DECOMPOSITION OF COMPLETE BIPARTITE GRAPHS INTO PATHS AND CYCLES USING
2-SIMPLE GRAPHOIDAL COVERS

=——— DECOMPOSITION OF COMPLETE BIPARTITE
E GRAPHS INTOPATHS AND CYCLES USING
2-SIMPLEGRAPHOIDAL COVERS

VENKAT NARAYANAN, G § SARAVANAN, M?,

Y8Department of Mathematics, St. Joseph’s College of Engineering, Chennai, India.
Department of Mathematics, Mannar Thirumalai Naicker College, Madurai, India

gvenkatnarayanan@gmail.com;msaran81@gmail.com ;

Abstract. Every nation’s economy is centered on its transportation networks,
which are also reshaping the global economy. Utilize graph decomposition
techniques to optimize transportation networks to save travel times and fuel
expenses. A 2—simple graphoidal cover(2-simple g.c) of G is a set y of (not

necessarily open) paths in G such that every edge is in exactly one path in
and every vertex is an internal vertex of at most two paths in y, and any two
paths in y has at most one vertex in common. The minimum cardinality of the
2—-simple graphoidal cover (2-simple g.c) of G is called the 2—simple graphoidal
covering number of G and is denoted by 7,. In this study, we discuss
decomposition of complete bipartite graphs using 2-simple graphoidal covers.
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1. Introduction

A graph’s decomposition is a collection of edge-disjoint subgraphs G,,i=12...n of
the same graph G, where each edge of the original graph G is contained in exactly one
Gi. A number of writers to discover several types of graph decomposition, apply
different conditions and parameters. Acharya and Sampath Kumar [1, 2] developed the
concept of graphoidal cover(g.c). Arumugam and Shahul Hamid developed the concept
of a simple graphoidal cover (simple g.c) in their paper [4]. Das and Ratan Singh [5]
proposed the idea of a 2-graphoidal cover. Motivation of 2-graphoidal cover, Venkat
narayanan et al. [9] developed and discussed the idea of a 2-simple graphoidal cover on
standard graphs. In this paper the authors discuss decompositions of complete bipartite
graphs into paths and cycles. In chemical reactions and molecular interactions, complete
bipartite graphs can be used to represent the association between two sets of molecules
or functional groups. For example, in drug design, a complete bipartite graph can
represent the interactions between a set of ligands and a set of target receptor sites. This
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representation helps in understanding the binding affinities and designing effective drug
molecules
2. Preliminaries

A finite, simple, non-trivial, connected, and undirected graph is referred to as G =
(V,E). The symbols p and g, which stand for the number of elements in V, or order, and
the number of elements in E, or size of G, respectively. For graph theoretic terminology
we refer to Harary [6]

Definition 2.1. [1] A graphoidal cover(g.c) of G is a set y of (not necessarily open)
paths in G satisfying the following conditions.

(i) Everypathin y, has at least two vertices.

(i) Every vertex of G is an internal vertex of at most one path in

(iii) Every edge of G is in exactly one path in ;.

The minimum cardinality of a graphoidal cover of G is called the graphoidal
covering number of G and is denoted by 7.
Definition 2.2. [4] A Simple graphoidal cover (simple g.c) of a graph G is a graphoidal
cover y, of G such that any two paths in y, have at most one vertex in common. The

minimum cardinality of a simple graphoidal cover of G is called simple graphoidal
covering number of G and is denoted by 7, .

Definition 2.3. [9] A 2-simple graphoidal covering (2-simple g.c) of a graph G is a set
w, of paths in G such that every edge is in exactly one path in v, every vertex is an
internal vertex of at most two paths and any two paths in y, have at most one vertex in

common. The minimum cardinality of 2-simple graphoidal cover . of G is known as
2-simple graphoidal covering number of G.

Theorem 2.1. [9] For any (p, q) graph, n,,(G) =q—p—t,+t, where t, denotes the
total number of internal vertices that appear exactly twice in paths of . , whereas t
denotes the total number of external vertices in the paths of y .
Corollary 2.1. For any graph G, the following are equivalent

() 7,:(G) =q-p-t,

(ii) There exists a 2-simple g.c of G without exterior vertices
Corollary 2.2. There exists a 2—simple g.c v of G in which every vertex is an internal

vertex in exactly 2 paths in w of if and only if 7,,(G) =q-2p.

3. Main Results

Theorem 3.1. For the complete bipartite graph K, ,,r= 1,s> 1

r,s?
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1 if s=1(or)s=2
(i) me(K)=1 2 if s=3

s—2 if s>4
1 if s=2
3 if s=3
4 if s=4
5 if s=5
2s—6 ifs>6

(i) 7 (Kyo) =

if s=3
if s=4
if s=5

8 if s=6
3s-12 ifs>7

~N o o1

(”) '725(K3,s) =

8 if s=4(or) 5 (or) 6

; 10 ifs=7
(iv) 7723(K4,s) = 13 i s—g
45 —-20 if s>9

10 if s=5

12 if s=6,7

V) m(Kg)=7 q-2p ifs=809

21 if s=10

55—30 ifs>11

14 if s= 6

. 17 if s=7
M) ma(Ke) =9 0 0p i 528910111213

65— 39 if 5>14

g-2p if7<s<14
7s—42 ifs>14
Proof. It is observed that for any 2—simple g.c of K, any member of y is either a

(vii) 7725(K7,s) :{

cycle of length 4 (Or) a path of length < 2.
(i) Now let X ={r,}and Y ={y,, ¥,, ¥s...., ¥, } be the bipartition of K, with p =1 +s,

q=s.
Case 1. Since K;,and K, are paths. Therefore 7,,(G) =1.
Case 2. Whens =3
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Then K, is a tree with 3 pendant vertices and no vertex is of degree > 4. Therefore
M (Ky5) =3-1-0=2.

