
CHOLINE HYDROXIDE MEDIATED NOVEL, CLEANER, GREENER SYNTHESIS OF SYMMETRICAL TRITHIOCARBONATES

Km. Divya^{1*}, Amit K Chaturvedi^{2*}, Nitin Srivastava^{3*}

Abstract

A cleaner, greener, and effective synthesis for the symmetric trithiocarbonates is being reported using minimum amount of biodegradable water-soluble organic base choline hydroxide, carbon disulfide and alkyl halides. Choline hydroxide acts as a strong organic base to carry out the formation of trithiocarbonates anion. It also acts as phase transfer catalyst to make interaction among the reagents better and give higher yield in less time. So, the reported method is a step towards sustainable and green chemistry.

Graphical Abstract

Keywords: Trithiocarbonates, carbon disulfide, choline hydroxide, green synthesis

^{1,2*}Department of Chemistry, J. S. University Shikohabad, Firozabad, U.P. -283135, India.
 ^{3*}Department of Chemistry Amity University Uttar Pradesh Lucknow Campus, Lucknow-226028, India.

*Corresponding Author: Amit K Chaturvedi, Nitin Srivastava *E-mail: nitinsriv5@gmail.com; achaturvedi794@gmail.com

DOI: 10.53555/ecb/2022.11.11.255

1. Introduction

Inclusion of sulfur bond is one of the prominent tasks undertaken by researchers¹. Trithiocarbonates are such very important class of compounds having diversified applications including agriculture²⁻⁴, additives for lubricants⁵⁻⁷. Organic trithiocarbonates have been efficiently employed as reversible addition fragmentation chain transfer (RAFT)⁸⁻¹² agent, in organic synthesis, industrial processes and drug synthesis¹³. They have been reported as Radioprotective¹⁴, antimicrobial¹⁵, anticancer¹⁶, nano composite¹⁷, controlled drug delivery¹⁸, drug delivery¹⁹. Such diversified applications of trithiocarbonates, demand a cheaper, easier, and eco-friendly synthesis of trithiocarbonates.

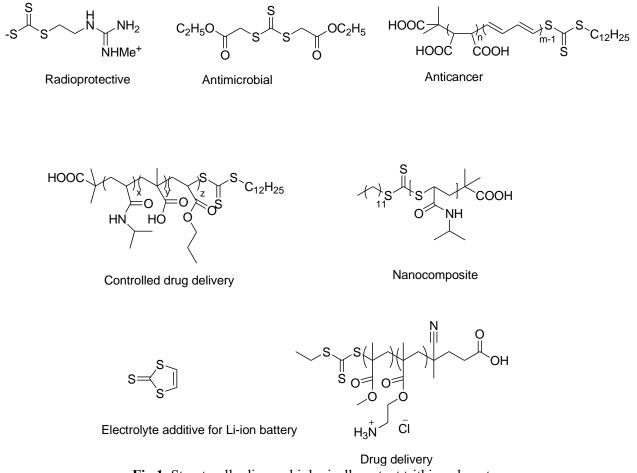
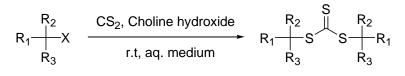


Fig 1. Structurally diverse biologically potent trithiocarbonates


Earlier synthesis of trithiocarbonates makes use of reactions between thiols and thiophosgene²⁰ or chlorodithioformates²¹, and in other ways reaction of thiols and CS₂ and later with alkyl halides in medium²². Such synthesis however, basic employed toxic reagents with harmful odors. The other process for the formation of symmetrical trithiocarbonates is employing alkyl halides to alkylatethrithiocarbonate anion in the presence of phase transfer catalysis or high temperature. The process of alkylation is also not easy and requires high amount of CS₂ and bases like NaOH²³, KOH^{24} , NH_4OH^{25} , $Al_2O_3^{26}$, $CS_2CO_3^{27,36,37}$, $KF/Al_2O_3^{28}$, N-Bu₄NOH²⁹. K₃PO₄³⁰. KOH/TBAB/Al₂O₃³¹, K₂CO₃³², NH4OAc³³, metal sulfides³⁴, tetraethylene glycol complex³⁵, ion exchange resin³⁸ which are big sources of the environmental pollution and are constraint to the sustainable development. So, there is need of a Eur. Chem. Bull. 2022, 11(Regular Issue 11), 2358-2365

