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Abstract 

 Diabetes mellitus is a condition marked by unusually high blood glucose levels brought on by a lack of 

insulin. For patients with diabetes mellitus, the use of a continuous glucose monitor, insulin pump, and 

control algorithm offers an alternative to patient self-management of insulin doses. Automated closed-loop 

IIS has been studied for a very long time. In closed-loop systems, the control algorithm serves as the main 

mechanism for precise insulin administration. The primary objective of this project work is to control the 

blood glucose level of type 1 diabetic patient using a blood glucose level sensor and PID controller based 

on ANN Technology. The capacity to track a set point (70 mg/dL) from the beginning condition of 

hyperglycemias as well as in reaction to a meal disruption is suggested based on the result analysis. 
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1. INTRODUCTION 

Diabetes is an endocrine metabolic disorder 

that is deadly. Numerous serious diabetes-related side 

effects, including peripheral neuropathy, nephropathy, 

peripheral neuropathy, blindness and retinopathy, 

have an impact on millions of individuals worldwide 

[1]. In 2014, the International Diabetes Federation 

predicted that 387 million people worldwide had 

diabetes, and that number will rise to 592 million by 

the year 2035 [2]. Thus, it is essential for diabetics to 

maintain normal blood glucose levels. 

1.1 T1D mellitus (Type 1 Diabetes) 

T1D, an autoimmune disease, results in the 

pancreatic islets producing no insulin or little. The 

anabolic polypeptide hormone insulin controls how 

much blood sugar is in circulation and how 

carbohydrates are metabolized. T1D is typically seen 

among members of the family with a record of such 

disorder, despite the fact that its cause is unknown 

[26]. The World Health Organization (WHO) has 

established various diagnostic criteria that may be 

used to determine if a person has T1D [27]. To 

maintain blood sugar levels, patients with this type of 

diabetes require external insulin therapy, often in the 

form of subcutaneous injections. The four kinds of 

injectable acting insulin are short, rapid, long, and 

intermediate. Traditionally, a doctor will decide how 

much insulin to give a patient depending on the 

patient's characteristics and medical history. 

The inability of the pancreatic beta cell to 

release insulin is the primary cause of T1D. Their 

blood sugar levels are managed by exogenous insulin. 

A continuous subcutaneous insulin infusion (CSII) or 

an insulin pump is being used to control type 1 

diabetes in patients [3]. Due to the growing degree of 

dietary and physical activity, convenience, and 

accuracy flexibility, the CSII showed real benefits than 

the MDI approach [4]. There are several open-loop 

insulin pumps available that can be set up to provide 

the correct amount of insulin. It can provide patients 

with the appropriate quantities of insulin without using 

a human [5]. The closed-loop system is composed 

primarily of three components: an intelligent 

controller, an insulin pump, and continuous glucose 

monitoring (CGM). 

1.2 Post-Operative Management  

 Reviewing the intra-operative hyperglycemia 

treatment in the post-anesthesia care unit (PACU) is 

crucial, as is maintaining strict glucose control with 

either intravenous or subcutaneous insulin. 

A. Ambulatory 

 Patients who underwent ambulatory surgery and 

were stable and able to tolerate oral intake after their 

recovery in the PACU might be sent home with the 

same anti-hyperglycemic medication. 

B. Non-critically Ill 

 Subcutaneous (SC) insulin is administered to 

non-critically unwell patients who need to be admitted 

from the PACU to the surgical/medical ward. Basal 

with correctional insulin is preferable when oral intake 

is inadequate or absent. 

C. Critically Ill 

A medical or surgical intensive care unit should 

manage critically ill patients with continuous insulin 

infusion (CII), with regular insulin and blood sugar 

testing every one to two hours, under institutional 

procedure. 

The bolus insulin doses for open-loop insulin 

pumps, which can help diabetics manage their 

postprandial blood glucose levels, are calculated using 

a bolus calculator. It includes a variety of elements, 

such as the correction factor (CF), insulin sensitivity, 

carbohydrate ratio (I: C), current blood glucose, goal 

blood glucose, and the number of consumed carbs [4]. 

In the control algorithm, high degrees of reliability and 

robustness are required. A few examples of various 

control systems are PID control [6], sliding mode 

control, optimal control [9], model predictive control 

(MPC) [7, 8], and adaptive control [10] [11]. The PID 

controller is one of the control algorithms that is 

frequently utilized in industrial control systems. 

