

detection predicts seizures. 

Electroencephalograms have been 

employed in many brain activity 

investigations [12-15]. Seizure prediction 

algorithms were first threshold-based, 

raising warnings when an EEG biomarker 

(feature) exceeded a threshold. However, 

these linear models based on just one 

characteristic may not be enough to 

understand pre-seizure activity.Later, basic 

machine learning methods worked for 

some patients. These algorithms might 

create relationships between EEG 

biomarkers, helping models discover pre-

seizure tendencies. Deep learning 

architectures are being employed in more 

research fields[16-20]. These architectures 

may extract information straight from the 

data without computing created 

characteristics before categorization. 

These models choose the finest features, 

involving fewer feature design and domain 

knowledge to build intelligent systems. 

Although beneficial without physiological 

grounding, machine learning models are 

black boxes. Thus, academics are 

exploiting EEG signals or their various 

aspects to build seizure prediction systems. 

While using deep learning, some 

researchers still use traditional signal 

processing to extract features. Other issues 

are as important as seizure prediction 

algorithm complexity. EEG preprocessing. 

Researchers are using non-invasive EEG 

to predict seizures. These transmissions 

generally have artifacts reduce false alarms 

by removing EEG distortions before 

building seizure prediction models. Low-

pass filters diminish high-frequency noise 

while high-pass filters remove DC noise. 

Das wavelet-decomposed noise. Usman 

reduced artefacts using empirical mode 

decomposition. Prathaban pioneered 

sparsity-based EEG reconstruction. All 

authors improved seizure prediction by 

removing artefacts[21-25]. No work tested 

noisy and denoised models for data 

prediction. 

Typically, seizure prediction 

models are trained on initial chronological 

episodes and evaluated on subsequent 

seizures without taking concept drifts 

through time into account. These 

variations in data distribution may be 

brought on by seizure activity, changes in 

antiepileptic medication type or dose and 

biological cycles such as circadian 

rhythms, which may affect brain 

dynamics. For training computational 

models, a different strategy is needed to 

handle concept drifts. Many authors put 

forth solutions that relied only on routinely 

updating the models. Kiral-Kornek made 

use of EEG data gathered over a period of 

time. They allowed the machines to adjust 

over time by retraining them each month 

and removing old data after a particular 

number of months[26,27]. Pinto made 

advantage of EEG data gathered before to 

surgery. As a result, they only used 

information spanning a few days and not 

data from many months. After testing with 

a fresh seizure, they retrained their models. 

Only Nejedly was able to confirm that 

there had been an improvement in 

prediction performance, despite the fact 

that those investigations had attempted to 

address concept drifts. The current work 

discusses several significant issues that 

must be resolved while creating seizure 

prediction algorithms. We tested a deep 

neural network-based EEG glitch 

reduction model that replicated expert 

manual preprocessing on prediction 

performance. We also examined how 

updating models over time affected idea 

deviations. In conclusion, denoising and 

idea drifts in homemade feature-based 

learning systems and models fed EEG time 

data are comprehensively evaluated. 

This work resolves significant 

problems with seizure prediction models. 

An expert-like deep multilayer deep neural 
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network-based EEG deformation reduction 

model was used to examine the 

performance of predictions. Models were 

retrained to solve idea drifts. A simple 

artificial neural network trained on 

handmade features was contrasted to a 

deep convolutional neural network learned 

on EEG time data.  

 

2.Proposed Methodology 

In the seizure forecasting pipeline, 

EEG data is preprocessed using digital 

frequency filtering and testing mistakes. 

Following this, the pipeline splits into two 

different paths: one that produces denoised 

EEG time-series data, which is free of 

physiological artifacts, and another that 

does not. From the data, we obtained both 

clean and noisy EEG measures. Both EEG 

time series and EEG features are used by 

deep neural networks. Separate training 

and testing sets are then created from each 

dataset. Both the standard strategy, which 

learns once and tests on the rest of 

the epileptic fits, and the chronological 

method, which updates after each test 

seizure, are employed on the datasets to 

generate seizure prediction models. Figure 

2 shows the research pipeline. Since each 

model is patient-specific, this pipeline is 

run for each patient. 

