PRODUCTS OF WREATHS AND CASCADES IN FINITE STATE MACHINES WITH LATTICE-VALUED BIPOLAR FUZZY COVERINGS

Gayathri K. S. ${ }^{1}$,M. Rajeshwari ${ }^{2 *}$ and M. Kaviyarasu ${ }^{3}$
Article History: Received: 01.02.2023 Revised: 07.03.2023 Accepted: 10.04.2023

Abstract

In this paper, we discuss lattice valued bipolar fuzzy finite state machines, homomorphisms, and weak coverings. In addition, two lattice-valued bipolar fuzzy finite state machines are examined in terms of their covering relations. It is discussed how direct products, cascade products, and wreath products are covered. Product machines exhibit a few transitive properties of covering relations. As a result, studying lattice-valued bipolar fuzzy finite state machines is an important step.

Keywords: Wreath product, Homomorphism, Cascade product ,Covering.

[^0]DOI: 10.31838/ecb/2023.12.s1-B. 151

1.Introduction

In [1], Zadeh proposed a fuzzy set theory. Fuzzy automatons were first conceptualized mathematically by Wee in [2]. Afterward, Atanassov introduced intuitionistic fuzzy sets [3, 4] that are highly useful for dealing with vagueness in a variety of higher order fuzzy sets. As a generalization of fuzzy finite state machines, Jun introduced intuitionistic fuzzy finite state machines [5-7] based on intuitionistic fuzzy sets. They also introduced intuitionistic successors, intuitionistic subsystems, intuitionistic submachines, and intuitionistic q-twins. According to Zhang and Li [8], intuitive fuzzy recognizers are based on intuition. Among the most important contributions of Atanassov to fuzzy sets was the lattice-valued intuitionistic fuzzy set theory. The theory of bipolar fuzzy finite State Machines was presented by [9] Young Bae Jun and Jacob Kavikumar. Followed by Bae Bipolar-valued Fuzzy Finite Switchboard State Machines was introduced by J. Kavikumar [10] .A lattice-valued bipolar fuzzy finite state machine has been shown to contain cascade products, homomorphisms, wreath products and weak coverings.

2 Preliminaries

Definition 2.1.A bipolar-valued fuzzy set φ in X is an object having the form $\varphi=$ $\left\{\left(x, \varphi^{N}, \varphi^{P}\right) \mid x \in X\right\}$ where $\varphi^{N}: X \rightarrow[-1,0]$ and $\varphi^{P}: X \rightarrow[0,1]$ are mappings, where $\varphi^{P}(x)$ denotes the positive membership degree and $\varphi^{N}(x)$ denotes the Negative membership degree. We shall use the notation $\left\langle\varphi^{N}, \varphi^{P}\right\rangle$ instead of $\varphi=\left\{\left(x, \varphi^{N}, \varphi^{P}\right) \mid x \in X\right\}$

Definition 2.2. Let $W=(R, Y, B)$ is a lattice-valued bipolar fuzzy finite state machine ($L B_{F S M}$), where R and Y are finite nonempty sets, called the set of states and the set of input symbols, respectively, and $\varphi=\left\langle\varphi^{N}, \varphi^{P}\right\rangle$ is a bipolar fuzzy set in $\mathrm{R} \times \mathrm{Y} \times \mathrm{R}$.

Let Y^{*} denote the set of all words of elements of Y of finite length. Let λ denote the empty word in Y^{*} and $|\mathrm{y}|$ denote the length of y for every $\mathrm{y} \in \mathrm{Y}$.

Definition 2.3. Suppose $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2, \ldots$ The complete direct product of W_{1} and W_{2} is denoted by $\left(R_{1} \times R_{2}, Y_{1} \times Y_{2}, B_{1} \times B_{2}\right)$ where the Cartesian product of their states, input symbols are taken

$$
\begin{aligned}
& \varphi_{B_{1} \times B_{2}}^{P}\left(\left(r_{1}, r_{2}\right),\left(y_{1}, y_{2}\right),\left(s_{1}, s_{2}\right)\right)=\varphi_{B_{1}}^{P}\left(r_{1}, y_{1}, s_{1}\right) \wedge \varphi_{B_{2}}^{P}\left(r_{2}, y_{2}, s_{2}\right), \\
& \varphi_{B_{1} \times B_{2}}^{N}\left(\left(r_{1}, r_{2}\right),\left(y_{1}, y_{2}\right),\left(s_{1}, s_{2}\right)\right)=\varphi_{B_{1}}^{N}\left(r_{1}, y_{1}, s_{1}\right) \vee \varphi_{B_{2}}^{N}\left(r_{2}, y_{2}, s_{2}\right),
\end{aligned}
$$

where $\varphi_{B_{1} \times B_{2}}^{P}:\left(R_{1} \times R_{2}\right) \times\left(Y_{1} \times Y_{2}\right) \times\left(B_{1} \times B_{2}\right) \rightarrow(0,1], \varphi_{B_{1} \times B_{2}}^{N}:\left(R_{1} \times R_{2}\right) \times\left(Y_{1} \times Y_{2}\right) \times$ $\left(B_{1} \times B_{2}\right) \rightarrow[-1,0), \forall\left(r_{1}, r_{2}\right),\left(s_{1}, s_{2}\right) \in R_{1} \times R_{2},\left(y_{1}, y_{2}\right) \in Y_{1} \times Y_{2}$.