process which consume minimum amount of carbon disulfide and biodegradable base to achieve cleaner greener and efficient synthetic route. The communicated research envisages an efficient and new one pot method for synthesizing the symmetric trithiocarbonates using several alkyl halides and minimum amount of biodegradable water-soluble organic base choline hydroxide and CS₂. Choline hydroxide acts as a strong organic base to carry out the formation of trithiocarbonates anion. It also acts as phase transfer catalyst to make interaction among the reagents better and give higher yield in less time.

2. Results and Discussion

The representative reaction between benzyl chloride, CS_2 , was carried out in aqueous medium in the presence of the phase transfer organic catalyst choline hydroxide at room temperature

(Scheme 1)

X=Cl, Br Scheme 1 Synthesis of symmetrical trithiocarbonates employing choline hydroxide

The product dibenzyl trithiocarbonates was a paleyellow oil which was characterized with the help of IR, NMR and elemental analysis. It was found that the IR showed a stretching frequency of 1065 cm⁻¹ which corresponds to C=S confirming the formation of the trithiocarbonates bond. The NMR spectra of the synthesized compound showed peaks at δ 4.68 and 7.30-7.40 corresponding to (4H singlet), and multiplet for 10 H of the two benzene rings. ¹³C NMR of the synthesized compound showed peaks at δ 41.62, 128.34, 128.58, 128.80, 134.99, 222.26 which match with the values in the literature. Elemental analysis of the synthesized compound confirmed the formation of the dibenzyl trithiocarbonates with good match between the experimental and the calculated values for the elements.

Further, the reaction was optimized with respect to the solvent, reaction time and the amount of the choline hydroxide. The model reaction was carried out in the presence of the solvents like water (H₂O), dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), tetrahydro furan (THF), methyl alcohol (CH₃OH), Polyethylene glycol (PEG) and solvent free conditions at room temperature. The results obtained in terms of time and % yield are summarized in table 1.

S. No	Solvent	Time in min	% Yield
1	H ₂ O	15	94
2	DMSO	80	62
3	DMF	150	45
4	THF	160	20
5	CH ₃ OH	140	46
6	PEG	160	48
7	Absence of solvent	250	No reaction

Table 1. Time and % yield of model reaction with different solvent

Further the reaction was examined for the optimal amount of the phase transfer catalyst choline hydroxide. It was found that the yield of the reaction was directly dependent on the amount of the catalyst used. Maximum yield of the reaction was obtained for the 3.0 equivalent of choline hydroxide. Yield of the reaction was found to be 80 % and 65% at 2.5 and 2.0 equivalent of the choline hydroxide respectively.

Model reaction was explored with the various other phase transfer catalyst in aqueous medium for the synthesis of the symmetrical trithiocarbonates. It was found that the maximum yield of the reaction was found in the choline hydroxide (Table 2)

Table 2. Time and % yield of model reaction with different phase transfer catalyst in aqueous medium

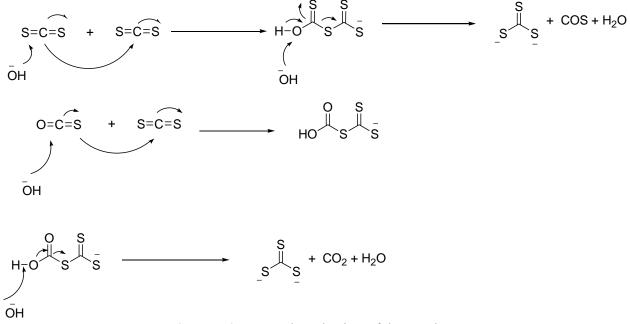
S. No	Phase transfer catalyst	Time in min	% Yield
1	Amberlyst A-26	180	38
2	Choline hydroxide	15	94
3	Tetrabutyl ammonium bromide (TBAB)	200	18
4	Tetrabutyl ammonium hydroxide (TBH)	120	46
5	Tetra-n-butyl ammonium hydrogen sulfate (TBAHS)	160	35
6	Potassium <i>O</i> -ethyl dithiocarbonate	240	15
7	Absence of catalyst	250	No reaction

After optimizing the reaction for the synthesis of the model dibenzyl trithiocarbonates a variety of the symmetrical trithiocarbonates were synthesized by reacting various alkyl aryl-alkyl and aryl halide with CS_2 in the presence of the choline hydroxide at room temperature (Table 3).