Case 3. When's >4
Then K, is a tree with s pendant vertices and one vertex is of degree > 4. Therefore

M (Kps)=s—1- 1=5-2.
(i) Now let X ={r,r,} and Y ={y,, ¥,,Vs.... ¥} be the bipartition of K, with
p=2+s,q=2s.
Case 1. Whens =2

Then 7, (K,,) =(k, Y05, Y50 0) =1,
Case 2. Whens =3

Then wg ={(f Y16, ¥2.0). (5. ¥5). (5, ¥;)} is @ 2-simple g.c of K,, so that
s (Kz5) < 3. Now, let y be any 2-simple g.c of K, . Since no vertices is of degree >
4, t, =0and if y contains one cycle, then t, =2 otherwiset, >3. Hence t,=0,t> 20
that 7, (K,;)=q-p—t,+t=6-5-0+2=3. Thus 7, (K,,)=3.
Case 3. When s =4

Then we ={(5. 1.5, Y5, 1) (Yar B Yo ) (10 Y ) (120 Vs )} is @ 2-simple g.c of K, so that
7 (K;4) < 4. Now, let w be any 2-simple g.c of K, ,with |ys| < 3. Case in which
lws| =1, is not possible since any paths in K,, is either a cycle (or) path. If |y¢|=2,
then y contains exactly two cycles . If ;| =3, then y contains exactly one cycle
and two paths. In both cases, any two paths(cycles) in y, contains more than one
common vertex which is a contradiction. Therefore|ys|> 4. Hence 7, (K,,)>4. Thus
7 (Kpu) =4
Case 4. Whens =5

Then ={(r1,yl,rz,yz,fl)v(ys,rl,y4),(y3,r2,y5),(r1,y5),(r2,y4)} is a 2-simple g.c
of K,;s0 that7,,(K,s) <5. Now, let y; be any 2-simple g.c of K, with |y;|<4.
Case in which |ys|=1(or)2, is not possible since any paths in K, is either a cycle or

path. If || =3, then y contains two cycles and a path. If || =4, then y contains

two cycles and two edges. In both cases, any two paths(cycles) in y contains more than
one common vertex which is a contradiction. Therefore |y;|>5. Hence 7, (szs) >5.

Thus 7, (K,5)=5.
Case 5. Whens=>6

Then the collection paths are B, =(1,y,,5,,¥,.6), P, =(V5. 0. Ys) Py =(Ys. 15, Y5 ) and
P, =(Ys:h. Ys)-Then g ={P:i= 1,234} U{Q}, where Q is the set of edges of K,
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not covered by {P:i=1234} is a 2-simple gc of K, so that
Wo|=4+(25-10)=25-6. Hence 7, (K,,)<2s—6. Now, let y be any 2-simple
gc of K, . If w; contains a cycle and three paths of length 2, the
t,(v)=21t,>(s— 2) otherwise t,(w)=2, t,> (n—1). Hence t,=2,t>(s— 2)so
that 7, (K,,)22s —(2 +5)—2+(s— 2)=2s— 6 Thus 77,,(K,)=2s-6.
(iii) Now let X ={r,r,,r,;} and Y ={y,, ¥,,¥s,..., Y} be the bipartition of K, with
p=3+s,0q=3s.
Case 1. Whens =3

Then v ={(r, Y., 0 Y2, 1 )s (Yo 050 Y5 ) (0,3 ) (10 ¥s )4 (K ¥, )} is @ 2-simple g.c of
K, SO that 7, (Kg,g) <5. Now, let i be any 2—simple g.c of K;;. Since no vertices is
of degree > 4, t, =0and If y/; contains a cycle and a path, then t, =2 otherwise t, > 2.
Hence t=2,t, = 0so that 7, (K;,)29-6-0+2=5.Thus 7,(K,;)=5.
Case 2. Whens =4

Then wo ={(r, Vi 0 Yo 1) (6 Yo B ¥an )0 (0, Y3 ) (0 ¥ ) (B0 ) (1, Y, )} is @ 2-
simple g.c of K;, so that 7, (K,,)<6. Now, let y be any 2-simple g.c of Kz 4 with
lws|<5. Cases in which || =1(or)2, is not possible since any paths in K, is either a
cycle or path. If [ys|=3, then w contains exactly three cycles. If jys|=4, then yg
contains two cycles and two paths of length 2. If |y/G| =5, then w contains exactly one
cycle and four paths of length 2. In all cases, any two paths(cycles) in y contains more
than one common vertex which is a contradiction. Therefore |ys|>6 . Hence
M Ky )2 6. Thus 77,(K;,)=6.
Case 3. Whens =5

Then yg ={(6, Yo 00 Yo 1) (Vi B0 Y3 )s (V2o B Ve ) o (Vo T ¥ ) (Vs T2 Vs ) (1 Vs )
(. Y, )} is a 2-simple g.c of K, so that 77, (K,;)<7. Now, let y be any 2-simple
g.c of K, with || <5. Cases in which |y|=1(or)2(or)3(or)4, is not possible since
any paths in K, is either a cycle or path. If |y|=5, then y contains exactly three
cycle and one paths of length 2 and an edge. If|x//G|: 6, then y contains exactly three
cycles and three edges of length 1. In all cases, any two cycles in y contains more
than one common vertex which is a contradiction. Therefore |ws|>7 . Hence
s (Kys )2 7.Thus 77, (K, ) =7.
Case 4. Whens =6
Then v ={(1, Y1, Y20 1) (B0 Y30 s Vs 12 ) (o s ¥ ) (V3o s Y )s (Vi B2 Yo): (Y B