Definition 2.4. Suppose $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2$. The restricted direct product of W_{1} and W_{2} is denoted by $W_{1} \wedge W_{2}=\left(R_{1} \times R_{2}, Y, B_{1} \times B_{2}\right)$, and

$$
\begin{aligned}
& \varphi_{B_{1} \wedge B_{2}}^{P}\left(\left(r_{1}, r_{2}\right), b,\left(s_{1}, s_{2}\right)\right)=\varphi_{B_{1}}^{P}\left(r_{1}, b, s_{1}\right) \wedge \varphi_{B_{2}}^{P}\left(r_{2}, b, s_{2}\right), \\
& \varphi_{B_{1} \wedge B_{2}}^{N}\left(\left(r_{1}, r_{2}\right), b,\left(s_{1}, s_{2}\right)\right)=\varphi_{B_{1}}^{N}\left(r_{1}, b, s_{1}\right) \vee \varphi_{B_{2}}^{N}\left(r_{2}, b, s_{2}\right),
\end{aligned}
$$

where $\varphi_{B_{1} \wedge B_{2}}^{P}:\left(R_{1} \times R_{2}\right) \times Y \times\left(R_{1} \times R_{2}\right) \rightarrow(0,1], \varphi_{B_{1} \wedge B_{2}}^{N}:\left(R_{1} \times R_{2}\right) \times Y \times\left(R_{1} \times R_{2}\right) \rightarrow$ $[-1,0), \forall\left(r_{1}, r_{2}\right),\left(s_{1}, s_{2}\right) \in R_{1} \times R_{2}, \forall b \in Y$.

Theorem 2.1. Suppose $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2$. The subsequent statements are true.
i) $\quad W_{1} \times W_{2}$ be a $L B_{F S M}$.
ii) $\quad W_{1} \wedge W_{2}$ be a $L B_{F S M}$, where $Y_{1}=Y_{2}=Y$.

Definition 2.5. If $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1$, 2. A surjective partial function $\gamma: R_{1} \rightarrow R_{2}$ and a function $\beta: Y_{1} \rightarrow Y_{2}$ together form an ordered pair (γ, β) which is referred to as a covering of W_{1} by W_{2} denoted as $W_{1} \leq W_{2}$ if $\varphi_{B_{1}}^{P}(\gamma(s), y, \gamma(r)) \leq \varphi_{B_{2}}^{P}\left(s, \beta\left(y_{1}\right), r\right), \varphi_{B_{1}}^{N}(\gamma(s), y, \gamma(r)) \leq \varphi_{B_{2}}^{N}\left(s, \beta\left(y_{1}\right), r\right)$, $\forall y_{1} \in Y$ and $r, s \in \gamma$.

Theorem 2.2. If $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2,3$. If $W_{1} \leq W_{2}$ and $W_{2} \leq W_{3}$ then $W_{1} \leq W_{3}$.

Theorem 2.3.If $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2,3$. Then $W_{1} \wedge W_{2} \leq W_{1} \times W_{2}$.
Theorem 2.4.If $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2,3$. If $W_{1} \leq W_{2}$, then

1) $W_{1} \times W_{3} \leq W_{2} \times W_{3}$ and $W_{3} \times W_{1} \leq W_{3} \times W_{2}$
2) $W_{1} \wedge W_{3} \leq W_{2} \wedge W_{3}$ and $W_{3} \wedge W_{1} \leq W_{3} \wedge W_{2}$

Where $Y_{1}=Y_{2}=Y_{3}=Y$.
Corollary 2.1.If $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2,3$. If $W_{1} \leq W_{2}$, then

1) $W_{1} \wedge W_{3} \leq W_{2} \times W_{3}$ where $Y_{1}=Y_{3}=Y$
2) $W_{3} \wedge W_{1} \leq W_{3} \times W_{2}$ where $Y_{1}=Y_{3}=Y$

Corollary 2.2.If $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2,3,4$. If $W_{1} \leq W_{2}$ and $W_{3} \leq$ W_{4} then The subsequent statements are true.

1) $W_{1} \times W_{2} \leq W_{2} \times W_{4}$,
2) $W_{1} \wedge W_{3} \leq W_{2} \wedge W_{4}$ where $Y_{1}=Y_{2}=Y_{3}=Y_{4}=Y$
3) $W_{1} \wedge W_{3} \leq W_{2} \times W_{4}$ where $Y_{1}=Y_{3}=Y$.