This synthetic process worked efficiently with primary, secondary, and allyl halides with excellent yield giving the trithiocarbonates as sole product. It was found that the reaction went good with the aryl halides and the tertiary alkyl halides, but the yield here was less and the reaction time was longer. The process was extended for the synthesis of the cyclic trithiocarbonates with the terminal dihalides and found to give good response without any by-product (Scheme 2).

$$Br(CH_2)_nBr + CS_2 \xrightarrow{\text{Choline hydroxide}} aq., r.t. \xrightarrow{S} (CH_2)m$$

n=1, 2, 3


m=1, 2, 3

Scheme 2 Synthesis	of cyclic trithiocarbonates
--------------------	-----------------------------

Table 5. Synthesis of various tritinocarbonates				
Entry	Alkyl halide	Time	% Yield	Ref
a	Benzyl chloride	15	94	30
b	Allyl	20	92	28
с	Ethyl	25	90	28
d	<i>n</i> -butyl	20	96	27
e	<i>n</i> -propyl	20	92	27
f	1-Chloro ethyl benzene	25	91	29
g	sec-Butyl chloride	30	80	29
ĥ	tert-Butyl chloride	50	40	29
i	iso-Propyl bromide	40	80	29
j	PhBr	50	30	29
k	BrCH ₂ CH ₂ Br	50	88	30
1	BrCH ₂ CH ₂ CH ₂ Br	60	84	33
m	BrCH ₂ CH ₂ CH ₂ CH ₂ Br	120	88	33

Table 3.	Synthesis	of various	trithiocarbonates

The proposed reaction mechanism is shown in scheme 3

Scheme 3 Proposed mechanism of the reaction

3. Experimental

3.1Reagents and Instruments

The synthesis work was done with the reagents purchased from Sigma Aldrich and Merck. The synthetic products formed were recognized by collating spectra and other data found in the literature. Bomem MB-FTIR machinewas used for the IR characterizing the synthesized compound while Bruker Advance spectrometer was employed for the NMR spectra (400 MHz& 100 MHz) in CDCl₃. Carlo-Erba EA 1110 analyzer was used for the elemental analysis of compounds. The synthesized compounds were structurally identified with the help of IR, NMR and elemental analysis.

3.2General Procedure

A clean and dry RB flask was charged with 3.0 mmols of choline hydroxide and 2 mmols of CS_2 in aqueous medium and stirred for 5 minutes at room temperature until the appearance of the red color. Now 2.0 mmols of benzyl chloride was added and stirred for further 10 minutes. The progress of the reaction is ascertained with the thin layer chromatography (TLC). The pure compound dibenzyl trithiocarbonate was obtained by the column chromatography using *n*-hexane.

3.3Data for the synthesized compound

i. Dibenzyltrithiocarbonate(1)