 

2.1.Preprocessing 

Lopes' approach was based on the three-

stage model used in professional hand 

signal preparation. The first filtering was 

done using a second-order notch filter at 

50 Hz and a fourth-order bandpass filter at 

0.5-100 Hz. The program then got rid of 

things like high amplitude data, saturated 

sections, and flatlines that were deemed to 

be experimental errors. Elements known to 

contain artifacts were also removed. The 

first 30 minutes of each epileptic signal 

were discarded to eliminate postictal 

effects. Ten second EEG windows were 

developed at last. The entire time spent on 

data preparation is 4650 hours. 

 

Figure 2. Seizure prediction pipeline 

2.2.Feature extraction 

We recovered EEG features using signal 

processing on previously collected data. 

Time-domain linear univariate features 

included skewness, mean, normalized 

mean intensity, variance, kurtosis, Hjorth 

parameters, and decorrelation. Frequency-

domain linear single-variate characteristics 

included absolute and relative band powers 

(delta: 0.7-3.9 Hz, theta: 3.9-8.5 Hz, alpha: 

13.6-13.8 Hz, beta: 13.6-30.8 Hz, gamma 

1: 47.5-52.5 Hz, gamm Time constraints 

meant that only linear, univariate features 

could be analyzed. 
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2.3.Seizure Prediction pattern 

Developing and testing seizure 

prediction models requires SOP and SPH. 

Fig. 2a shows that the SPH gives the 

patient time to take precautions before a 

seizure occurs, whereas the SOP is the 

seizure itself. Preictal samples, obtained 

before the seizure, match the SOP during 

training. The SPH samples from the 

preliminary preictal samples until the 

seizure start are not analyzed. In the event 

of a real alert, the individual in question 

will have a time frame equivalent to the 

SPH to take remedies before the predicted 

seizure, which will occur inside the SOP. 

The best SOP has never been agreed upon. 

Grid search or unsupervised research has 

been done to discover it. The articles 

above suggest a SOP of 30–60 minutes. 

Researchers have been employing a 30-

minute SOP because it is within the ideal 

range of SOPs found in prior studies and is 

short enough to reduce patient worry. Our 

research employed a 30-minute SOP. 

Patients might use a seizure-suppressing 

medicine since the SPH was 10 minutes. 

Up until forty minutes before the onset of 

a seizure, all samples had been categorized 

as interictal (class 0). Class 1 learning SOP 

samples were preictal. Rejected SPH 

training samples. Figures 3 depicts a valid 

alert as well as two false alarms. 

 

Figure 3. Representation of seizure prediction model training and alert criteria. 

 

2.4.Experimental Data Usage 

The first 60% of the seizures were 

used as training for this division, which 

was carried out chronologically. As 

previously mentioned, data pretreatment 

entailed removing certain data that 

couldn't be utilized. Because of this, it was 

unable to accurately forecast certain 

seizures during testing due to a lack of 

preictal data. In order to preserve the 60/40 

ratio, one test seizure from patient  had to 

be eliminated, and both sets from that 

patient were updated. Finally, we only 

utilized the four hours before to the 

commencement of each seizure during the 

training phase to shorten the calculation 

time. For each seizure in the test set, all the 

data from 30 minutes from the start of the 

preceding seizure to the start of the seizure 

under examination were included.  

 

2.5.Artificial neural network 

architectures 

 Figure 4 shows CNN-BiLSTM 

architecture. It has three convolutional 

blocks and another bidirectional LSTM 

layer. Each block features two layers of 

convolution, one of which is a capable of 

learning pooling layer with stride 2. Each 

block also has a 50% spatial dropout layer, 

a swish activation layer, and a batch 

normalization layer. Eq. 1 describes the 

swish function. 

f (x) = x × sigmoid(x)   (1) 

The numerical values for each property 

were discovered using a grid search 

process.There was no attribute selection 

performed before classification, thus the 

little neural network had no way of 

knowing which features may boost its 

prediction accuracy the most. To prevent 

overfitting caused by the limited size of 
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the training data, dropout layers at a 50% 

rate were used for both neural networks. 

 

Figure 4. Architecture of Neural Network 

Both grid searches utilized the 

same training sample of 10 patients. We 

estimated the geometric averages of 

specificity and sensitivity using the most 

recent seizure data from the training set to 

evaluate the hyperparameters. For each 

possible permutation and patient training 

set, the grid search was run three times to 

evaluate results and choose the best 

hyperparameters. The data was averaged 

out. All the models developed for the 

patient used the selected attributes. 

