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1.Introduction 

In [1], Zadeh proposed a fuzzy set theory. Fuzzy automatons were first conceptualized 

mathematically by Wee in [2]. Afterward, Atanassov introduced intuitionistic fuzzy sets [3, 4] 

that are highly useful for dealing with vagueness in a variety of higher order fuzzy sets. As a 

generalization of fuzzy finite state machines, Jun introduced intuitionistic fuzzy finite state 

machines [5–7] based on intuitionistic fuzzy sets. They also introduced intuitionistic 

successors, intuitionistic subsystems, intuitionistic submachines, and intuitionistic q-twins. 

According to Zhang and Li [8], intuitive fuzzy recognizers are based on intuition. Among the 

most important contributions of Atanassov to fuzzy sets was the lattice-valued intuitionistic 

fuzzy set theory.  The theory of bipolar fuzzy finite State Machines was presented by [9] 

Young Bae Jun and Jacob Kavikumar. Followed by Bae Bipolar-valued Fuzzy Finite 

Switchboard State Machines was introduced by J. Kavikumar [10] .A lattice-valued bipolar 

fuzzy finite state machine has been shown to contain cascade products, homomorphisms, 

wreath products and weak coverings.  

2 Preliminaries  

Definition 2.1.A bipolar-valued fuzzy set φ in X is an object having the form 𝜑 =
{(𝑥, 𝜑𝑁 , 𝜑𝑃)| 𝑥𝜖𝑋}  where 𝜑𝑁: 𝑋 → [−1, 0]  and 𝜑𝑃: 𝑋 → [0, 1]  are mappings, where 𝜑𝑃(𝑥) 

denotes the positive membership degree and 𝜑𝑁(𝑥) denotes the Negative membership degree. 

We shall use the notation 〈𝜑𝑁 , 𝜑𝑃〉  instead of  𝜑 = {(𝑥, 𝜑𝑁 , 𝜑𝑃)| 𝑥𝜖𝑋} 

Definition 2.2. Let 𝑊 = (𝑅, 𝑌, 𝐵)  is a lattice-valued bipolar fuzzy finite state 

machine(𝐿𝐵𝐹𝑆𝑀), where R and Y are finite nonempty sets, called the set of states and the set 

of input symbols, respectively, and φ = 〈𝜑𝑁 , 𝜑𝑃〉   is a bipolar fuzzy set in R × Y × R.  

Let 𝑌∗ denote the set of all words of elements of Y of finite length. Let λ denote the empty 

word in 𝑌∗  and |y| denote the length of y for every y ∈  Y. 

 

Definition 2.3. Suppose 𝑊𝑗 = (𝑅𝑗 , 𝑌𝑗 , 𝐵𝑗) is a 𝐿𝐵𝐹𝑆𝑀, where  𝑗 = 1, 2, … The complete direct 

product of 𝑊1 and 𝑊2 is denoted by (𝑅1 × 𝑅2, 𝑌1 × 𝑌2, 𝐵1 × 𝐵2 )where the Cartesian product 

of their states, input symbols are taken  

𝜑𝐵1×𝐵2

𝑃 ((𝑟1, 𝑟2), (𝑦1, 𝑦2), (𝑠1, 𝑠2)) = 𝜑𝐵1

𝑃 (𝑟1, 𝑦1, 𝑠1)⋀𝜑𝐵2

𝑃 (𝑟2, 𝑦2, 𝑠2),  

𝜑𝐵1×𝐵2

𝑁 ((𝑟1, 𝑟2), (𝑦1, 𝑦2), (𝑠1, 𝑠2)) = 𝜑𝐵1

𝑁 (𝑟1, 𝑦1, 𝑠1)⋁𝜑𝐵2

𝑁 (𝑟2, 𝑦2, 𝑠2), 

where𝜑𝐵1×𝐵2

𝑃 : (𝑅1 × 𝑅2) × (𝑌1 × 𝑌2) × (𝐵1 × 𝐵2) → (0, 1], 𝜑𝐵1×𝐵2

𝑁 : (𝑅1 × 𝑅2) × (𝑌1 × 𝑌2) ×

(𝐵1 × 𝐵2) → [−1, 0), ∀ (𝑟1, 𝑟2), (𝑠1, 𝑠2) ∈ 𝑅1 × 𝑅2, (𝑦1, 𝑦2) ∈ 𝑌1 × 𝑌2.  
 