3. $L B_{F S M}$ for wreath products and cascades

Definition 3.1.Let $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2$. The cascade product of W_{1} and W_{2} is denoted by $W_{1} \omega W_{2}=\left(R_{1} \times R_{2}, Y_{2}, B_{1} \omega B_{2}\right)$ and

$$
\begin{aligned}
& \varphi_{B_{1} \omega B_{2}}^{P}\left(\left(r_{1}, r_{2}\right), a,\left(s_{1}, s_{2}\right)\right)=\varphi_{B_{1}}^{P}\left(r_{1}, \omega\left(r_{2}, a\right), s_{1}\right) \wedge \varphi_{B_{2}}^{P}\left(r_{2}, a, s_{2}\right), \\
& \varphi_{B_{1} \omega B_{2}}^{N}\left(\left(r_{1}, r_{2}\right), a,\left(s_{1}, s_{2}\right)\right)=\varphi_{B_{1}}^{N}\left(r_{1}, \omega\left(r_{2}, a\right), s_{1}\right) \vee \varphi_{B_{2}}^{N}\left(r_{2}, a, s_{2}\right),
\end{aligned}
$$

Where $\varphi_{B_{1} \omega B_{2}}^{P}:\left(R_{1} \times R_{2}\right) \times Y_{2} \times\left(R_{1} \times R_{2}\right) \rightarrow(0,1], \varphi_{B_{1} \omega B_{2}}^{N}:\left(R_{1} \times R_{2}\right) \times Y_{2} \times\left(R_{1} \times\right.$ $\left.R_{2}\right) \rightarrow[-1,0), \omega: R_{2} \times Y_{2} \rightarrow Y_{1}$ be a function, $\forall\left(r_{1}, r_{2}\right),\left(s_{1}, s_{2}\right) \in R_{1} \times R_{2}, \forall a \in Y_{2}$.

Definition 3.2. Let $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2$. The wreath product of W_{1} and W_{2} is denoted by
$W_{1} \circ W_{2}=\left(R_{1} \times R_{2}, Y_{1}^{R_{2}} \times Y_{2}, B_{9} B_{2}\right)$ and

$$
\begin{gathered}
\varphi_{B_{1} \circ B_{2}}^{P}\left(\left(r_{1}, r_{2}\right),(d, a),\left(s_{1}, s_{2}\right)\right)=\varphi_{B_{1}}^{P}\left(r_{1}, d\left(r_{2}\right), s_{1}\right) \wedge \varphi_{B_{2}}^{P}\left(r_{2}, a, s_{2}\right), \\
\varphi_{B_{1}{ }^{\circ} B_{2}}^{N}\left(\left(r_{1}, r_{2}\right),(d, a),\left(s_{1}, s_{2}\right)\right)=\varphi_{B_{1}}^{N}\left(r_{1}, d\left(r_{2}\right), s_{1}\right) \vee \varphi_{B_{2}}^{N}\left(r_{2}, a, s_{2}\right), \\
\varphi_{B_{1} B_{2} B_{2}}^{P}:\left(R_{1} \times R_{2}\right) \times\left(Y_{1}^{R_{2}} \times Y_{2}\right) \times\left(R_{1} \times R_{2}\right) \rightarrow(0,1], \\
\varphi_{B_{1} B_{2}}^{N}:\left(R_{1} \times R_{2}\right) \times\left(Y_{1}^{R_{2}} \times Y_{2}\right) \times\left(R_{1} \times R_{2}\right) \rightarrow[-1,0), \\
Y_{1}^{R_{2}}=\left\{d \mid d: R_{2} \rightarrow Y_{1}\right\}, \\
\forall\left(\left(r_{1}, r_{2}\right),(d, a),\left(s_{1}, s_{2}\right) \in\left(R_{1} \times R_{2}\right) \times\left(Y_{1}{ }^{R_{2}} \times Y_{2}\right) \times\left(R_{1} \times R_{2}\right) .\right.
\end{gathered}
$$

where

Theorem 3.1. Let $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2$. Then

1) $W_{1} \omega W_{2}$ be a $L B_{F S M}$,
2) $W_{1} W_{2}$ be a $L B_{F S M}$.

Proof: Using the identical approach as Theorem 3.1. in the reference [10], it is simple to demonstrate the validity of the result.