 

3.6.Training Strategy 

 Standard and chronological 

methods were used to train our patient-

specific models. Epilepsy prediction 

models were traditionally built using a 

static training set and evaluated on new 

seizure data. Learning seizure prediction 

models using one set of epileptic fits, 

testing on the next seizure, merging the 

new seizure (EEG signal and labels) with 

the old training set, and so on, constituted 

the chronological training. Partitioning and 

standardizing the data was done whenever 

the training set was changed. We ran both 

procedures 30 times each, yielding 30 

models for use in a resounding voting 

ensemble, the size of which is sufficient to 

exclude the possibility of a tie. 

Furthermore, in a practical setting, it is 

impractical to have 30 unique displays for 

each patient. The majority vote ensemble 

helped minimize the variance across the 

seizure prediction models, narrowing the 

field from 30 models down to just one. 

We created neural networks with 

64-sample batches of 32 interictal and 32 

preictal datasets. Duplicating preictal 

samples overestimated the minority class 

to even out the classes. Early halting 

normalization with a 40-epoch patience 

prevented overfitting after 500 training 

epochs. Adam, with a 3e4 starting learning 

rate, was the optimization method. Binary 

cross-entropy was the loss function. Early 

stopping requires a validation set to 

continually assess model overfit. Thus, we 

randomly split the training set into a new 

training set and a validation set 4/1. The 

samples were divided 4/1, unlike the 

seizure-level data partitioning. A training-

derived z-score normalized training, 

validation, and test sets. Table 1 

summarizes training conditions. Firepower 

regularization decreased false alarms. A 

SOP-sized moving window collects 

sample projections. 

 

Table 1. Parameters for training Neural Network 

Attributes Value 

Data Set  4/1  

Function Used  Adam 

Rate of Learning  3e−4 

Error function  Binary cross-entropy 

Epochs  400 

Patience epochs (early stopping)  40 

Runs  30 
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 The movable window alarms when 

the preictal instant ratio surpasses 0.5. We 

employed a 40-minute refractory period 

after each alert. Models did not alarm 

throughout this time. Refractory intervals 

protect the individual from being flooded 

with alerts.  

3.7.Post-processing 

 The method involves employing a 

window that is shifting with a dimensions 

equivalent to SOP, that collects the 

predicted output of multiple samples. The 

movable window alarms when the preictal 

instant ratio surpasses 0.5. The SPH and 

SOP periods were concatenated to create a 

40-minute refractory time after each alert. 

Models did not alarm throughout this time. 

Refractory intervals protect patients from 

being overloaded with alerts. Our firing 

power implementation is adapted from 

Teixeira et al. We adjusted the approach to 

manage temporal gaps from disconnected 

windows after preprocessing. Thus, the 

firing power treats gaps as many windows 

that have a null value, reducing until it 

reaches zero. 

3.8. Performance Assessment  

 We used three metrics—seizure 

sensitivity, false alarms per hour (FAPH), 

and the number of people with above-

chance performance as measured by 

surrogate analysis—to evaluate the 

accuracy of the seizure model's 

predictions. Using Equations 2 and 3, the 

sensitivity to seizures and FAPH were 

calculated.The ratio of the total number of 

real alarms to the total number of 

experimental seizures is known as 

sensitiveness of seizure (SS). 

 

Sensitiveness of Seizure(SS) 

=
𝑅𝑒𝑎𝑙 𝐴𝑙𝑎𝑟𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑆𝑒𝑖𝑧𝑢𝑟𝑒𝑠
  (2) 

 

The rate of false alarms per hour  is 

the ratio of the number of alarms that are 

false (#FalseAlarms) to the whole length 

of the interictal phase (InterictalDuration) 

without the intervals soon after false 

alarms when no new alarm may be 

triggered (#FalseAlarms × 

RefractoryDuration). 