Definition 2.4. Suppose 𝑊𝑗 = (𝑅𝑗 , 𝑌𝑗 , 𝐵𝑗) is a 𝐿𝐵𝐹𝑆𝑀 , where  𝑗 = 1, 2. The restricted direct 

product of 𝑊1 and 𝑊2 is denoted by  𝑊1⋀𝑊2 = (𝑅1 × 𝑅2, 𝑌, 𝐵1 × 𝐵2 ),   and              

𝜑𝐵1⋀𝐵2

𝑃 ((𝑟1, 𝑟2), 𝑏, (𝑠1, 𝑠2)) = 𝜑𝐵1

𝑃 (𝑟1, 𝑏, 𝑠1)⋀𝜑𝐵2

𝑃 (𝑟2, 𝑏, 𝑠2), 

𝜑𝐵1⋀𝐵2

𝑁 ((𝑟1, 𝑟2), 𝑏, (𝑠1, 𝑠2)) = 𝜑𝐵1

𝑁 (𝑟1, 𝑏, 𝑠1)⋁𝜑𝐵2

𝑁 (𝑟2, 𝑏, 𝑠2), 

where 𝜑𝐵1⋀𝐵2

𝑃 : (𝑅1 × 𝑅2) × 𝑌 × (𝑅1 × 𝑅2) → (0, 1] , 𝜑𝐵1⋀𝐵2

𝑁 : (𝑅1 × 𝑅2) × 𝑌 × (𝑅1 × 𝑅2) →

[−1, 0), ∀ (𝑟1, 𝑟2), (𝑠1, 𝑠2) ∈ 𝑅1 × 𝑅2, ∀ 𝑏 ∈ 𝑌.  
 
Theorem 2.1. Suppose 𝑊𝑗 = (𝑅𝑗 , 𝑌𝑗 , 𝐵𝑗)  is a 𝐿𝐵𝐹𝑆𝑀 , where  𝑗 = 1, 2.  The subsequent 

statements are true. 

i) 𝑊1 × 𝑊2 be a 𝐿𝐵𝐹𝑆𝑀. 
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ii) 𝑊1⋀𝑊2 be a 𝐿𝐵𝐹𝑆𝑀, where 𝑌1 = 𝑌2 = 𝑌. 

Definition 2.5. If  𝑊𝑗 = (𝑅𝑗, 𝑌𝑗 , 𝐵𝑗) is a 𝐿𝐵𝐹𝑆𝑀, where  𝑗 = 1, 2. A surjective partial function 

𝛾: 𝑅1 → 𝑅2 and a function 𝛽: 𝑌1 → 𝑌2  together form an ordered pair (𝛾, 𝛽) which is referred 

to as a covering of  𝑊1 by 𝑊2 denoted as 𝑊1 ≤  𝑊2 if  

𝜑𝐵1

𝑃 (𝛾(𝑠), 𝑦, 𝛾(𝑟)) ≤ 𝜑𝐵2

𝑃 (𝑠, 𝛽(𝑦1), 𝑟),𝜑𝐵1

𝑁 (𝛾(𝑠), 𝑦, 𝛾(𝑟)) ≤ 𝜑𝐵2

𝑁 (𝑠, 𝛽(𝑦1), 𝑟), 

∀ 𝑦1 ∈ 𝑌 and 𝑟, 𝑠 ∈ 𝛾. 

 

Theorem 2.2. If  𝑊𝑗 = (𝑅𝑗, 𝑌𝑗 , 𝐵𝑗) is a 𝐿𝐵𝐹𝑆𝑀, where  𝑗 = 1, 2,3. If  𝑊1 ≤  𝑊2 and 𝑊2 ≤  𝑊3 

then 𝑊1 ≤  𝑊3. 

 

Theorem 2.3.If  𝑊𝑗 = (𝑅𝑗, 𝑌𝑗 , 𝐵𝑗) is a 𝐿𝐵𝐹𝑆𝑀, where  𝑗 = 1, 2,3. Then 𝑊1⋀𝑊2 ≤ 𝑊1 × 𝑊2. 

 
Theorem 2.4.If  𝑊𝑗 = (𝑅𝑗, 𝑌𝑗 , 𝐵𝑗) is a 𝐿𝐵𝐹𝑆𝑀, where  𝑗 = 1, 2,3. If  𝑊1 ≤  𝑊2, then  

1) 𝑊1 × 𝑊3 ≤ 𝑊2 × 𝑊3 and  𝑊3 × 𝑊1 ≤ 𝑊3 × 𝑊2 

2) 𝑊1⋀ 𝑊3 ≤ 𝑊2⋀ 𝑊3 and  𝑊3⋀ 𝑊1 ≤ 𝑊3⋀ 𝑊2   

Where  𝑌1 = 𝑌2 = 𝑌3 = 𝑌. 