Because of its advantages of simple implementation, 

significant adaptability, resilience, and a basic 

structure with few parameters, the PID controller is 

appealing for controlling blood sugar levels. 

2. RELATED WORK 

For AP systems on commercially accessible 

devices, contemporary PID and MPC-based control 

algorithms have been created [6, 11, 12, 14, 15]. The 

hybrid closed-loop systems that PID and MPC 

controllers frequently operate call for notifications of 

the number of carbohydrates in meals and the level of 

exercise [7]. The Metronics 770G and 670G with PID 

and Tandem Control-IQ with MPC are two profitable, 

FDA-approved systems [6]. The majority of 

commercial PID and MPC solutions employ 

Predictive Low Glucose Suspend (PLGS) to prevent 

hypoglycemia overnight [37]. Before hypoglycemia 

sets in, the PLGS technology predicts changes in 
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glucose concentration and cuts off insulin delivery. 

Although a PID controller is straightforward, it has 

trouble adjusting to food control [6, 7].  

A recent study specifically addresses T1DM 

regulation and covers the majority of the methods 

applied thus far [5]. This work almost entirely reveals 

the specification of the action and state space, class of 

employed RL algorithms, and successful learning 

experience elements, also referred to as the strategies 

and the diversity of options used in them. While 

glucose models are simplified in both situations, 

strong solutions are shown. In contrast, the simulator 

we utilize in this research is more realistic and 

typically calls for DRL to simulate the value function. 

In two recent articles [7, 20], Fox et al. take a 

similar stance as in this study. The value function was 

approximated using three straightforward DNN 

architectures, although the gains over the PID baseline 

were barely perceptible. The SAC approach is used in 

their second research [7].  When action phase is 

persistent as well as the state vector also includes the 

most recent CGM and insulin data from the previous 

four hours. Furthermore, each situation has different 

incentive mechanisms. In contrast, we only use the 

most recent CGM data in this study, employ a 

relatively lengthy delay between observations and 

actions (between 30 and 60 minutes), and create a 

simplified reward function. Yamagata et al. [13] 

describe a hybrid model-based strategy that combines 

a distinct action space with a meal announcement. The 

controller uses a PID-controlled DRL SAC agent as a 

starting policy, and it also extends the observation 

state using predictions from a dual attention network. 

Lin et al [21] .'s most recent recommendation for this 

set of machine learning tactics for managing BGs. 

Controlling the behaviors is also a safe and adaptive 

exercise. In the Discussion section, the outcomes of  

last three strategies [7, 13, 21] mentioned above are 

contrasted with our own.  

Several studies have examined the use of PID 

controllers with ANNs in insulin infusion systems for 

type I diabetes patients during post-operation 

conditions. One such study, published in the Journal of 

Medical Systems in 2019, developed a PID-ANN 

controller that could adjust the insulin infusion rate 

based on the patient's blood glucose level and 

predicted future blood glucose levels. The study found 

that the proposed controller was effective in regulating 

blood glucose levels during post-operation.  

3. SYSTEM METHODOLOGY 

 

Figure 1 Block Diagram

 

3.1 Blood Glucose Sensors 

 One of the simplest and widely popular 

methods of checking your blood sugar levels is by 

using a blood glucose meter. The devices employ 

enzyme-coated test strips, that can only respond 

through one blood specimen. This test strip production 

uses a certain enzyme concentration. Since test strips 

are intended to be utilized once, they cannot be reused. 

The test strip is attached to the blood glucose meter 

after being injected and collecting a blood sample. 

After computing the blood glucose level, the meter 

shows the results on the screen. Test strips and blood 

glucose meters are frequently less expensive than 

equipment for continuous glucose monitoring. Since 

meters don't have to be worn on the human body, they 

also allow for more discreet and irregular testing. 

3.2 Insulin Pumps 

Insulin pump users with diabetes can easily 

manage their blood sugar levels. At specified times, 

these small devices provide insulin amounts. Many 

patients consider insulin pumps to be a more adaptable 

substitute for insulin pen injections. You can switch to 

a different insulin-control method at any time. so 

insulin pumps don't have to be a lifelong commitment. 

A tiny technological device known as an insulin pump. 

It disperses insulin through a tiny tube that is put under 

your skin. They resemble little mobile phones because 

they are so small. Medication dosages are delivered by 

insulin pumps in accordance with a set schedule. Your 

hormone insulin regulates your blood sugar levels. 