 

FAPH=
𝐴𝑙𝑎𝑟𝑚𝑓𝑎𝑙𝑠𝑒

𝐿𝑒𝑛𝑔thInterIctal−Alarmfalse×LengthRefraction

   (3) 

 

 The substitute analysis uses the 

technique of Monte Carlo and moves 

seizure  at random.This approach is used 

to see if the models do better than what 

would be expected by chance. When a 

level of significance of 0.05 is used, 

seizure forecasting techniques are said to 

perform better than chance if their results 

are statistically significant and better than 

the results of the substitute. The results of 

the analysis is tabulated in table 2. 

 

Table 2. Prediction of seizures algorithms' average outcomes 

Approach 

 

Sensitivity of 

Seizure 
FAPH 

Above Borderline 

(%) 

Standard Denoised EEG 

 
0.17±0.23 0.29±0.45 

13 (0.27) 

 

Chronological Denoised EEG 

 
0.19±0.21 0.21±0.21 16 (0.41) 

StandardDenoised Features 0.32±0.32 0.88±0.94 22 (0.52) 

ChronologicalDenoised Features 0.35±0.34 0.84±0.73 23 (0.56) 
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StandardNoisy EEG 0.12±0.22 0.32±0.55 
9(0.21) 

 

ChronologicalNoisy EEG 0.16±0.21 
0.23±0.21 

 
15 (0.36) 

StandardNoisy Features 0.33±0.35 
0.91±1.07 

 
21 (0.47) 

ChronologicalNoisy Features 0.31±0.33 0.81±0.61 22(0.53) 

 

Denoising EEG data and retraining 

the algorithms were examined to generate 

patient-specific seizure prediction models. 

Deep neural networks and shallow neural 

networks were employed to create the 

prediction models.Lopes et al. designed 

and tested the EEG artefact reduction 

model for EEG signal reconstruction. 

Next, we wanted to see whether artefact 

reduction might enhance seizure 

prediction. The artefact removal model 

denoised EEG data before generating 

seizure prediction models, improving 

seizure sensitivities, FAPH values, and 

patient performance above chance level in 

most situations.  

 

 

Fig. 5. Sensitivity of Seizure- A comparison of various approach 

 

Fig. 6.FAPH- A comparison of various approach 
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Various measures showed various 

retraining behaviors.  The seizure 

sensitivity as illustrated in figure 5. 

Retraining enhanced FAPH and the 

number of patients performing above 

chance were illustrated in figure 6 and 7 . 

Thus, chronological training helped 

models adjust to idea drifts or have more 

training data. This reduced false alarms 

and increased patient performance above 

chance level.Deep learning models have 

lower seizure sensitivity and FAPH values 

due to their cautious alarm firing. Due to 

their lesser sensitivity, deep learning 

models had fewer patients performing 

above chance. 

 

 

Fig. 7.Above Threshold- A comparison of various approach 

   Surrogate analysis could not verify 

models that failed to forecast test seizures, 

hence fewer patients performed above 

chance.After denoising technique and 

chronological training, deep learning 

models outperformed shallow neural 

networks. Data-driven deep neural 

networks.EEG time series characteristics 

are automatically retrieved. Feature-based 

models acquire knowledge utilizing 

equation values from years of study. 

Retraining just adjusts categorization 

model weights. Thus, deep learning 

architectures, adjusting to the input 

training data distribution, may be more 

impacted by input data amount, quality, 

and temporal closeness to the next seizure. 

Conclusion 

 This paper discusses the 

importance of sturdy preprocessing for 

eliminating noisy artefacts from EEG 

signals, such as ocular artefacts, and the 

need to periodically retrain seizure 

forecasting algorithms to account for 

concept drifts. Denoising data and 

retraining models enhanced deep learning 

performance. Denoising and retraining had 

little impact on basic neural networks 

utilizing handmade features as input, 

suggesting that customized characteristics 

were more data-resistant. Shallow neural 

networks with handmade features 

predicted twice as many seizures as deep 

learning models. False alarms were four 

times greater than deep neural networks. 

Thus, comparing both models yields no 

clear winner. These methods should be 

evaluated with additional patients and 

prospective data. These methods should be 

tested with additional test seizures and 

extremely long-term acquisition system 

signals. This research examines epilepsy 

pre-seizure. A temporal window accurately 

predicted epilepsy. Many areas need 

upgrading. To increase results and forecast 

efficiency, the model might be 

parameterized or simplified. Non-patient-

specific seizure prediction will be 

researched. 
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