4. Property of coverings

Definition 4.1.If $W_{1}=\left(R_{1}, Y_{1}, B_{1}\right)$ and $W_{2}=\left(R_{2}, Y_{2}, B_{2}\right)$ are two $L B_{F S M}$. An ordered pair (γ, β) is said to be a weak covering of W_{1} by W_{2} denoted by $W_{1} \leq_{\omega} W_{2}$, if γ is a surjective partial function from R_{2} to R_{1} and β is a partial function from Y_{1} to Y_{2}.

$$
\begin{aligned}
& \varphi_{B_{1}}^{P}(\gamma(s), y, \beta(r)) \leq \varphi_{B_{2}}^{P}\left(s, \beta\left(y_{1}\right), r\right), \\
& \varphi_{B_{1}}^{N}(\gamma(s), y, \beta(r)) \geq \varphi_{B_{2}}^{N}\left(s, \beta\left(y_{1}\right), r\right),
\end{aligned}
$$

$\forall y_{1} \in Y$ and $r, s \in \gamma$.
Only the fact that in Definition 4.1. is a partial function and in a Definition 2.5. is a function that separates a weak covering from a covering. As a result, every covering is inadequate.

Definition 4.2. If $W_{1}=\left(R_{1}, Y_{1}, B_{1}\right)$ and $W_{2}=\left(R_{2}, Y_{2}, B_{2}\right)$ are two $L B_{F S M}$. An ordered pair (δ, σ) is said to be a homomorphism where $\delta: R_{1} \rightarrow R_{2}$ and $Y_{1} \rightarrow Y_{2}$

$$
\begin{aligned}
& \varphi_{B_{1}}^{P}(r, b, s) \leq \varphi_{B_{2}}^{P}(\delta(r), \sigma(b), \delta(s)), \\
& \varphi_{B_{2}}^{N}(r, b, s) \leq \varphi_{B_{2}}^{N}(\delta(r), \sigma(b), \delta(s)),
\end{aligned}
$$

$\forall r, s \in R_{1}$, and $\forall b \in Y_{1}$.
The ordered pair (δ, σ) is said to be strong homomorphism, if

$$
\begin{aligned}
& \varphi_{B_{2}}^{P}(\delta(r), \sigma(b), \delta(s))=\vee\left\{\varphi_{B_{1}}^{P}(r, b, u) \mid u \in R_{1}, \delta(u)=\delta(s)\right\} \\
& \varphi_{B_{2}}^{N}(\delta(r), \sigma(b), \delta(s))=\wedge\left\{\varphi_{B_{1}}^{N}(r, b, u) \mid u \in R_{1}, \delta(u)=\delta(s)\right\}
\end{aligned}
$$

$\forall r, s \in R_{1}$, and $\forall b \in Y_{1}$.
An isomorphism (also known as strong isomorphism) (δ, σ) between W_{1} and W_{2} is referred to as a homomorphism(also known as strong homomorphism) if both δ and σ are bijective.

Theorem 4.1. Suppose $W_{1}=\left(R_{1}, Y_{1}, B_{1}\right)$ and $W_{2}=\left(R_{2}, Y_{2}, B_{2}\right)$ are $L B_{F S M}$. Consider a homomorphism $(\delta, \sigma): W_{1} \rightarrow W_{2}$. If (δ, σ) is a one-to-one strong homomorphism, then

$$
\begin{aligned}
& \varphi_{B_{2}}^{P}\left(\delta(r), \sigma\left(y_{1}\right), \delta(s)\right)=\varphi_{B_{1}}^{P}\left(r, y_{1}, s\right), \\
& \varphi_{B_{2}}^{N}\left(\delta(r), \sigma\left(y_{1}\right), \delta(s)\right)=\varphi_{B_{1}}^{N}\left(r, y_{1}, s\right),
\end{aligned}
$$

$\forall r, s \in R_{1}$, and $\forall b \in Y_{1}$.
Proof:
As (δ, σ) are strong homomorphism, it follows that

$$
\begin{aligned}
& \varphi_{B_{2}}^{P}\left(\delta(r), \sigma\left(y_{1}\right), \delta(s)\right)=\vee\left\{\varphi_{B_{1}}^{P}\left(r, y_{1}, u\right) \mid u \in R_{1}, \delta(u)=\delta(s)\right\} \\
& \varphi_{B_{2}}^{N}\left(\delta(r), \sigma\left(y_{1}\right), \delta(s)\right)=\wedge\left\{\varphi_{B_{1}}^{N}\left(r, y_{1}, u\right) \mid u \in R_{1}, \delta(u)=\delta(s)\right\}
\end{aligned}
$$

As δ is an injective function and $\delta(u)=\delta(s)$, it follows that $u=s$. Therefore,

$$
\begin{aligned}
& \varphi_{B_{2}}^{P}\left(\delta(r), \sigma\left(y_{1}\right), \delta(s)\right)=\varphi_{B_{1}}^{P}(r, y, u) \\
& \varphi_{B_{2}}^{N}\left(\delta(r), \sigma\left(y_{1}\right), \delta(s)\right)=\varphi_{B_{1}}^{N}(r, y, u) .
\end{aligned}
$$

Theorem 4.2. Suppose $W_{1}=\left(R_{1}, Y_{1}, B_{1}\right)$ and $W_{2}=\left(R_{2}, Y_{2}, B_{2}\right)$ are $L B_{F S M}$. Consider a homomorphism (δ, σ): $W_{1} \rightarrow W_{2}$.