Corollary 2.1.If  𝑊𝑗 = (𝑅𝑗 , 𝑌𝑗 , 𝐵𝑗) is a 𝐿𝐵𝐹𝑆𝑀, where  𝑗 = 1, 2,3. If  𝑊1 ≤  𝑊2, then  

1) 𝑊1⋀ 𝑊3 ≤ 𝑊2 ×  𝑊3 where 𝑌1 = 𝑌3 = 𝑌 

2) 𝑊3⋀ 𝑊1 ≤ 𝑊3 ×  𝑊2 where 𝑌1 = 𝑌3 = 𝑌   

 

Corollary 2.2.If  𝑊𝑗 = (𝑅𝑗 , 𝑌𝑗 , 𝐵𝑗) is a 𝐿𝐵𝐹𝑆𝑀 , where  𝑗 = 1, 2,3,4. If  𝑊1 ≤  𝑊2  and  𝑊3 ≤

𝑊4 then The subsequent statements are true. 

1) 𝑊1 × 𝑊2 ≤ 𝑊2 × 𝑊4 , 

2) 𝑊1⋀ 𝑊3 ≤ 𝑊2⋀𝑊4 where 𝑌1 = 𝑌2 = 𝑌3 = 𝑌4 = 𝑌   

3) 𝑊1⋀ 𝑊3 ≤ 𝑊2 × 𝑊4 where 𝑌1 = 𝑌3 = 𝑌. 

3.   𝑳𝑩𝑭𝑺𝑴 for wreath products and cascades 

Definition 3.1.Let 𝑊𝑗 = (𝑅𝑗 , 𝑌𝑗 , 𝐵𝑗)  is a 𝐿𝐵𝐹𝑆𝑀 , where  𝑗 = 1, 2 . The cascade product of 

𝑊1and 𝑊2 is denoted by 𝑊1𝜔𝑊2 = (𝑅1 × 𝑅2, 𝑌2, 𝐵1𝜔𝐵2) and 

𝜑𝐵1𝜔𝐵2

𝑃 ((𝑟1, 𝑟2), 𝑎, (𝑠1, 𝑠2)) = 𝜑𝐵1

𝑃 (𝑟1, 𝜔(𝑟2, 𝑎), 𝑠1)⋀𝜑𝐵2

𝑃 (𝑟2, 𝑎, 𝑠2), 

𝜑𝐵1𝜔𝐵2

𝑁 ((𝑟1, 𝑟2), 𝑎, (𝑠1, 𝑠2)) = 𝜑𝐵1

𝑁 (𝑟1, 𝜔(𝑟2, 𝑎), 𝑠1)⋁𝜑𝐵2

𝑁 (𝑟2, 𝑎, 𝑠2), 

Where 𝜑𝐵1𝜔𝐵2

𝑃 : (𝑅1 × 𝑅2) × 𝑌2 × (𝑅1 × 𝑅2) → (0, 1], 𝜑𝐵1𝜔𝐵2

𝑁 : (𝑅1 × 𝑅2) × 𝑌2 × (𝑅1 ×

𝑅2) → [−1, 0), 𝜔: 𝑅2 × 𝑌2 → 𝑌1 be a function, ∀ (𝑟1, 𝑟2), (𝑠1, 𝑠2) ∈ 𝑅1 × 𝑅2, ∀ 𝑎 ∈ 𝑌2. 
 
Definition 3.2. Let 𝑊𝑗 = (𝑅𝑗 , 𝑌𝑗 , 𝐵𝑗)  is a 𝐿𝐵𝐹𝑆𝑀 , where  𝑗 = 1, 2 . The wreath product of 

𝑊1and 𝑊2 is denoted by 

𝑊1 ⃘𝑊2 = (𝑅1 × 𝑅2, 𝑌1
 𝑅2 × 𝑌2, 𝐵1 ⃘𝐵2) and 

𝜑𝐵1 ⋅⃘𝐵2

𝑃 ((𝑟1, 𝑟2), (𝑑, 𝑎), (𝑠1, 𝑠2)) = 𝜑𝐵1

𝑃 (𝑟1, 𝑑(𝑟2), 𝑠1)⋀𝜑𝐵2

𝑃 (𝑟2, 𝑎, 𝑠2), 

𝜑𝐵1 ⋅⃘𝐵2

𝑁 ((𝑟1, 𝑟2), (𝑑, 𝑎), (𝑠1, 𝑠2)) = 𝜑𝐵1

𝑁 (𝑟1, 𝑑(𝑟2), 𝑠1)⋁𝜑𝐵2

𝑁 (𝑟2, 𝑎, 𝑠2), 

where                    𝜑𝐵1⋅⃘𝐵2

𝑃 : (𝑅1 × 𝑅2) × (𝑌1
𝑅2 × 𝑌2) × (𝑅1 × 𝑅2) → (0, 1], 

                             𝜑𝐵1 ⋅⃘𝐵2

𝑁 : (𝑅1 × 𝑅2) × (𝑌1
𝑅2 × 𝑌2) × (𝑅1 × 𝑅2) → [−1, 0), 

                             𝑌1
𝑅2 = {𝑑 |𝑑: 𝑅2 → 𝑌1},  

∀ ((𝑟1, 𝑟2), (𝑑, 𝑎), (𝑠1, 𝑠2) ∈ (𝑅1 × 𝑅2) × (𝑌1
𝑅2 × 𝑌2) × (𝑅1 × 𝑅2). 
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Theorem 3.1. Let 𝑊𝑗 = (𝑅𝑗 , 𝑌𝑗 , 𝐵𝑗) is a 𝐿𝐵𝐹𝑆𝑀, where  𝑗 = 1, 2. Then 

1) 𝑊1𝜔𝑊2 be a 𝐿𝐵𝐹𝑆𝑀, 

2) 𝑊1 ⃘𝑊2 be a 𝐿𝐵𝐹𝑆𝑀.  