Ye)s(F5r Y1) (10 ¥4 )} is @ 2-simple g.c of K so that 77, (K,,)<8. Now, let w be any
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2—simple g.c of K,,. If w, contains two cycles and four paths of length 2, then
t,(w)=3t, =2 otherwise t,(y) <3, >4.. Hence t,< 3t> 250 that n, (K,,)=2
18—9-3+2=8. Hence 7, (K,;)=8.
Case 5. Whens>7

Then the collection of paths are P, = (1, ¥, ¥,,6), P, = (1 Y. 0 Voo ) By = (1, Vs,
LYo ) P = (Va0 Y2 )i P = (Ve 0n V2 ) &Py =(Y,. 1, Y5 ). Then w ={PR,i=1.,6} U{Q}
where Q is set of the edges of K, not covered by {Pi,i =1, 2,...,6} is a 2-simple g.c of
K50 that |y/s| =6+ (35—18) =35 -12. Hence 7, (K,, ) <3s—12. Now, let y be any
2—simple graphoidal path cover of K, . If w contains three cycles and three paths,
then t,(w)=3t, >(s— 6)otherwise t,(y)=3,t, >(s— 3).Hence t,=3,t>(s— 6)so
that Mo (Kss)=0q—p—t,+t235—(3 +5)—3+(s— 6)=3s— 12 . Hence
7 Ky ) =3s-12.
(iv) Now let X ={r,r,,r,r,}and Y ={y,, ¥,, ¥s...., ¥} be the bipartition of K, with
p=4+s,q=4s.
Case 1. Whens =4

Then e ={(rn, Vi 0o You ) (B Viu T ¥au 13 ) (0, Vi 1) (5, Voo 00 ) o (1, 3 ) 1 (1 Y3,

(% Y,).(rs ¥, )} is a 2-simple g.c of K,,so that 7, (K,,)<8. Now, let y be any
2-simple g.c of K, ,with |y.|<7. Cases in which |.|=1(or)2(or)3is not possible,
since any paths in K, ,is either a cycle (or) path. If |1//G| =4, then y, contains exactly
four cycles. If || =5, then  contains exactly three cycles and two paths. If |y |=6,
then y contains exactly two cycles and four paths. If |1//G|=7, then w, contains
exactly a cycle and six paths. In all cases, any two cycles in y contains more than one
common vertex which is a contradiction. Therefore |y;|>8.Hence 7, (K4,4) >8. Thus
ﬂzs(K4,4) = 8.
Case 2. Whens =5

Then wo ={(1, Y16, Yo 1) (B Yoo B Vau 15 )5 (1 Yo T Voo 1) o (Yoo s Vs ) o (Vs B Vs ) s (B Y
6),(1,Ys) (10 ¥s )} is @ 2-simple g.c of K,;so thatr, (K,)<8. Now, let v be any
2-simple g.c of K, ;. If w contains three cycles and three paths, then t,(y)= 4t, =1
otherwise t,(y)= 4,t,> 4 . Hence t,=4,t> 1 so that 7, (K,;)>20-9-4+1=8.
Thus 7,, (K,5)=8.
Case 3. Whens =6
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Then w ={(f, Y0 050 Yo 1) (0 Yoo B Yo 12 ) (B Yo B Yoo ) (K Yo s Yo 00 ) (Vo s Vo)
(Y5150 Y6 )5 (Y2 15 Y5 ) (Vo T Vo )} is @ 2-simple g.c of K, so that 7, (K, )< 8.Now,
let . be any 2—simple g.c of Kag. If w contains four cycles and four paths, then
t,(w)=6,1,=0, otherwiset, () <4t,> 3. Hencet, <6,t> 050 that 7, (K,,)>8.
Thus 7,, (K,)=8.

Case 4. Whens =7

Then v ={(r, ¥, 0, Y5, 1), (5 Yar s Vo 1) (B0 Vo 0 Ve 1) (T Ya 1 Vs 0 ) (1, Vi 1)
A0 Y2 1) (Va1 Y ) (Vs Ton Yo )y (Vo 150 Vs )4 (Va0 s Vs 3 i @ 2—simple g.c of K, ;so that
76 (K,7) <10. Now, let y¢ be any 2-simple g.c of K, . If y contains four cycles and
four paths , then t,(y)=7,t,= 0, otherwise t,(y)<5,t, >3. Hence t,<7,t>0 so
that 7,, (K, )>28-11-7+0=10. Thus 7, (K, )=10.

Case 5. Whens =8

Then the collection of paths are {(r, Y. 5, ¥,.6), (5, Var s Yar )i (B Yss T Yoo 1o ).
(% Yoo 5 ¥ 1) (0 Y T Yoo 1) (Y 5 Ve ) (Y7 T2 Y ) (0 Vi 1) (Y2 T Y ) (10 Y2 ), (1,
Ye)s(F5r ¥7 ), (Fe ¥a J}is @ 2—simple g.c of K, 450 that 77, (K, ) <13. Now, let v/, be any
2-simple g.c of K,,. If y contains five cycles and four paths, then t, ()= 7,t,=0
otherwise t, () <5,t, >3. Hence t,<7,t>0s0 that 7, (K,;)>32-12-7+0=13.
Thus 7, (K, ) =13.