1) If (δ, σ) is a surjective strong homomorphism and δ is a injective, then $W_{2} \leq W_{1}$,
2) If δ is injective, then $W_{1} \leq W_{2}$.

Proof:

1) As (δ, σ) are surjective strong homomorphism we can conclude that there are surjective functions $\delta: R_{1} \rightarrow R_{2}$ and $\sigma: Y_{1} \rightarrow Y_{2}$. We can define $\gamma: R_{1} \rightarrow R_{2}$ and $\beta: Y_{1} \rightarrow Y_{2}$. Since σ is a surjective function, there must be at least one original image a in R_{1} such that $\sigma(b)=b^{\prime}$ for some b^{\prime} in R_{2}. We can then define $\beta\left(b^{\prime}\right)=b$. If (δ, σ) is a strong homomorphism with δ being one to one, then

$$
\begin{gathered}
\varphi_{B_{2}}^{P}(\delta(r), \sigma(b), \delta(s))=\varphi_{B_{1}}^{P}(r, b, s) \\
\varphi_{B_{2}}^{N}(\delta(r), \sigma(b), \delta(s))=\varphi_{B_{1}}^{N}(r, b, s) \\
\forall r, s \in R_{1}, \text { and } \forall b^{\prime} \in Y_{2} .
\end{gathered}
$$

If $\beta\left(b^{\prime}\right)=b$, then

$$
\begin{gathered}
\varphi_{B_{2}}^{P}\left(\gamma(r), b^{\prime}, \gamma(s)\right)=\varphi_{B_{2}}^{P}(\delta(r), \sigma(b), \delta(s)) \\
\varphi_{B_{1}}^{P}(r, b, s)=\varphi_{B_{1}}^{P}\left(r, \beta\left(b^{\prime}\right), s\right) \\
\varphi_{B_{2}}^{N}\left(\gamma(r), b^{\prime}, \gamma(s)\right)=\varphi_{B_{2}}^{N}(\delta(r), \sigma(b), \delta(s)) \\
\varphi_{B_{1}}^{N}(r, b, s)=\varphi_{B_{1}}^{N}\left(r, \beta\left(b^{\prime}\right), s\right) .
\end{gathered}
$$

Therefore (γ, β) is a covering of W_{2} by $W_{1}, W_{2} \leq W_{1}$.
2) Since $(\delta, \sigma): W_{1} \rightarrow W_{2}$ be a homomorphism, there exists a mapping $\delta: R_{1} \rightarrow R_{2}$ and $\sigma: Y_{1} \rightarrow Y_{2}$, such that

$$
\begin{gathered}
\varphi_{B_{1}}^{P}\left(r_{1}, b_{1}, s_{1}\right) \leq \varphi_{B_{2}}^{P}\left(\delta\left(r_{1}\right), \sigma\left(b_{1}\right), \delta\left(s_{1}\right)\right) \\
\varphi_{B_{1}}^{N}\left(r_{1}, b_{1}, s_{1}\right) \leq \varphi_{B_{2}}^{N}\left(\delta\left(r_{1}\right), \sigma\left(b_{1}\right), \delta\left(s_{1}\right)\right) \\
\forall r_{1}, s_{1} \in R_{1}, \text { and } \forall b_{1} \in Y_{1} .
\end{gathered}
$$

Suppose $\gamma: R_{2} \rightarrow R_{1}$. If $\delta\left(r_{1}\right)=r_{2}$ then $\gamma\left(r_{2}\right)=r_{1}$. As δ is one-to-one function, we can infer the r_{1} is uniquely determined. Therefore, γ is surjective partial function. Let $\beta: Y_{1} \rightarrow Y_{2}, \beta=\sigma$, then

$$
\begin{gathered}
\varphi_{B_{1}}^{P}\left(\gamma\left(r_{2}\right), b_{1}, \gamma\left(s_{2}\right)\right) \leq \varphi_{B_{2}}^{P}\left(r_{2}, \beta\left(b_{1}\right), s_{2}\right) \\
\varphi_{B_{1}}^{N}\left(\gamma\left(r_{2}\right), b_{1}, \gamma\left(s_{2}\right)\right) \geq \varphi_{B_{2}}^{N}\left(r_{2}, \beta\left(b_{1}\right), s_{2}\right)
\end{gathered}
$$

Therefore (γ, β) is a covering of W_{1} by $W_{2}, W_{1} \leq W_{2}$.
Corollary 4.1. Suppose $W_{1}=\left(R_{1}, Y_{1}, B_{1}\right)$ and $W_{2}=\left(R_{2}, Y_{2}, B_{2}\right)$ are $L B_{F S M}$. Consider a homomorphism $(\delta, \sigma): W_{1} \rightarrow W_{2}$. Then

1) If (δ, σ) is a strong homomorphism and δ is a bijective, then $W_{2} \leq_{\omega} W_{1}$,
2) If δ is injective, then $W_{1} \leq_{\omega} W_{2}$.