Proof: Using the identical approach as Theorem 3.1. in the reference [10], it is simple to 

demonstrate the validity of the result. 

4. Property of coverings 

Definition 4.1.If 𝑊1 = (𝑅1, 𝑌1, 𝐵1)  and 𝑊2 = (𝑅2, 𝑌2, 𝐵2) are two 𝐿𝐵𝐹𝑆𝑀 . An ordered pair 
(𝛾, 𝛽) is said to be a weak covering of  𝑊1 by 𝑊2 denoted by 𝑊1 ≤𝜔 𝑊2, if 𝛾 is a surjective 

partial function from 𝑅2  to 𝑅1 and 𝛽 is a partial function from 𝑌1to 𝑌2. 

𝜑𝐵1

𝑃 (𝛾(𝑠), 𝑦, 𝛽(𝑟)) ≤ 𝜑𝐵2

𝑃 (𝑠, 𝛽(𝑦1), 𝑟), 

𝜑𝐵1

𝑁 (𝛾(𝑠), 𝑦, 𝛽(𝑟)) ≥ 𝜑𝐵2

𝑁 (𝑠, 𝛽(𝑦1), 𝑟), 

∀ 𝑦1 ∈ 𝑌 and  𝑟, 𝑠 ∈ 𝛾. 

Only the fact that in Definition 4.1. is a partial function and in a Definition 2.5. is a function 

that separates a weak covering from a covering. As a result, every covering is inadequate. 

 

Definition 4.2. If 𝑊1 = (𝑅1, 𝑌1, 𝐵1) and 𝑊2 = (𝑅2, 𝑌2, 𝐵2) are two 𝐿𝐵𝐹𝑆𝑀 . An ordered pair 

(𝛿, 𝜎) is said to be a homomorphism where 𝛿: 𝑅1 → 𝑅2 and 𝑌1 → 𝑌2 

𝜑𝐵1

𝑃 (𝑟, 𝑏, 𝑠) ≤ 𝜑𝐵2

𝑃 (𝛿(𝑟), 𝜎(𝑏), 𝛿(𝑠)), 

𝜑𝐵2

𝑁 (𝑟, 𝑏, 𝑠) ≤ 𝜑𝐵2

𝑁 (𝛿(𝑟), 𝜎(𝑏), 𝛿(𝑠)), 

∀ 𝑟, 𝑠 ∈ 𝑅1, and ∀ 𝑏 ∈ 𝑌1. 

The ordered pair (𝛿, 𝜎) is said to be strong homomorphism, if  

 

𝜑𝐵2

𝑃 (𝛿(𝑟), 𝜎(𝑏), 𝛿(𝑠)) =∨ {𝜑𝐵1

𝑃 (𝑟, 𝑏, 𝑢)|𝑢 ∈ 𝑅1, 𝛿(𝑢) = 𝛿(𝑠)} 

𝜑𝐵2

𝑁 (𝛿(𝑟), 𝜎(𝑏), 𝛿(𝑠)) =∧ {𝜑𝐵1

𝑁 (𝑟, 𝑏, 𝑢)|𝑢 ∈ 𝑅1, 𝛿(𝑢) = 𝛿(𝑠)} 

∀ 𝑟, 𝑠 ∈ 𝑅1, and ∀ 𝑏 ∈ 𝑌1. 

An isomorphism (also known as strong isomorphism) (𝛿, 𝜎) between 𝑊1 and 𝑊2 is referred 

to as a homomorphism(also known as strong homomorphism) if both 𝛿 and 𝜎 are bijective. 

 

Theorem 4.1. Suppose 𝑊1 = (𝑅1, 𝑌1, 𝐵1)  and 𝑊2 = (𝑅2, 𝑌2, 𝐵2)  are 𝐿𝐵𝐹𝑆𝑀 . Consider a 

homomorphism (𝛿, 𝜎): 𝑊1 → 𝑊2. If (𝛿, 𝜎) is a one-to-one strong homomorphism, then  

𝜑𝐵2

𝑃 (𝛿(𝑟), 𝜎( 𝑦1), 𝛿(𝑠)) = 𝜑𝐵1

𝑃 (𝑟,  𝑦1, 𝑠), 

𝜑𝐵2

𝑁 (𝛿(𝑟), 𝜎( 𝑦1), 𝛿(𝑠)) = 𝜑𝐵1

𝑁 (𝑟,  𝑦1, 𝑠) , 

∀ 𝑟, 𝑠 ∈ 𝑅1, and ∀ 𝑏 ∈ 𝑌1. 