Case 6. When s>9

Then the collection of paths are P, = (1, ¥, 6, ¥,,6), P, = (5 Y B Ve ), B = (1, s,
Fos Yor To) P = (s Voo s Vi 1) P = (1 Vi T Y ) Py = (B Vo T Yo 1) Py = (Vi Vi)
and P, =(y;.1,,¥s). Then y ={P:i=12,..,8,uQ where Q is a set of edges of K,
not covered by {R:i=1.,8 , is a 2-simple gc of K, so that
lwo|=8+(4s—28)=4s-20 Hence 7, (K,,)<4s-20. Now, let y be any 2-simple
graphoidal path cover of K, . If y; contains six cycles and two paths , then
t,(w)=71t,=5s-9, otherwise t,()<5, t, >s-5. Hencet,<7,t>s-9 so that
Tys (K )2 45— (4+5)—7+(s—-9)=45-20. —20.Thus 77,, (K, ;) =4s—20.

(v) Now let X ={r,,r,,r,,r,,r;}and Y ={y,, ¥,,Vs...., ¥, } be the bipartition of K, with
p=5+s,q=5s.
Case 1. Whens =5

Then y ={(1. V0.0, ¥2u 1) (B Yo T Vs 12 ) (Ve Yoo 15 Vs 00 ) (P Y 1 Vs 13 ) (Vi T
Ya) (Vo su ¥ ) (Tar Yoo 1) o (00 ¥ ) o (1, V5 ) (K, v3 )} is @ 2-simple g.c of K., so that
7 (Ks5) <10. Now, let y be any 2—simple g.c of K. If y contains four cycles and
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three paths, then t,(y)=5,t, =0, otherwise t,()<2,t, >0.Hence t, <5,t> 0so that
s (Kss) = 25-10-5+0=10. Thus 7, (K )=10.
Case 2. Whens =6

Then 1//:{(rl,yl,rz,yz,rl),(rz,ys,r4,y4,l’2),(r3,yl,l’5,ys,r3),(l’4,ys,l’l,ye,ﬂ),(rz.ya,l’s),
(0 Yo 1), (6 Y 5 )o (Va0 ¥ ) o (B Vo 10 )0 (Vo Bsu Vs )4 (1 ¥s ) (1, ¥, )} is @ 2—simple g.c
of K, 450 that 7, (Kgs)<12. Now, let y be any 2—simple g.c of Kse. If y contains
four cycles and six paths , then t,(y)=7,t, =0, otherwise t,()<6,t, >3 . Hence
t,<7 ,t20, sothat 7, (Kgs)=0—p—t, +t>30-11-7+0=12. Thus 77,, (K, )=12.
Case 3. Whens =7

Then v ={(r, V1.0, Y5, 0) (N Yo 0an Yo 0o ) o (T Vi B Vs )0 (00 Vs 1 Voo 1 ) (0 Vs B Yy
(5 Yo 0n Yoo 06 ) (0 Yo 15 ) o (Vi B V6 ) (6 Yoo 0 ) (Yo 0 ¥ )y (Vo Bsu V3 ) (0 Y5 ) is @
2—simple g.c of K;,so that 7725(K5'7)s12. Now, let w be any 2—simple g.c of K. If
W contains six cycles and five paths , then t,(y)=11t, =0, otherwise t,(y)<7,t, >3
.Hence t, <11,t>0 so that 77,, (K, )>35-12-11+0=12. Thus 7, (K, )=12.
Case 4. Whens =8

The collection of paths are B, =(1, ¥;, 6, Y5, 1), P = (1, Yau Ty Yar )0 P = (10 Vi T Vs
)P = (0 Y Ve 0 ) B = (0 Vs 0 Yo ) Py = (6, Yo 0 Yo 15 ) Py = (10 Ve 1 Vo 1)
Po=(r Ya i Yer 55 ) By = (Yar 10 Yo ) &Py = (V2. %, Y3)- Then yw ={P,:i=1,2,...,10}
together with remaining edges form a minimum 2—simple g.c of K, in which all the
vertices are made internal exactly twice in a path. By corollary 2.2, 7,, (Ks5)=q—2p.

Case 5. Whens =9
The collection of paths are

P :(rliyl’rz’ y2’rl)’ P, =(r2,y3,r4,y4,r2), Ps :(rS’yl’rS’ Y5
rs)' I:)4 :(r4’Y5'r1’ y6'r4)’ Ps :(G1Y3’r3' y7,r1), P6 =(I’3, Yoi Ty, y8’r3)' I:)7 :(r5, Yer b y7vr5)v

Ps :(rsl Yoo i YS’rs)v P9 :(y4,r3, ye)’ I:)10 :(yZ'rS’ ys)’ P11 :(rz’ ygirs)&Pu =(I’4, y91r5)-
Then gz/:{Pi = 1,2,...,12} together with remaining edges form a minimum 2-simple

g.c of K;gin which all the vertices are made internal exactly twice in a path. By corollary
2.2, 7725(K5,8):q_2p-
Case 6. Whens =10

Then the collection of paths are P, = (1, ¥, 6, ¥, 0), B =(6 Y 00 Yo 1) Py = (5, Vi
s, y5,r3), P4 =(I’4, LRLY I’4), I35 :(rl’ Y3, 05, Y7, r1)1 P6 =(I’3, Yo lys Ys: rs)' I37 =(r5, Yer Ios
Y7 rs)’ Ps =(I’5, L y87r5)’ P9 =(r4, Yo, 15, y101r4)1 PlO =(I’2, yg’rs) &Pll :(YAvrs’ys)-
Then y ={P:i= 12,..,11}U{Q} where Q is a set of the edges of Ks10not covered by
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{P:i=12..11} is a 2-simple g.c of K, so that 7, (Kq,,)<21. Now, let y be
any 2-simple g.c of K, . If y; contains nine cycles and two paths , then
t,(w)=14,t, =0 otherwise t,(v)<6,t,>1 . Hence t,<14t>0 so that
s (Ko ) 250-15-14 =21,
Thus 7,, (Ksy)=21..
Case 7. Whens > 11