Proof:

1) The evidence corresponds to that of theorem 4.2(1).
2) By utilizing theorem $4.2(2)$, we can determine $W_{1} \leq W_{2}$. As all covering are weak coverings, it follows that $W_{1} \leq_{\omega} W_{2}$.

Theorem 4.3. Suppose $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2$, 3. If $W_{1} \leq_{\omega} W_{2}$ and $W_{2} \leq_{\omega} W_{3}$ then $W_{1} \leq_{\omega} W_{3}$.
Proof:
Given $W_{1} \leq_{\omega} W_{2}$, we can conclude that there is a partial surjective function $\gamma: R_{2} \rightarrow R_{1}$ and partial function $\beta: Y_{1} \rightarrow Y_{2}$ which satisfy the following condition.

$$
\begin{aligned}
& \varphi_{B_{1}}^{P}\left(\gamma\left(s_{1}\right), y_{1}, \gamma_{1}\left(r_{1}\right)\right) \leq \varphi_{B_{2}}^{P}\left(s_{1}, \beta_{1}\left(y_{1}\right), r_{1}\right), \\
& \varphi_{B_{1}}^{N}\left(\gamma\left(s_{1}\right), y_{1}, \gamma_{1}\left(r_{1}\right)\right) \geq \varphi_{B_{2}}^{N}\left(s_{1}, \beta_{1}\left(y_{1}\right), r_{1}\right),
\end{aligned}
$$

for every y_{1} there is a member of the domain β_{1}, and every s_{1} and r_{1} that are members of the domain of γ_{1}.

If $W_{2} \leq_{\omega} W_{3}$, we can conclude that there is a partial surjective function $\gamma_{2}: R_{3} \rightarrow R_{2}$ and a partial function $\beta_{2}: Y_{2} \rightarrow Y_{3}$, which satisfies the following condition

$$
\begin{aligned}
& \varphi_{B_{2}}^{P}\left(\gamma_{2}\left(s_{2}\right), y_{2}, \gamma_{2}\left(r_{2}\right)\right) \leq \varphi_{B_{3}}^{P}\left(s_{2}, \beta_{2}\left(y_{2}\right), r_{2}\right), \\
& \varphi_{B_{2}}^{N}\left(\gamma_{2}\left(s_{2}\right), y_{2}, \gamma_{2}\left(r_{2}\right)\right) \geq \varphi_{B_{3}}^{N}\left(s_{2}, \beta_{2}\left(y_{2}\right), r_{2}\right),
\end{aligned}
$$

for every y_{2} there is a member of the domain β_{2}, and every s_{2} and r_{2} that are members of the domain of γ_{2}.

Let $\gamma=\gamma_{1} \circ \gamma_{2}: R_{3} \rightarrow R_{1}, \beta=\beta_{2} \circ \beta_{1}: Y_{1} \rightarrow Y_{3}$. It is evident that γ is a partial function with surjective properties and β is also partial function. If there exists Y_{1} such that it belongs to the domain of β and β, and there exist s and r which belong to the domain of γ and γ_{2} respectively, then

$$
\begin{aligned}
\varphi_{B_{1}}^{P}\left(\gamma(s), y_{1}, \gamma(r)\right) & =\varphi_{B_{1}}^{P}\left(\gamma_{1} \circ \gamma_{2}(s), y_{1}, \gamma_{1} \circ \gamma_{2}(s)\right) \\
& =\varphi_{B_{1}}^{P}\left(\gamma _ { 1 } \left(\gamma_{2}(s), y_{1}, \gamma_{1}\left(\gamma_{2}(r)\right)\right.\right. \\
& \leq \varphi_{B_{2}}^{P}\left(\gamma_{2}(s), \beta_{1}\left(y_{1}\right), \gamma_{2}(r)\right) \\
& \leq \varphi_{B_{3}}^{P}\left(s, \beta_{2}\left(\beta_{1}\left(y_{1}\right)\right), r\right) \\
& =\varphi_{B_{3}}^{P}\left(s, \beta_{2} \circ \beta_{1}\left(y_{1}\right), r\right) \\
& =\varphi_{B_{3}}^{P}\left(s, \beta\left(y_{1}\right), r\right) .
\end{aligned}
$$

Alike, we can demonstrate that $\varphi_{B_{1}}^{N}\left(\gamma(s), y_{1}, \gamma(r)\right)$ is not less than $\varphi_{B_{3}}^{N}\left(s, \beta\left(y_{1}\right), r\right)$. It is evident that (γ, β) confirms to the necessary conditions for a weak covering of W_{1} by W_{3}.