Proof: 

As (𝛿, 𝜎) are strong homomorphism, it follows that 

 

𝜑𝐵2

𝑃 (𝛿(𝑟), 𝜎(𝑦1), 𝛿(𝑠)) =∨ {𝜑𝐵1

𝑃 (𝑟, 𝑦1, 𝑢)|𝑢 ∈ 𝑅1, 𝛿(𝑢) = 𝛿(𝑠)} 

𝜑𝐵2

𝑁 (𝛿(𝑟), 𝜎(𝑦1), 𝛿(𝑠)) =∧ {𝜑𝐵1

𝑁 (𝑟, 𝑦1, 𝑢)|𝑢 ∈ 𝑅1, 𝛿(𝑢) = 𝛿(𝑠)} 
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As 𝛿 is an injective function and 𝛿(𝑢) = 𝛿(𝑠), it follows that 𝑢 = 𝑠. Therefore,  

𝜑𝐵2

𝑃 (𝛿(𝑟), 𝜎( 𝑦1), 𝛿(𝑠)) = 𝜑𝐵1

𝑃 (𝑟, 𝑦, 𝑢) 

𝜑𝐵2

𝑁 (𝛿(𝑟), 𝜎( 𝑦1), 𝛿(𝑠)) = 𝜑𝐵1

𝑁 (𝑟, 𝑦, 𝑢). 

Theorem 4.2. Suppose 𝑊1 = (𝑅1, 𝑌1, 𝐵1)  and 𝑊2 = (𝑅2, 𝑌2, 𝐵2)  are 𝐿𝐵𝐹𝑆𝑀 . Consider a 

homomorphism (𝛿, 𝜎): 𝑊1 → 𝑊2. 

 

1) If (𝛿, 𝜎) is a surjective strong homomorphism and 𝛿 is a injective, then 𝑊2 ≤ 𝑊1, 

2) If 𝛿 is injective, then 𝑊1 ≤ 𝑊2. 

Proof: 

1) As (𝛿, 𝜎)  are surjective strong homomorphism we can conclude that there are 

surjective functions 𝛿: 𝑅1 → 𝑅2  and 𝜎: 𝑌1 → 𝑌2 . We can define 𝛾: 𝑅1 → 𝑅2  and 

𝛽: 𝑌1 → 𝑌2. Since 𝜎 is a surjective function, there must be at least one original image a 

in 𝑅1 such that 𝜎(𝑏) = 𝑏′ for some 𝑏′ in 𝑅2. We can then define 𝛽(𝑏′) = 𝑏. If (𝛿, 𝜎) 

is a strong homomorphism with 𝛿 being one to one, then 

𝜑𝐵2

𝑃 (𝛿(𝑟), 𝜎(𝑏), 𝛿(𝑠)) = 𝜑𝐵1

𝑃 (𝑟, 𝑏, 𝑠) 

𝜑𝐵2

𝑁 (𝛿(𝑟), 𝜎(𝑏), 𝛿(𝑠)) = 𝜑𝐵1

𝑁 (𝑟, 𝑏, 𝑠) 

∀ 𝑟, 𝑠 ∈ 𝑅1, and ∀ 𝑏′ ∈ 𝑌2. 

If 𝛽(𝑏′) = 𝑏, then  

 

𝜑𝐵2

𝑃 (𝛾(𝑟), 𝑏′, 𝛾(𝑠)) = 𝜑𝐵2

𝑃 (𝛿(𝑟), 𝜎(𝑏), 𝛿(𝑠)) 

𝜑𝐵1

𝑃 (𝑟, 𝑏, 𝑠) = 𝜑𝐵1

𝑃 (𝑟, 𝛽(𝑏′), 𝑠) 

𝜑𝐵2

𝑁 (𝛾(𝑟), 𝑏′, 𝛾(𝑠)) = 𝜑𝐵2

𝑁 (𝛿(𝑟), 𝜎(𝑏), 𝛿(𝑠)) 

𝜑𝐵1

𝑁 (𝑟, 𝑏, 𝑠) = 𝜑𝐵1

𝑁 (𝑟, 𝛽(𝑏′), 𝑠). 

Therefore (𝛾, 𝛽) is a covering of  𝑊2 by 𝑊1, 𝑊2 ≤ 𝑊1. 