The collection of paths are P, =(r,¥,,5,Y,.5), P =(N Yau T Yo 1) Py = (6, Y, K, Vs,
L) P =0 Yl Yo 1) P = (0 Y 0 Vo 1) P = (6 Vo W Ve 1) Py = (15, Yo 1, Voo 1 ) Py =
(Fs Va0 Yo 15 )0 By = (10, Yo 1 Yo 1) &P = (1, Vo 1, Vi T ). Then
y={P,i=12,.10} U{Q} where Q is set of edges of K,  not covered by
{P:i=1.,10}is a 2-simple g.c of K so that |y;|=10+(55—-40)=55—-30. Hence
ﬂzs(Ks,s)$55—30- Now, let y; be any 2—simple g.c of K; . If y contains ten cycles,
then t,(w)=14,t, =s—11otherwise t, () <10,t, >s—5.Hence t, <14,t >s—11so that
s (Ks ) 255 —(5+5)—14+(s—11)

=55—30. Thus 77,, (K, ) =55 —30.

(vi) Now let X ={r,r,,r,r,r,r}tand Y ={y, y,, V..., Y} be the bipartition of K,
with p=6 +s, q = 6s.
Case 1. Whens =6

Then v ={(r, Y00 You 1) (50 Yau Tan Yo 05 ) o (Fan Vas T Voo B ) (Fas Vo s Yoo 00 ) (B Yo B

Yarts) (T Yoo 00 Yoo 06 ) (Yar T Vs ) (VT Vs ) (Va0 Y ) (Va1 ¥ ) (1 V2 ) (1 ¥ ) (160 Y5 ),
(r;,y5)} form a 2-simple g.c of K, so that 77, (K,,)<14 . Now, let y, be any

2—simple g.c of K. If w contains six cycles and four paths, then tz(://)=10,ty, =0
otherwise t, () <6, t, >0 . Hence t,<10,t>0, so that 7, (K,,)>36-12-10=14.
Thus 7,, (Kge)=14.

Case 2. Whens =7
Then v ={(1, Y1, 5, Yoo 1)s (B0 Y s Voo 1) (B Vi Yo Yo 1 ) (s Vs o Vo 1) (15, Vs T,

YarTs ) (T Yo 1 Yoo T )o (B Yoo Boo Vi 1) (Vi s V2 ) (Vi 0 Vs ) (W o ¥ ) (Vi B0 Y3 ) (120 Ys)

(60 ¥e): (50 ), (0, Y1), (5, Vo), (15, Y7 )} is @ 2-simple g.c of K, so that 7, (K, )<17.
Now, let y; be any 2—simple g.c of K. If y contains seven cycles and three paths,
then t,(yv)=12,t,=0 , otherwise t,(»)<7,t, >0 . Hence t,<12,t>0 , so that
M (K ) 242 —13-12=17.Thus 7, (K,,)=17.
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Case 3. Whens =8

Then v ={(1, Y1, 5, ¥ou 1 )s (6, Yar B Yoo 1)y (B Yoo T Vs 15 ) (s Yoo T Yo 0 ), (T, Yo T
Yor ) (16 Va0 Y T ) (1 Vi T Yo 1) (T Yo 0o Y 00 ) (Voo 0 Vs ) (W B Ve ) (Y T V),
(Y., 15, ¥, J}together with remaining edges form a 2—simple g.c of K, in which all vertices
are twice made internal. By the corollary 2.2, 7, (K,4)=q-2p.
Case 4. Whens =9

Then y ={(r, Y105, Y20 1) (B Yo T Yoo 1) (B Yoo T Vo T ) (K Vi T Yo T ) (5, Vs
Yorla)s (15 Yoo o Vs 15 ) (T Voo Ve 16 ) (T2 Yo B Yoo 02 ) (B Vo T Yo 1) (W 020 Vs ) (Vi s
Ya): (Y215, Yo )} together with remaining edges form a 2—simple g.c of K in which all
vertices are twice made internal. By the corollary 2.2, 7, (Ks,)=q—2p.
Case 5. When s = 10

Then  w={(r, i, Yo 0)o (B Va0 Yo 1) (s Yo B Ya B ) o (P Vi B Vo T ) s (B, Vs

Yorla): (%6 Y T Yo 15 ) (Voo Voo Ve T ) (P20 Yo B Yo 12 ) (P Vi s Yo 12 ) (W B0 Vs )1 (Y P
Ya)s (Y20 %60 Yo )+ (s Vios % )1 (K2 Voo s )} together with remaining edges form a 2-simple

g.c of Kg,, in which all vertices are twice made internal. By the corollary 2.2,
s (K0 ) =0 —2p.
Case 6. Whens = 11

Then v ={(1, V0,5, You 1)y (R Voo T Vo 1) (16 Yo B Voo ) (T Vi T Vi T ) (15, Vs 1 Vi
) (0 Yar 160 Yo 5 ) o (B Y70 1 Yo T ) o (o Yo T You 15 ) (T Vo s Yo T ) (Vs T Vs ) (Vi P V),
(Y2 T, Y6 ) o (1 Yior 15 )+ (62 Yios 05 )4 (Ko Vi 1 )4 (1, Yaa 15 )} together with remaining edges
form a 2—simple g.c of K, , in which all vertices are twice made internal. By the
corollary 2.2, n,, (Kg,,)=q—2p.
Case 7. When s = 12