Theorem 4.4. Let $W_{j}=\left(R_{j}, Y_{j}, B_{j}\right)$ is a $L B_{F S M}$, where $j=1,2$. Then

1) $W_{1} \omega W_{2} \leq W_{1}$ 。 W_{2}
2) $W_{1} \circ W_{2} \leq W_{1} \times W_{2}$
3) $W_{1} \omega W_{2} \leq W_{1} \times W_{2}$

Proof:
Define the function $\omega_{c}: R_{2} \rightarrow Y_{1}$ as follows $\omega_{c}\left(s_{2}\right)=\omega\left(s_{2}, c\right), \forall s_{2} \in R_{2}$ and $c \in Y_{2}$.

1) Let $\beta: Y_{2} \rightarrow Y_{1}^{R_{2}} \times Y_{2}$ be defined as $\beta(c)=\left(\omega_{c}, c\right)$ and let γ be the identity map on $R_{1} \times R_{2}$.
2) Let $\beta: Y_{1}^{R_{2}} \times Y_{2} \rightarrow Y_{1} \times Y_{2}$, by $\beta(d, c)=\left(d\left(s_{2}\right), c\right)$, while γ denotes the identity map on $R_{1} \times R_{2}$
3) Given that $W_{1} \omega W_{2} \leq W_{1} \circ W_{2}$ and $W_{1} \circ W_{2} \leq W_{1} \times W_{2}$, it follows from Theorem 2.2. that $W_{1} \omega W_{2} \leq W_{1} \times W_{2}$.

Theorem 4.5. If $W_{i}=\left(R_{i}, Y_{i}, B_{i}\right)$ is a $L B_{F S M}$, where $i=1,2,3$. If $W_{1} * W_{2}$, then

1) If $\omega_{1}: R_{3} \times Y_{3} \rightarrow Y_{1}$, is provided, there is a $\omega_{2}: R_{3} \times Y_{3} \rightarrow Y_{2}$ that satisfies $W_{1} \omega W_{3} \leq W_{2} \omega_{2} W_{3}$. If (γ, β) is a cover of W_{1} by W_{2} and β is onto, then for every $\omega_{1}: R_{1} \times Y_{1} \rightarrow Y_{3}$, there exist $\omega_{2}: R_{2} \times Y_{2} \rightarrow Y_{3}$ such that $W_{3} \omega_{1} W_{1} \leq$ $W_{3} \omega_{2} W_{2}$.
2) $W_{1} \circ W_{3} \leq W_{2} \circ W_{3}$ and $W_{3} \circ W_{1} \leq W_{3} \circ W_{2}$.

Proof:
Given $W_{1} * W_{2}$ we can conclude the existence of a partial function $\gamma: R_{2} \rightarrow R_{1}$ which is surjective, and a function $\beta: Y_{1} \rightarrow Y_{2}$,

$$
\begin{aligned}
& \varphi_{B_{1}}^{P}\left(\gamma_{1}\left(s_{2}\right), y_{1}, \gamma_{1}\left(r_{2}\right)\right) \leq \varphi_{B_{2}}^{P}\left(s_{2}, \beta\left(y_{1}\right), r_{2}\right), \\
& \varphi_{B_{1}}^{N}\left(\gamma_{1}\left(s_{2}\right), y_{1}, \gamma_{1}\left(r_{2}\right)\right) \geq \varphi_{B_{1}}^{N}\left(s_{2}, \beta\left(y_{1}\right), r_{2}\right),
\end{aligned}
$$

for every y_{1} there is a member of the domain y_{1}, and every s_{2} and r_{2} that are members of the domain of γ_{1}