2) Since (𝛿, 𝜎): 𝑊1 → 𝑊2 be a homomorphism, there exists a mapping 𝛿: 𝑅1 → 𝑅2 and 

𝜎: 𝑌1 → 𝑌2, such that  

 

𝜑𝐵1

𝑃 (𝑟1, 𝑏1, 𝑠1) ≤ 𝜑𝐵2

𝑃 (𝛿(𝑟1), 𝜎(𝑏1), 𝛿(𝑠1)) 

𝜑𝐵1

𝑁 (𝑟1, 𝑏1, 𝑠1) ≤ 𝜑𝐵2

𝑁 (𝛿(𝑟1), 𝜎(𝑏1), 𝛿(𝑠1)) 

∀ 𝑟1, 𝑠1 ∈ 𝑅1, and ∀ 𝑏1 ∈ 𝑌1. 

Suppose 𝛾: 𝑅2 → 𝑅1. If 𝛿(𝑟1) = 𝑟2 then 𝛾(𝑟2) = 𝑟1. As 𝛿 is one-to-one function, we 

can infer the 𝑟1 is uniquely determined. Therefore, 𝛾 is surjective partial function. Let 

𝛽: 𝑌1 → 𝑌2, 𝛽 = 𝜎, then 

𝜑𝐵1

𝑃 (𝛾(𝑟2), 𝑏1, 𝛾(𝑠2)) ≤ 𝜑𝐵2

𝑃 (𝑟2, 𝛽(𝑏1), 𝑠2) 

𝜑𝐵1

𝑁 (𝛾(𝑟2), 𝑏1, 𝛾(𝑠2)) ≥ 𝜑𝐵2

𝑁 (𝑟2, 𝛽(𝑏1), 𝑠2) 

Therefore (𝛾, 𝛽) is a covering of 𝑊1 by 𝑊2, 𝑊1 ≤ 𝑊2. 

Corollary 4.1. Suppose 𝑊1 = (𝑅1, 𝑌1, 𝐵1)  and 𝑊2 = (𝑅2, 𝑌2, 𝐵2)  are 𝐿𝐵𝐹𝑆𝑀 . Consider a 

homomorphism (𝛿, 𝜎): 𝑊1 → 𝑊2. Then 
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1) If (𝛿, 𝜎) is a strong homomorphism and 𝛿 is a bijective, then 𝑊2 ≤𝜔 𝑊1, 

2) If 𝛿 is injective, then 𝑊1 ≤𝜔 𝑊2. 

Proof: 

1) The evidence corresponds to that of theorem 4.2(1). 

2) By utilizing theorem 4.2(2), we can determine 𝑊1 ≤ 𝑊2. As all covering are weak 

coverings, it follows that 𝑊1 ≤𝜔 𝑊2. 

Theorem 4.3. Suppose 𝑊𝑗 = (𝑅𝑗 , 𝑌𝑗 , 𝐵𝑗)  is a 𝐿𝐵𝐹𝑆𝑀 , where  𝑗 = 1, 2, 3 . If 𝑊1 ≤𝜔 𝑊2  and 

𝑊2 ≤𝜔 𝑊3 then 𝑊1 ≤𝜔 𝑊3. 

Proof: 

Given 𝑊1 ≤𝜔 𝑊2, we can conclude that there is a partial surjective function 𝛾: 𝑅2 → 𝑅1 and 

partial function 𝛽: 𝑌1 → 𝑌2 which satisfy the following condition. 

𝜑𝐵1

𝑃 (𝛾(𝑠1), 𝑦1, 𝛾1(𝑟1)) ≤ 𝜑𝐵2

𝑃 (𝑠1, 𝛽1(𝑦1), 𝑟1), 

𝜑𝐵1

𝑁 (𝛾(𝑠1), 𝑦1, 𝛾1(𝑟1)) ≥ 𝜑𝐵2

𝑁 (𝑠1, 𝛽1(𝑦1), 𝑟1), 

for every 𝑦1 there is a member of the domain 𝛽1, and every 𝑠1 and 𝑟1 that are members of the 

domain of 𝛾1. 

If 𝑊2 ≤𝜔 𝑊3, we can conclude that there is a partial surjective function 𝛾2: 𝑅3 → 𝑅2 and a 

partial function 𝛽2: 𝑌2 → 𝑌3, which satisfies the following condition 

𝜑𝐵2

𝑃 (𝛾2(𝑠2), 𝑦2, 𝛾2(𝑟2)) ≤ 𝜑𝐵3

𝑃 (𝑠2, 𝛽2(𝑦2), 𝑟2), 

𝜑𝐵2

𝑁 (𝛾2(𝑠2), 𝑦2, 𝛾2(𝑟2)) ≥ 𝜑𝐵3

𝑁 (𝑠2, 𝛽2(𝑦2), 𝑟2), 

for every 𝑦2 there is a member of the domain 𝛽2, and every 𝑠2 and 𝑟2 that are members of the 

domain of 𝛾2. 