Then v ={(1, Y2 T Yo 10 )s (B Voo T You 1) o (s Yo o Vi 16 ) (12 Vi 1 Yo 1) (11 Vs B
YiorTs )5 (T Yoo T Yoo 16D (Fs Yas o You 1) (50 Vo s Yo 1) (s Vo T Vans B ) (T Vs s Vo T )
(0 Vs T, Yoi s )2 (s Vi 1y Voo T ) together with remaining edges form a 2—simple g.c of
Ke, In which all vertices are twice made internal. By the corollary 2.2,
s (Ko ) =0 —2p.
Case 8. When's = 12

Then w ={(1, ¥, %, Yo 1) (%o Voo Tan Yo 15 )o (B Yar B Vo 15 )0 (B Yoo s Vi ) (15, Yo s
Yior 16 (T Yar U Yo T ) (10 Yo s Yo ) (1 Vo B Vi 1) (15 Vi T Vi 16 )1 (B Vs T Vi ),
(N0 Vs Tss Yo T ) (T4 Vi B Yioo 0 )4 (Do Viss 12 ) (15, Yiao 1 )} together with remaining edges
form a 2-simple g.c of K, in which all vertices are twice made internal. By the
corollary 2.2, 7, (Ks5)=0—2p.
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Case 9. When s > 14

Then the collection of paths are P, = (1, Y. 1, ¥a [): P = (6, V7.0 Yo 1), Py = (K, Vg
o Y ) P = (0 Yo 6 Y ) B = (6 Vo B Yion 15 )0 P = (T Y 0 Vi 15 )0 P = (1, Y s,
Yo l) Po = (1 Yo 0o Yo 1) Po = (10 Vo 06 Vano 15 ) Po = (T Vo T2 Yz 06 ) Py = (0 Vs T Vi,
L) Po = (1 Vi 0 Yios 1) Ps = (0, Vis 00 ) Py = (1, Vg 1) & B = (1, Yaau 13)- Then y =
{R,i=1,.,15} U{Q} where Q is set of edges of K not covered by{P,i=1,..,15}is a
2-simple g.c of K, so that |y |=27+(6s— 66)=65-39. Hence 7, (K, )<6s-39.
Now, let w be any 2—simple g.c of K. If y contains twelve cycles and three paths
thent, () =19,t, =(s—14) otherwise t,(y) <11t >s— 9.Hence t, <19, t>(s-14)
so that 77,, > 65—(6 +5)—19+(s— 14)=65-39. Hence 7, (K, ) =65-39.
(vii) Now let X ={r,r,, 1,1, K, r.r}and Y ={y,, ¥,,¥,,... ¥} be the bipartition of
K, with p=7+s,q=7s.
Case 1. When7<s< 14

Then the collection of paths are P, = (1, ¥,,5,,¥,.0), B, =(6, ¥a &, 5.5 ), B = (1, Y,
T Y 0 P = (0 Y 0 Yo 0 ) B = (s Vs Tsn Voo 15 ) P = (K Vi 150 ¥ 1 ), B = (1, Y 1
Yorlr ) P = (Vas s ¥7 ) B = (Y 100 Y5 ) Po = (V2 B0 ¥ ) P = (Vs T ¥ ) P = (V2 61 Y )
Pa=(Yar T ¥s) P = (Y015, ¥5 ), Q = (0 Voo 1) o Ry = (1 Yoo 1y )tk # L p 2, i =1,2
,..7and 7+i<s. Then y ={P:i=12,.,14} U{Q:i=1.,7} U{R :i=1..,7} together
with remaining edges form a minimum 2—simple g.c in which all the vertices are made

internal twice. By the corollary 2.2, 7, (K, )=q-2p.

Case 2. Whens > 15
Then the collection of paths are P, =(1, y,,5,, Y5, 1), B, = (1, Yau 10 Y70 1, ), By = (1, Vs

T Y P = (0 Y 6 Yo 0 ) B = (1 Yo b Vo 15 ), P = (1 Vi B, ¥ 1 ), P = (1, a1

Yol ) P = (Yar i ¥y ) P = (Va1 ¥s ) Po = (V2 B ¥ ) P = (Y V6 )1 P = (V2 6 i)

Pa=(Y2r 10 ¥s) P = (V0o 15, ¥5), Qi = (R Vo) and  Ri=(r,,y,,.1, )tk == p=a,
i=12,.,7,7+i<s. Then y ={P:i=1.,14} U{Q :i =1..,7} U{R :i =1,..., 7} together
with remaining edges form a minimum 2—-simple g.c in which {yi il :15,16,...} cannot
be made internal. Thus |yg|=28+(7s—-70)=7s-42 . Hence n, (K,,)< 7s—42.
Now, let v, be any 2—simple g.c of K, . If w, contains seven cycles and twenty one
paths, then  t,(w)=21t,=s- 14 otherwise t,(y)<151t, >(s— 13). Hence
t,<2Lt>s-14 so that 7,(7,5)>7s—(7 +s)-21+(s— 14)=7s—42. Hence
M Ky ) =75 -42.
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Theorem 3.2. For a complete bipartite graph K, S,( 8) and r is even, then

2
ifr<s< r+r
rs—2r—2s 4

2rs—r> —5r . r’+r
S — if s>
2 4

Proof. Now let X ={r,r,,1,,....,r.}and Y ={y,, ¥,, ¥,,..., Y} be the bipartition of K
with p=r+s, q=rs. Now there are two cases.
Case 1. When rsssL(r2+r)/4J

Then the collection of paths are
P = (5 Yo Ty Y ) 1= 131 (r = 1)
Q=(F Yol Yor)
Ri=(ry

2|’ (2i+1)? 2|+3 y(2|+6) ) I_ 23 (( 6)/2)’(r >8)

7723 (Kr,s) =

Rr_4=(r(r_4),y(r_3),r(r_l,yz,r(r_4));Rr_zz(r(, Ve YooTia)
R=(r Y0 Y t); :(yi,r(i_z),y(i+2)),i= 3,4,...,(r— 2)
T=(YarlegVa)i T (yl, oY) To = (VT ¥a)
T4:(y4,rs,y5);Ui:(rk,y(m),r,)

V= (1, Yy ) k= 1 ti= 1,2, {((r2—3m)/4)Jand r+i<s.