1) Let $\omega_{1}: R_{3} \times Y_{3} \rightarrow Y_{1}$, set $\omega_{2}=\beta_{1} \circ \omega_{1}$ and β_{2} as an identity mapping on Y_{3}. Define $\gamma_{2}: R_{2} \times R_{3} \rightarrow R_{1} \times R_{3}$ by $\gamma_{2}\left(\left(r_{2}, r_{3}\right)\right)=\left(\gamma_{2}\left(r_{2}\right), r_{3}\right)$. It is evident that $\left(\gamma_{2}, \beta_{2}\right)$ satisfies the condition for covering, $W_{1} \omega_{1} W_{2} \leq W_{2} \omega_{2} W_{3}$. Now, let $\omega_{1}: R_{1} \times Y_{1} \rightarrow Y_{3} \quad$, set $\quad \omega_{2}: R_{2} \times Y_{2} \rightarrow Y_{3} \quad$ such that $\omega_{2}\left(r_{2}, \beta_{1}\left(y_{1}\right)\right)=$ $\omega_{1}\left(\gamma_{1}\left(r_{2}\right), y_{1}\right)$. Since β_{1} is onto and y_{1} is finite, such a ω_{2} exists. However it is not unique. Define $\gamma: R_{3} \times R_{2} \rightarrow R_{3} \times R_{1}$ by $\gamma_{2}\left(\left(r_{3}, r_{2}\right)\right)=\left(r_{3}, \gamma_{1}\left(r_{2}\right)\right)$ and set $\beta_{2}=\beta_{1}$. It is obvious that (γ_{2}, β_{2}) satisfies the conditional for a covering, $W_{3} \omega_{1} W_{1} \leq W_{3} \omega_{2} W_{2}$.
2) The function $\gamma_{2}: R_{2} \times R_{3} \rightarrow R_{1} \times R_{3}$ can be defined as $\gamma_{2}\left(\left(r_{2}, r_{3}\right)\right)=\left(\gamma_{1}\left(r_{2}\right), r_{3}\right)$ and the function $\beta_{2}: Y_{1}^{R_{3}} \times Y_{3} \rightarrow Y_{2}^{R_{3}} \times Y_{3}$ can be defined as $\beta_{2}\left(d, y_{3}\right)=$ ($\beta_{1} \circ d, y_{3}$). It is evident that γ_{2} is a partial function that covers all values and β_{2} is a complete function. Another function $\gamma_{2}: R_{3} \times R_{2} \rightarrow R_{3} \times R_{1}$ can be defined as $\gamma_{2}\left(\left(r_{3}, r_{2}\right)\right)=\left(r_{3}, \gamma_{1}\left(r_{2}\right)\right)$ and the function $\beta_{2}: Y_{3}^{R_{1}} \times Y_{1} \rightarrow Y_{3}^{R_{2}} \times Y_{2}$ by
$\beta_{2}\left(d, y_{1}\right)=\left(d \circ \gamma_{1}, \beta_{1}\left(y_{1}\right)\right)$. It is apparent that γ_{2} is a partial function that covers all the values and β_{2} is also a partial function.

Corollary 4.2. If $W_{i}=\left(R_{i}, Y_{i}, B_{i}\right)$ is a $L B_{F S M}$, where $i=1,2,3,4$. If $W_{1} \leq W_{2}$ and $W_{3} \leq W_{4}$, then

1) $W_{1} \circ W_{2} \leq_{\omega} W_{2} \circ W_{4}$
2) $W_{1} \omega W_{3} \leq_{\omega} W_{2}$ 。 W_{4}
3) $W_{1} \circ W_{2} \leq W_{2} \times W_{4}$
4) $W_{1} \omega W_{3} \leq W_{2} \times W_{4}$.

Proof:
Using Theorem 4.5. and 4.3., we are able to demonstrate that
$W_{1} \circ W_{3} \leq_{\omega} W_{2} \circ W_{4}$. Equally, we can establish the validity of (2), (3) and (4).

5.Conclusion

In automata theory, product is one of the most fundamental operations. The present study delves into the multiplication of finite state machines and coverings that are equipped with lattice-valued bipolar fuzzy attributes.

References

1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338-353 (1965)
2. Wee,W.G.: On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification, Purdue University (1967).
3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87-96 (1986)
4. Atanassov, K.T.: New operations defined over the intitionistic fuzzy sets. Fuzzy Sets Syst. 61,137-142 (1994)
5. Jun, Y.B.: Intuitionistic fuzzy finite state machines. J. Appl. Math. Comput. 17(1-2), 109120 (2005)
6. Jun, Y.B.: Intuitionistic fuzzy finite switchboard statemachines. Appl.Math. Comput. 20(1-2),315-325 (2006)
7. Jun, Y.B.: Intuitionistic fuzzy transformation semigroups. Inf. Sci. 177, 4977-4986 (2007)
8. Zhang, X., Li, Y.: Intuitionistic fuzzy recognizers and intuitionistic fuzzy finite automata. Soft Comput. 13, 611-616 (2009)
9. B. Jun and J. Kavikumar. Bipolar fuzzy finite state machines. Bulletin of the Malaysian Mathematical Sciences Society,34(1)(2011), 181-188
10. J. Kavikumar, A. Khamis and R. Roslan. Bipolar-valued fuzzy finite switchboard state machines. Lecture Notes in Engineeringand Computer Science, 2200(1)(2012), 571-576.

[^0]: ${ }^{1}$ Scholar in Presidency University, Itagalpura, Rajanukunte, Yelahanka, Bengaluru, India
 ${ }^{1}$ Assistant Professor, A.E.S. National Degree College, Gauribidanur, India
 ${ }^{2}$ Assistant Professor, Presidency University, Itagalpura, Rajanukunte, Yelahanka, Bengaluru, India
 ${ }^{3}$ Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R \& D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India Email: gae3ks@gmail.com, rajeakila@gmail.com, kavitamilm@gmail.com