- Lemonycoloroil;¹H NMR (ppm) δ 4.70(4H singlet),7.29-7.39 (10H multiplet), IR (cm⁻¹)1059 (S=C), ¹³C NMR (ppm) δ 40.98, 127.84, 129.02, 129.20, 135.04, 221.98; Elemental analysis for C₁₅H₁₄S₃ element, found(calculated); C, 62.04 (61.99); H, 4.83 (4.79); S= 33.12 (32.99). MS (ESI)for C₁₅H₁₄S₃ m/e= 290.02, Calculated= 290.46.
- ii.*Diallyltrithiocarbonate* (2) Mustard color oil; NMR ¹H; (ppm) δ 4.09 (4H, doublet), 5.18 (2H doublet), 5.29 (2H doublet), 5.80-5.90 (2H multiplet), IR (cm⁻¹) 1058 (S=C), ¹³C NMR (ppm) δ 40.02, 120.06, 130.98, 22.48; Elemental analysis for C₇H₁₀S₃: element, found (calculated) %; C, 44.17 (44.19); H, 5.20 (5.18), S, 50.54 (50.49). Molecular mass MS (ESI)forC₇H₁₀S₃m/e=189.94, Calculated = 190.34.
- iii *Diethyl trithiocarbonate*(3) Canary yellow oil; ¹H NMR (ppm) δ 1.50 (6H triplet), 3.50 (4H, quartet), IR (cm⁻¹)1070 (S=C), ¹³C NMR (ppm) δ 12.89, 31.03, 222.90; Elemental analysis for C₅H₁₀S₃: element, found (calculated)%; C, 36.10 (36.11); H, 5.98(6.02); S 57.98 (58.01). Molecular mass MS (ESI)forC₅H₁₀S₃ m/e= 165.99, Calculated=166.33.
- iv *Dibutyltrithiocarbonate* (4) Husk color oil; ¹H NMR (ppm) δ 1.01 (6H triplet), 1.50-1.50(4H multiplet), 3.39(4H triplet); IR (cm⁻¹)1048 (S=C); ¹³C NMR (ppm) δ 13.58 22.02, 29.98, 36.60, 225.01; Elemental analysis for C₉H₁₈S₃:element, found(calculated)%; C, 47.90 (48.16); H,8.18 (8.16); S, 43.30 (43.19). Molecular mass MS (ESI) for C₉H₁₈S₃m/e= 222.05, Calculated= 222.43.
- v.*Dipropyltrithiocarbonate* (5) Yellow oil;¹H NMR (ppm) δ 1.508 (6H triplet), δ 3.50(4H quintet), IR (cm⁻¹)1072 (S=C), ¹³C NMR (ppm) δ 13.01, 31.02, 222.98; Elemental analysis for

Eur. Chem. Bull. 2022, 11(Regular Issue 11), 2358-2365

 $C_7H_{14}S_3$: element, found (calculated) %; C, 42.94 (43.29); H, 8.72 (8.52); S, 49.07 (49.48). Molecular mass MS (ESI) for $C_7H_{14}S_3m/e =$ 194.02, Calculated=194.38.

- vi.*Bis*(*1-phenyl ethyl*) *Trithiocarbonate* (6) Light yellow oil;¹H NMR (ppm) δ 1.79 (6H doublet), 5.40(2H quintet), 7.18-7.28 (10H multiplet); IR (cm⁻¹)1068, 1452, 1488, 1601 cm⁻¹ (S=C), ¹³C NMR (ppm) δ 20.99, 49.24, 128.12, 128.86, 144.01, 221.02; Elemental analysis for C₁₇H₁₈S₃: element, found (calculated)%; C 63.48 (63.98); H, 5.68 (5.70); S, 30.24 (30.20). Molecular mass MS (ESI) for C₁₇H₁₈S₃m/e= 318.05, Calculated=318.52.
- vii.*Sec-Butyltrithiocarbonate* (7) Yellowish oil; ¹H NMR (400 MHz, CDCl₃, ppm) δ 0.97(12H doublet), 2.11(2H multiplet), 2.83(4H doublet); IR (cm⁻¹)1048 (S=C); ¹³C NMR (ppm) δ 20.62, 29.00, 43.10, 208.63; Elemental analysis for C₉H₁₈S₃:element, found(calculated)%; C, 48.07 (47.98); H,8.18 (8.16); S, 43.30 (43.42). Molecular mass of C₉H₁₈S₃ = 222.43. m/e= 222.05
- viii.*Tert-Butyltrithiocarbonate*(8) Yellowish oil; ¹H NMR (ppm) δ 1.41(18 H Singlet); IR (cm⁻¹)1052 (S=C); ¹³C NMR (ppm) δ 30.20, 40.80; Elemental analysis for C₉H₁₈S₃: element, found(calculated) %; C, 48.32 (48.60); H,8.15 (8.16); S, 43.24 (43.24). Molecular mass MS (ESI) for C₉H₁₈S₃ m/e= 222.05, Calculated = 222.41.
 - ix *Di iso-propyltrithiocarbonate* (9) Yellowish oil;1H NMR (ppm) δ 1.36 (12H doublet), 2.88(2H multiplet), IR (cm⁻¹)1065 (C=S), ¹³C NMR (100 MHz, CDCl₃, ppm) δ 23.1, 36.2, 223.04; Elemental analysis for C₇H₁₄S₃: element, found (calculated)%; C, 43.02 (43.25); H, 7.19 (7.26); S,49.07 (49.50). Molecular mass MS (ESI) forC₇H₁₄S₃m/e=194.02, Calculated = 194.38.
 - x.*Diphenyltrithiocarbonate* (10) Pale yellowish oil; ¹H NMR (ppm) δ 7.28-7.51 (10H multiplet), IR (cm⁻¹) 1070 (S=C), ¹³C NMR (ppm) δ 128.34, 128.58, 128.80, 134.99, 222.26; elemental analysis for C₁₃H₁₀S₃ element, found(calculated); C, 59.34 (59.06); H, 3.84 (3.82); S= 36.66 (36.10). Molecular mass MS (ESI) forC₁₃H₁₀S₃m/e= 261.99, Calculated = 262.41.
- xi.*1,3-Dithiolane-2-thione* (11): yellow oil; ¹H NMR (ppm) δ 4.02 (4H, singlet); ¹³C NMR (ppm) δ 228.2, 44.8; elemental analysis of C₃H₄S₃found (calculated)%: C, 26.31(26.18); H, 3.95(3.91); S, 70.60 (70.38). Molecular mass MS (ESI) forC₃H₄S₃ m/e=135.94, = Calculated 136.25.