Then y ={P :i=13,...(r -} {Q}{R :i = 2,3,.. ( . )}U{Rr JU{R_IU{R}

together with remaining edges form a minimum 2—simple g.c in which all the vertices
are internal twice. By the corollary 2.2, 7, (K, )=q-2p=rs—2(r+s)=rs—2r-2s.

Case 2. When s > L(r2 n r)/4J _ then there are two sub cases

Subcase 2.1. When r = 0 (mod4)
Then the collection of paths are
R =( Yo oy Yoo 1) 1= 13, (r = 1)
Q=(Ya:ls, Yo 1)

ti=2,3,..,((r- 6)/2),(r >8)

(2|’ 2|+l 2|+3 (2|+6)’r2i)'
Rr74 _(r(r -4)! y(r -3)! r -1)? y2’ (r— 4)) RF*Z :(r(r -2)? y y47 r-2 )
R, :(rr’ Yi: b3, yﬁ’rr) ;S :(yi1r(i—2)1 Y(i+2))’i = 3’4’---’(r_ 2)
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T1:(Y2'r(r—3)'Y4);T2 :(yl’r(r—z)’y3); T :(yl'r(r—l)’y4)
T, (y4’ ’ys);Ui: Nes Yiraiy
(A7
V= (0 Yy 1) ko2 125 ti= 1,2, L((rz— 3m)/4)Jand r+i<s.

Then v, (R =131 ~DFAQAR, 1 =230 58 PR _FUR JUR)

ASi, 11 =34, (=23 U{T, 1 =1,2,3, 3 U{U 3 UV, i = 1,2,...,[0%3[“)‘ isa 2—

(r’ +r+4)
4

2 —-r’- —r'-
{r 2+rJ+LrS_rz_3rJ:LL25rJ,Hence Usz{WJ' ow, 1et v be

simple g.c in which {y, :iz{ J} cannot be made internal. Thus |y |=

2y

paths, then t,(y)<

2 _r2_ 2 _ 2
{r Zer, thlyJ Jotherwise tz(x,//)S{r 2 rJ, t, > WJ Hence

2 _r2_ _r2_ _r2_
x| T S o g, 2| 2SS s | 2T

Subcase 2.2. When r = 2 (mod4)

Then the collection of paths are
( yl’ (i+1)? y(|+1)’ ) i= 1!3!---1(r_ 1)
(r Yarls: Yoo T )

2|+1 2|+3 (2|+6) ) i=23,. (( 6)/2),([‘ >8)

. i r
any 2-simple g.c of K_, If w, contains r cycles and L

Res = (r(r—4)’ Vo T Yol Ree = (g Yoo Va2
R =(r, Y0 Vel ) ; SFZ:(yi,r(ifz),y(nz)),i: 3,4,..,(r- 2)
T, = ( 21 Tz y4) T, (yl,r(r 2 y3) (yl,r(r 1y y4)
To =Yt ¥s): Uy = (1 Yy 1)
=

[ Yy ) k=l#s:i=12,. L((rz— 3m)/4)Jand r+i<s.

1

S

r +r+4 /4

) rzqzk=l=s

Then y; ={P :1=13,..(r-)}u{Q}{R :i=23,.. [ 26j}u{Rr JYU{R FU{R U

£Si,:i=3,4,..(r—2}U{T i =1, 4 OU I, i = 1,2,.. {(rj%m)J UWIU{X}
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Where X is remaining edges not covered K form a 2-simple g.c in which

2 2
{yi:i={(r+r+8)J,....} cannot be made internal. Thus |z//G|={r 2”J+

J— J— 2_
[ rs—r®-3r |= {er ~ SrJ Hence nzss{WJ. Now, let w, be any 2—

simple g.c of K_; If w, contains r cycles and

r’ +5r 4s—r>—r . r’—r 4s—r°+r-2
{ 1 J tWZ{TJ otherwise tz(l//)é{ Z J,ty,z —————|. Hence

r2+22r-140
{fJ paths, then t, () <

i 4
2 _r2_ _r2_
e L T e | S W - it L) SR (P
4 4 2
2rs—r> —5r .
My = — | . Theorem 3.3. For a complete bipartite graph Krs,( 9)and ris
odd, then
2
if r<s< rer-2
rs—2r—2s 4
UZS(KY,S):

2rs—r’> —5r+2 . r’+r-2
ifs>| ———
2 4

Proof. Now let X ={r,r,,1,...r.} and Y ={y,, ¥,,¥;,..., Y;} be the bipartition of

K, (r=9andodd) with p=r+s,q=rs. Now there are two cases.
(r+r-2)
Case 1. When r<s< —

Then the collection of paths are
Pi :(ri’yi’r(i+1)vy(i+1)’ri):i: 1'3""’(r_ 2)
Q:(rz’yslrs’ys’rZ)

r—=7

Ri :(rzi’y(2i+1)’r(2i+3)’y(2|+6) ) i = 2 3 ( 2 j,(l’ >9)