Let 𝛾 = 𝛾1 ◦ 𝛾2: 𝑅3 → 𝑅1, 𝛽 = 𝛽2 ◦ 𝛽1: 𝑌1 → 𝑌3. It is evident that 𝛾 is a partial function with 

surjective properties and 𝛽 is also partial function. If there exists 𝑌1such that it belongs to the 

domain of 𝛽  and 𝛽,  and there exist 𝑠  and 𝑟  which belong to the domain of 𝛾  and 𝛾2 

respectively, then  

𝜑𝐵1

𝑃 (𝛾(𝑠), 𝑦1, 𝛾(𝑟)) = 𝜑𝐵1

𝑃 (𝛾1 ◦ 𝛾2(𝑠), 𝑦1, 𝛾1 ◦ 𝛾2(𝑠)) 

                        = 𝜑𝐵1

𝑃 (𝛾1(𝛾2(𝑠), 𝑦1, 𝛾1(𝛾2(𝑟)) 

                            ≤ 𝜑𝐵2

𝑃 (𝛾2(𝑠), 𝛽1(𝑦1), 𝛾2(𝑟))  

                                  ≤ 𝜑𝐵3

𝑃 (𝑠, 𝛽2(𝛽1(𝑦1)), 𝑟) 

                                        = 𝜑𝐵3

𝑃 (𝑠, 𝛽2 ◦ 𝛽1(𝑦1), 𝑟 ) 

                             = 𝜑𝐵3

𝑃 (𝑠, 𝛽(𝑦1), 𝑟). 

Alike, we can demonstrate that 𝜑𝐵1

𝑁 (𝛾(𝑠), 𝑦1, 𝛾(𝑟)) is not less than 𝜑𝐵3

𝑁 (𝑠, 𝛽(𝑦1), 𝑟). It 

is evident that (𝛾, 𝛽) confirms to the necessary conditions for a weak covering of 𝑊1 

by 𝑊3. 
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Theorem 4.4. Let 𝑊𝑗 = (𝑅𝑗 , 𝑌𝑗 , 𝐵𝑗) is a 𝐿𝐵𝐹𝑆𝑀, where  𝑗 = 1, 2. Then 

1) 𝑊1𝜔𝑊2 ≤ 𝑊1 ◦ 𝑊2 

2) 𝑊1 ◦ 𝑊2 ≤ 𝑊1 × 𝑊2 

3) 𝑊1𝜔𝑊2 ≤ 𝑊1 × 𝑊2 

Proof:  

Define the function 𝜔𝑐: 𝑅2 → 𝑌1 as follows 𝜔𝑐(𝑠2) = 𝜔(𝑠2, 𝑐), ∀ 𝑠2 ∈ 𝑅2 and 𝑐 ∈ 𝑌2. 

1) Let 𝛽: 𝑌2 → 𝑌1
𝑅2 × 𝑌2 be defined as 𝛽(𝑐) = (𝜔𝑐, 𝑐) and let 𝛾 be the identity map 

on 𝑅1 × 𝑅2. 

2) Let 𝛽: 𝑌1
𝑅2 × 𝑌2 → 𝑌1 × 𝑌2, by 𝛽(𝑑, 𝑐) = (𝑑(𝑠2), 𝑐), while 𝛾 denotes the identity 

map on 𝑅1 × 𝑅2 

3) Given that 𝑊1𝜔𝑊2 ≤ 𝑊1 ◦ 𝑊2  and 𝑊1 ◦ 𝑊2 ≤ 𝑊1 × 𝑊2 , it follows from 

Theorem 2.2. that 𝑊1𝜔𝑊2 ≤ 𝑊1 × 𝑊2. 

Theorem 4.5. If 𝑊𝑖 = (𝑅𝑖, 𝑌𝑖, 𝐵𝑖) is a 𝐿𝐵𝐹𝑆𝑀, where  𝑖 = 1, 2,3. If 𝑊1 ∗ 𝑊2, then  

1) If 𝜔1: 𝑅3 × 𝑌3 → 𝑌1 , is provided, there is a 𝜔2: 𝑅3 × 𝑌3 → 𝑌2  that satisfies 

𝑊1𝜔𝑊3 ≤ 𝑊2𝜔2𝑊3. If  (𝛾, 𝛽) is a cover of  𝑊1by 𝑊2  and 𝛽  is onto, then for 

every 𝜔1: 𝑅1 × 𝑌1 → 𝑌3 , there exist 𝜔2: 𝑅2 × 𝑌2 → 𝑌3  such that 𝑊3𝜔1𝑊1 ≤

𝑊3𝜔2𝑊2. 

2) 𝑊1 ◦ 𝑊3 ≤ 𝑊2 ◦ 𝑊3 and 𝑊3 ◦ 𝑊1 ≤ 𝑊3 ◦ 𝑊2. 