- xii.*1,3-Dithiane-2-thione* (12) Lemony oil;¹H NMR (ppm) δ 3.18 (4H triplet, J = 1.6 Hz), 2.38 (2H multiplet). ¹³C NMR (ppm) δ 218.0, 36.0, 20.5; elemental analysis of C₄H₆S₃found (calculated)%: C,31.97(31.53); H, 4.02(4.06); S, 64.01(63.25); Molecular mass MS (ESI) for C₄H₆S₃m/e= 149.96, Calculated =150.28
- xiii.*1,3-Dithiepane-2-thione* (13), yellowish oil; ¹H NMR (400 MHz, CDCl₃) δ 2.87 (m, 4H), 1.96(m, 4H); IR (cm⁻¹): 1058 (S=C); ¹³C NMR (ppm) δ 29.8, 35.8, 210; elemental analysis of C₅H₈S₃ found (calculated)%: C, 36.54 (36.55); H 4.906(4.91); S, 58.20(58.54). Molecular mass MS (ESI) for C₅H₈S₃ m/e=163.97, Calculated = 164.31.

4. Conclusions

A novel, cleaner, greener, energy saving, and efficient method has been developed for the synthesis of biologically potent organosulfur compound in terms of trithiocarbonates. This method involves the use of choline hydroxide which is a water-soluble base which also acts as a phase transfer catalyst for the synthesis of the trithiocarbonates in the aqueous medium. The process is economical and a step toward sustainable development in the field of organic synthesis.

Conflict of Interest

The authors declare that there is no conflict of interest regarding this manuscript.

References

- Y. Cui, P.E. Floreancig, Synthesis of sulfur containing heterocycles thorough oxidative Carbon-Hydrogen bond functionalization, *Org. Lett.* 14 (2012) 1720-1723. https://doi.org/10.1021/ol3002877
- M. Leysen, G.Roybrouck, H.V.D Voorde, Susceptibility of the House-dust mites to Pesticides and Disinfectants*Allergy*.29 (1974) 455.https://doi.org/10.1111/j.1398-9995.1974.tb01665.x.
- C.O Knowels. Chemistry and toxicity of quinoxaline, organotin, organofluorine, and formamidine acaricides*Environ. Health Persp.*14 (1976) 93-102.https://doi.org/10.1289 /ehp.761493
- D. Johnson, J.V Amarnath, K Amarnath, W.M Valentine, Characterizing the Influence of Structure and Route of Exposure on the Disposition of Dithiocarbamates Using Toluene-3,4-dithiol Analysis of Blood and Urinary Carbon Disulfide Metabolites,*Toxicol. Sci.* 76 (2003) 65 https://doi.org/10.1093/toxsci/kfg226