R :(r(r—s)’y(r—4)’r(r—2)’y2’rr—5)) R = (r(r—S)’y(r—Z)’rl’yA’r(r—s))

R = (r(r 10 Y1 3 Ve I 1)) (yH M2y y(|+2)) = 34,.,(r-2)
T =Yoo ¥s)i T =(YorTeay, y) =(Yor Ty V)i T = (0, Y10 13)
To=(0Yoh): To=(Ysih ¥s): T = (Yol Vo ) 5U (rk,y(m),r,)

- r‘+r-2 _
V.: (rer(m)al’s),ki|¢I‘¢S,I: 1’2’“""TJ’r+ISS
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Then y ={P:i=13,.(r - 2)} {Q}{R :i=2,3, .,(%)}U{Rr_s}u{Rr_s}u{Rr_l}u{Si_z

i=34,.,(r-2}u{T :i=1.,7Fu{U,:i= 1,2,,{r2j+_2Fu{Vi = 1,2,_{r2 JI_ZJ

together with remaining edges form a minimum 2—simple g.c in which all the vertices
are internal twice. By the corollary 2.2, 7, (K, ,)=q-2p=rs—2(r+s)=rs—2r-2s.

r+r- 2
Case 2. When s > {%‘ , then there are two sub cases

Subcase 2.1. When r =1 (mod 4)

Then the collection of paths are
P = (6 Yy Yy 1) i = 13,0, (r = 2)
Q=( Vs 5. Ve 1)
R,

r—7
(2I’y(2i+1)’r(2i+3)’y(2|+6) ) i=23,. ( > ],(r >9)

Res ((,,5),y(,,4),r(r,z),yz,rr,s));Rr,g = (Ko Yoo YorTis)
Ry = (Ko ¥ Yor Ty )+ Sie = (Wi Koo y(n+2)) H=34..,(r-2)
To=(Vlea ¥s)i To =(VoTeg V)i T = (Yol Vo i Te = (1Y)
To=(6 ¥ h); To=(Ys: 1Y) T = (Ver T, Yo ) 3V (rk,y(m),r,)

V. = (r ﬂ

r?

Yrsiy» )k¢I¢r¢S|—12 L J,r+igs

Then v, (R =13, -2} AQRAR 11 =23 15T iR FUAR JUR B,

2

i=3,4,,(r—2ufT, 5 =1, U, i = 1,2,.{Ir '

2

_ZJ}U{Vi:iz 1,2,.{r il

‘ZJu{W}

Where W is remaining edges not covered K, form a 2-simple g.c in which {y,:

i_[errHZ

2
. ,....} cannot be made internal. Thus |y |= {%J{rs—rz -3r |=

2rs—r> —5r+2
2

{er—rz—Sr

> J Now, let . be any 2— simple g.c of

.Hence n,, S{

2_
K, If ys contains (r-1) cycles and {r—2r+4J paths, then t,(y )< { 2

4s—r°—r+2 . r’—r 4s—r°+r
t, 2 {fJ otherwise t, (1//) < { J't"' > {—J Hence

r2+5r—2J

4 4
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2 _ _r2_ _r2_
tzﬁ{ﬂJ, tzrsr—HZJ so that nZSZVrS ' 5r+2J. Thus

2
2rs—r> —5r +2
s = > .

Subcase 2.2. When r =3 (mod 4)
Then the collection of paths are

R :(I‘i, yi’r(i+1)!y(i+1)’ri):i: 13,..(r-2)

Q:(rZ’yS’rS'yB’rZ)
R r—7

j,(r > 9)

i = (rZi’ y(2i+l)’ r-(2i+3)’ y(2|+6) ) | = 2,3,.. (

Res = (Moo Ve oo Yol Recs = (T Yoo Vo)
Ry =(Tusy Yor T Yo Ty ) 1Sz = (Vi r(ifz),yw)) li= 3,4,..,(r- 2)
T (yl, (r-3)" y3) (yu (r- 2),y4) (yz’ (r-1) y4) =(r Y1)
T = (5 Y0 h)s To= (%60 Yo )i Ty = (Vo ¥o) Us = (R Yoy )

2 —
V.:(r Yirsiy ¥ )k¢|¢r¢3|_12 L;{ZJ,HKS
w :(rp,y“rzﬁz)/q,rq) p=xqzk=l#r=s

Then y ={F 51 =L3..( - 2FAQR, =20 157 BUR, IR JUIR, LS,

fi=3,4,,(r—2)UqT, ti =1,., TFOqU, i = 1,..,{r2+4r‘2J}u{vi = 1,..,V2+L:‘2Ju{vv}is

a 2-simple g.c in which {y :i {WJ ..} cannot be made internal. Thus
(r’+r+2) ) 2rs—r?—5r+2
— ~ |+ rs—r°=3r|= . Hence

- 2rs—r>—5r+2
s = 5

2 2 _ 2
cycles and {r—2r+4J paths, then t,(y)< [ﬂJ thrsr—HZJ

J. Now, let v be any 2—simple g.c of K, If w contains (r-1)

4 4
_ r’—r-2 4s—r°+r-2 r’+5r-2
otherwise t,(y)<|——|t,> | ————| Hence t,<|————|,
4 4 4 4
tzrs r4 r+2Jsothat UZSZ{er r2 5r+2J Thus {er r2 5r+2J

4. Conclusions
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Complete bipartite graphs find applications in materials science, particularly in the study
of surface science and adsorption phenomena. The bipartite graph can represent the
interaction between adsorbate molecules and surface sites on a solid material. This
decomposition of complete bicyclic graphs helps in understanding the adsorption
behavior, surface reactions, and the design of new materials with desired properties.
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