Proof: 

Given 𝑊1 ∗ 𝑊2  we can conclude the existence of a partial function 𝛾: 𝑅2 → 𝑅1  which is 

surjective, and a function 𝛽: 𝑌1 → 𝑌2,  

𝜑𝐵1

𝑃 (𝛾1(𝑠2), 𝑦1, 𝛾1(𝑟2)) ≤ 𝜑𝐵2

𝑃 (𝑠2, 𝛽(𝑦1), 𝑟2), 

𝜑𝐵1

𝑁 (𝛾1(𝑠2), 𝑦1, 𝛾1(𝑟2)) ≥ 𝜑𝐵1

𝑁 (𝑠2, 𝛽(𝑦1), 𝑟2), 

for every 𝑦1 there is a member of the domain 𝑦1, and every 𝑠2 and 𝑟2 that are members of the 

domain of 𝛾1 

1) Let 𝜔1: 𝑅3 × 𝑌3 → 𝑌1 , set 𝜔2 = 𝛽1 ◦ 𝜔1 and 𝛽2  as an identity mapping on 𝑌3 . 

Define 𝛾2: 𝑅2 × 𝑅3 → 𝑅1 × 𝑅3  by 𝛾2((𝑟2, 𝑟3)) = ( 𝛾2(𝑟2), 𝑟3 ). It is evident that 

(𝛾2, 𝛽2)  satisfies the condition for covering, 𝑊1𝜔1𝑊2 ≤ 𝑊2𝜔2𝑊3 . Now, let 

𝜔1: 𝑅1 × 𝑌1 → 𝑌3 , set 𝜔2: 𝑅2 × 𝑌2 → 𝑌3  such that 𝜔2(𝑟2, 𝛽1(𝑦1)) =

𝜔1(𝛾1(𝑟2), 𝑦1). Since 𝛽1 is onto and 𝑦1is finite, such a 𝜔2 exists. However it is not 

unique. Define 𝛾: 𝑅3 × 𝑅2 → 𝑅3 × 𝑅1  by 𝛾2((𝑟3, 𝑟2)) = (  𝑟3, 𝛾1(𝑟2) ) and set 

𝛽2 = 𝛽1 . It is obvious that (𝛾2, 𝛽2)  satisfies the conditional for a covering, 

𝑊3𝜔1𝑊1 ≤ 𝑊3𝜔2𝑊2. 

2) The function 𝛾2: 𝑅2 × 𝑅3 → 𝑅1 × 𝑅3  can be defined as 𝛾2((𝑟2, 𝑟3)) =(𝛾1(𝑟2), 𝑟3) 

and the function 𝛽2: 𝑌1
𝑅3 × 𝑌3 → 𝑌2

𝑅3 × 𝑌3  can be defined as 𝛽2(𝑑, 𝑦3) =

(𝛽1 ◦ 𝑑, 𝑦3). It is evident that 𝛾2 is a partial function that covers all values and 𝛽2 

is a complete function. Another function 𝛾2: 𝑅3 × 𝑅2 → 𝑅3 × 𝑅1 can be defined as 

𝛾2((𝑟3, 𝑟2)) = ( 𝑟3, 𝛾1(𝑟2) ) and the function  𝛽2: 𝑌3
𝑅1 × 𝑌1 → 𝑌3

𝑅2 × 𝑌2  by 
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𝛽2(𝑑, 𝑦1) = (𝑑 ◦ 𝛾1, 𝛽1( 𝑦1)).  It is apparent that 𝛾2  is a partial function that 

covers all the values and 𝛽2 is also a partial function. 

Corollary 4.2. If 𝑊𝑖 = (𝑅𝑖, 𝑌𝑖 , 𝐵𝑖) is a 𝐿𝐵𝐹𝑆𝑀, where  𝑖 = 1, 2,3,4. If 𝑊1 ≤ 𝑊2 and 𝑊3 ≤ 𝑊4, 

then 

1) 𝑊1 ◦ 𝑊2 ≤𝜔 𝑊2 ◦ 𝑊4 

2) 𝑊1𝜔𝑊3 ≤𝜔 𝑊2 ◦ 𝑊4 

3) 𝑊1 ◦ 𝑊2 ≤ 𝑊2 × 𝑊4 

4) 𝑊1𝜔𝑊3 ≤ 𝑊2 × 𝑊4. 

Proof: 

Using Theorem 4.5. and 4.3., we are able to demonstrate that             

  𝑊1 ◦ 𝑊3 ≤𝜔 𝑊2 ◦ 𝑊4. Equally, we can establish the validity of (2), (3) and (4). 

5.Conclusion 

In automata theory, product is one of the most fundamental operations. The present study 

delves into the multiplication of finite state machines and coverings that are equipped with 

lattice-valued bipolar fuzzy attributes. 
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