65.https://doi.org/10.1093/toxsci/kfg226

- M.F Ali, S. Abbas, A review of methods for the demetallization of residual fuel oils. *Fuel Process Technol.*87 (2006) 573.https://doi.org/10.1016/j.fuproc.2006.03.0 01
- 6. O.N Anand, V. Kumar, A.K Singh, R.P.S Bisht, Anti-friction, anti-wear and load -carrying characteristic of environment friendly additive formulation,*Lubr. Sci.*19 (2007) 159-167.https://doi.org/10.1002/ls.35
- L. Degani, R Fochi, A. Gatti, V. Regondi, Phase Transfer Synthesis of Symmetrical and Unsymmetrical Dialkyl Trithiocarbonates. *Synthesis* 894 (1986).https://doi.org/10.1055/s-1986-31819.
- R.T.A Mayadunne, E. RizzardoJ. Chiefari, J. Christina, G. Moad, A. Postma, S.H Thang, Living Polymer by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agent: ABA triblock copolymerization by radical polymerization in two steps.*Macromolecules* 33 (2000) 243-245.https://doi.org/10.1021/ma991451a.
- J. Chiefari R.T.A Mayadunne, C.L Moad, G. Moad, E. Rizzardo, A. Postma, M.A Skidmore, S.H Thang, Thiocarbonylthio Compounds (S <u>C(Z)S-R)</u> in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z,*Marcomolecules* 36 (2003) 2273-2283.https://doi.org/10.1021/ma020883+
- 10.Y. Z You, C.Y. Hong, R.K Bai, C.Y Pan, J Wang, Photo-Initiated Living Free Radical Polymerization in the Presence of Dibenzyl Trithiocarbonate *J. Macromol. Chem. Phy* 203 (2002) 477-483.https://doi.org/10.1002/1521-3935(20020201)203:3<477::AIDMACP477>3 .0.CO;2-M
- 11.R.K Bai, Y. Z You, C.Y Pan, 60Co γ-Irradiation-Initiated "Living" Free-Radical Polymerization in the Presence of Dibenzyl Trithiocarbonate, *Macromol. Rapid Commun.* 22 (2001) 315-319.https://doi.org /10.1002/1 521-3927(20010301)22:5<315::AIDMARC3 15> 3.0.CO;2-O
- 12.Y. Z You, C.Y. Hong, C.Y Pan, A novel strategy for synthesis of multiblock copolymers, *Chem. Commun.* 2800-2801 (2002).https://doi.org/10.1039/B208180F
- 13.R.R Chirumamilla, R. Merchant, P. Nigam, Captopril and its synthesis from chiral intermediates,*Chem. Tech. Biotechnol.* 76 (2001) 123-127.https://doi.org/10.1002/jctb.337
- 14.W.O. Foye, J. Mickels, R.N. Duvali, J.R. Marshall, Antiradiation compounds. IV. Trithiocarbonates of β-Mercaptoethyl