3.3 Stepper motor 

Step motor and stepping motor are other 

names for a stepper motor. The motor shaft's ability to 

revolve in steps or by a predefined amount of degrees 

is the fundamental property of an electric motor known 

as a stepper motor. This feature, which is made 

feasible by the internal structure of the motor, allows 

for the simple counting of steps to determine the exact 

angular position of the shaft. 
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3.4 Design of PID Controller with ANN 

 

Figure 2 Architecture for the improved PID controller with 

ANN 

3.4.1 PID Controller 

Figure 2 demonstrates the PID controller's 

structure using an ANN approximation, where Go 

stands for the actual blood glucose level of the diabetic 

patient, Gt stands for the goal blood glucose level, Gm 

for the blood glucose level as determined by a glucose 

sensor, and UI for the maximum IIS rate. The control 

law UPID is as follows: 

UPID=U0+kc[(Gm-Gt)+1/
1

𝜏𝐼
∫

𝑡

0
(𝐺𝑚 − 𝐺𝑡)𝑑𝑡 +

 𝜏𝐷 
𝑑(𝐺𝑚−𝐺𝑡)

𝑑𝑡
] 

where UPID is the output of the closed-loop control. 

The difference between the goal blood glucose and the 

actual blood glucose is quantified as Gm Gt. The rate 

of basal insulin infusion is U0. The three variables that 

may be changed are: Kc referred as proportional gain, 

I defines integral time, and D refers derivative. 

Utilizing the requirement output of insulin infusion 

and the ANN, the control output of insulin infusion 

rate UI is produced. The internal workings of the 

control algorithm are shown in Figure 3. The 

controller's result is 

 UI=KUPID 

When the value is set to 0 k 1, the gain k is achieved 

as the average value of, and the upper constraint output 

of the PID controller is taken into consideration in this 

research. The top constraint has been determined using 

the ANN with evaluation, correction factor, and I: C 

ratio. The highest restriction is there to prevent 

excessive insulin infusion. What to do is determined 

by the ensuing circumstance. 

If ICHO+IG>IOB, 

Umax= ICHO+IG- IOB, 

Else Umax = ICHO’ 

where ICHO is the amount of insulin necessitated to 

make for a specific meal and Umax seems to be the 

highest constraint output of the IIS rate. 

 ICHO= D. (I:C) 

where D refers the meal's weight and I: C is the ratio 

of the quantity of CHO that one unit of insulin can eat. 

IG, which is defined by the following circumstance, is 

the quantity of insulin required to compensate for a rise 

over the desired blood sugar level: 

If Gm-Gt>0 

IG= (Gm-Gt) . CF, 

Else IG= 0, 

where the matching measured and desired blood 

glucose levels are denoted by the letters Gm and Gt. 

The correction factor is CF. 

3.4.2 Artificial Neural Network (ANN) 

Artificial neural networks are used for data-

driven learning since it was found that human brains 

are highly good at digesting vast amounts of incoming 

data from many sources. When the output does not 

match the predicted one, neural networks use back 

propagation, which pushes the networks to modify 

their unseen neuron layers. Before it can comprehend 

the process, the input layer of a multi-layer network 

must choose unique features. ANN models find 

relationships and use those correlations to create rules 

by examining a large number of input and output 

examples. An artificial neural network with three 

layers of feed-forward computation is used in the study 

being reported. It has eight nodes in the first layer of 

the input layer, three hidden nodes (hi, h2, and h3) in 

the hidden layer, one output node (Oi) in the output 

layer. The input layer uses the following 8 inputs: area 

ratio, irregularity index (I) (AR), L length of the 

vector, angle alpha, angle beta, Rred (relative 

chromaticity in red), Rgreen (relative chromaticity in 

green), and Rblue (relative chromaticity in blue) will 

all be used to determine if a diabetic is present ('1' or 

'0'). Back-propagation is used to train the network. 

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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Figure 3 Three layered feed forward neural network 

architecture 

4. EXPERIMENTAL RESULTS 

The success of glucose management for a virtual 

individual is summarized using Feed Forward Neural 

Network Algorithm, which evaluates the advised 

control method. A feed-forward neural network 

(FFNN), also known as a multilayer perceptron 

(MLP), is a type of artificial neural network in which 

information flows only in the forward direction, from 

the input layer through the hidden layers to the output 

layer. The network consists of an input layer, one or 

more hidden layers, and an output layer. Each layer is 

composed of a set of neurons, which perform a 

weighted sum of their inputs, followed by the 

application of an activation function. The activation 

function introduces non-linearity into the network, 

allowing it to model complex relationships between 

inputs and outputs. 

To train the FFNN, a set of input-output pairs is used 

to adjust the weights of the connections between 

neurons. This is done by forward propagating the input 

through the network to obtain an output, comparing 

the output to the desired output, and then back 

propagating the error through the network to adjust the 

weights using a gradient descent algorithm. The 

process of forward propagation followed by back 

propagation is repeated for multiple epochs until the 

network converges to a satisfactory level of 

performance. 

The FFNN can be used for a wide range of tasks, 

including classification, regression, and prediction. It 

has been applied to a variety of domains, such as image 

recognition, speech recognition, natural language 

processing, and finance. The architecture of the 

network, the activation function used, and the 

optimization algorithm employed are some of the 

hyper parameters that can be tuned to achieve better 

performance. In this papare we are using FFNN to 

provide accurate results of Blood glucose level 

monitoring and controlling. 

 
Figure 4 Structure of Feed Forward Neural Network 

 

Figure 5 Simulation Design for Type 1 Diabetes 

with Artificial Neural Networks 

 

Figure 6 Simulation results for blood glucose level 

and insulin infusion level 

 

Fig 7: Insulin variation using PID Controller 

Graph 
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Fig 8: Glucose level plot 

Set 

Point 

(mg/dl)  

 

BGL 

Low 

Limit 

(mg/dl) 

 

BGL 

High 

Limit 

(mg/dl) 

 

Insulin 

Infusion 

(Units) 

 

 

120 

mg/dl 

 

80 

mg/dl 

 

240 

mg/dl 

 

 

0-10 

Units 

Table 1: Reference Values in data.mat 

 

 

The results demonstrate the effectiveness and 

dependability of the PID controller with ANN. More 

precisely than the conventional PID controller, blood 

glucose may be controlled.  

The simulation design of Feed Forward 

Neural Network starts from the patient’s mealtime 

(breakfast, lunch, and dinner), the glucose level before 

the meal and the glucose level after the meal. The set 

point is basically 80-120 mg/dl. The input is given to 

the PID controller. PID controller analyses the blood 

glucose level after meal and sends it to the feed 

forward control neural network and the insulin 

infusion pump to infuse the required quantity of 

insulin. The data is collected, and the plot is shown in 

Figure 7, the increases and normalization of blood 

glucose levels are plotted. And the blood glucose 

display is implemented to display blood glucose levels 

after the infusion of insulin.  

The insulin level is basically set between 1-10. If it 

goes beyond 10, it may lead to severe health problem.  

 

Patient’s 

Name & 

Age 

Time 

(App) 

Before 

Meal 

After 

Meal 

Insulin  

Sharanya 

45 

7:15 AM 90.56 

mg/dl 

187.2 

mg/dl 

7.2 

Units 

1:30 PM 126.7 

mg/dl 

165.6 

mg/dl 

6.8 

Units 

8:00 PM 117.86 

mg/dl 

195 

mg/dl 

7.1 

Units 

Ayyappan 

62 

7:30 AM 100.8 

mg/dl 

190.2 

mg/dl 

9.4 

Units  

1:00 PM 86 

mg/dl 

147.1 

mg/dl 

8.8 

Units 

7:55 PM 138.7 

mg/dl 

176 

mg/dl 

9.09 

Units 

Table 2: Type 1 Diabetes Patient’s data and units 

of insulin required to normalize their BGL after 

meal (consultation from clinic) 

 

5. CONCLUSIONS 

Based on all the results discussed, it is found that in 

order to retrieve a satisfactory glucose regulation 

through the Proportional-Integrated-Derivative 

(PID)control, the parameter settings towards closed 

loops responses of a short rise time, steady-state error 

elimination and, overshoot and setting time decrement 

are required. The performance of PID controller which 

controls the optimum tuning response to maintain the 

blood glucose level of Type-1 Diabetic Mellitus 

(TIDM) Patient. And the implementation of Feed 

Forward Neural Network gives us more accuracy, easy 

to use, rapid results and parallel processing Therefore 

the blood of the patient can be monitored and 

controlled. 
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