guanidines, *J. Med. Chem.* 6(1963) 509-512.https://doi.org/10.1021/jm00341a008

- 15.Y. N. Mabkhot, J.M.A. Khaled, M.A.S. Sultan, N.S.H.A. Alharbib, S. S. Al-Showimane, H.A. Ghabbourf, A. Alsayarig, A. B. Muhsinahg, H. Algarni, The novel economical synthesis and antimicrobial activity of a trithiocarbonate derivative, *Bioorg. Chem.* 91 (2019) 103157. https://doi.org/10.1016/j.bioorg.2019.103157
- 16.B. Lou, K. Connor, K. Sweeney, I.S. Miller, A. O'Farrel, RGD-decorated cholesterol stabilized polyplexes for targeted siRNA delivery to glioblastoma cells, *Drug Deliv. Transl. Res.* 9 (2019) 679–693. https://doi.org/10.1007/s13 346-019-00637-y
- 17.M. Tan, L. Horvàth, P.S. Brunetto, K.M. Fromm, Trithiocarbonate-Functionalized PNiPAAm-Based Nanocomposites for Antimicrobial Properties, *Polymers* 10 (2018) 665. https://doi.org/10.3390/polym10060665
- 18.R.V. Joshi, C.E. Nelson, K.M. Poole, M.C. Skala, C.L.Duvall, Dual pH and Temperature Responsive Microparticles for Protein Delivery to Ischemic Tissues, *Acta Biomater*. 9 (2013) 6526-6534.https://doi.org/ 10.1016/j.actbio.2013.01.041
- 19.T.D. Michl, K.E.S. Locock, N. Stevens , J.D. Hayball, K. Vasilev, A. Postma, A. Traven, Y. Qu, M. Haeussler, L. Meagher, H.J. Griesser, RAFT-derived antimicrobial polymethacrylates: elucidating the impact of end-groups on activity and cytotoxicity, *Polym. Chem.* 5 (2014)5813-5822.https://doi.org/ 10.1039/c4py00652f
- 20.Z El-Hewchi, Reaction products of chlorinated benzyl chloride and their usefulness as pesticides, *J. Prakt. Chem.*,16 (1962) 201. https://doi.org/10.1002/prac.19620160314 (b) F. Duus, D. Barton, W. D. Ollis *Comprehensive Organic Chemistry*, Pergamon, New York, 1979, 3, pp. 432.
- 21.H. C. Goldt, A. E. Wanns, The synthesis of Organic Trithiocarbonate, J. Org. Chem.vol. 26 (1961) 4047. https://doi.org/10.1021/j00 1068a097
- 22.B. Movassagh, M. Soleiman-Beigi, Triethylamine-catalyzed one-pot synthesis of trithiocarbonates from carbon disulfide thiols and alkyl halides in water, *Monatsh Chem* 139 (2008) 927-930.

https://doi.org/10.1007/s00706-008-0864-x

23.A. W. M Lee, W Chan, H. C Wong, One Pot Phase Transfer Synthesis of Trithiocarbonates from Carbon Bisulfide and Alkyl Halides, *Synth. Commun.*, 18 (1988) 1531-1536. https://doi.org/10.1080/00397918808081310

- 24.Oleksandr Ivanchenko, Maksym Odnoroh, Sonia Mallet-Ladeira, Marc Guerre, Stéphane Mazières, and Mathias Destarac, *J Am Chem Soc.* 143 (2021) 20585-20590. https://doi.org/10.1021/jacs.1c10031
- 25.E. Wertheim, Reactions of carbondisulfide with ammonium hydroxide, *J. Am. Chem. Soc.* 48 (1926) 826.https://doi.org/10.1021/ja01414a052 1:CA

S:528:DyaB28XpsIOl 26.A.R. Kiasat, F. Kazemi, A. Savari, Basic Al₂O₃

- as an Efficient Heterogeneous Reagent for the Synthesis of Symmetrical Dialkyl Trithiocarb onates, *Synth. Commun.* 38 (2008) 1057-1063.https://doi.org/10.1080/00397910701861 198
- 27.N. Aoyagi, B. Ochiai, H. Mori, T. Endo, Mild and Efficient One-Step Synthesis of Trithiocarbonates Using Minimum Amount of CS₂,Synlett, 4 (2006) 636-638.https://doi.org/10.1055/s-2006-932480
- 28.B. Movassagh, M. Soleiman-Beigi, M. Nazari, A Facile KF/Al2O3- mediated, One-pot Synthesis of Symmetrical Trithiocarbonates from Alkyl Halides and Carbon Disulfide, *Chem. Lett.* 37 (2008) 22-33. https://doi.org/10.1246/cl.2008.22
- 29.M. Soleiman-Beigi, Z. Arzehgar, B. Movassagh, TBAH-Catalyzed One—Pot Synthesis of Symmetrical Trithiocarbonats from Alkyl Halides and Carbon Disulfide under Neat Aqueous Conditions,*Synthesis*, 3 (2010) 392-394. https://doi.org/10.1055/s-0029-1217 132
- 30.B. Movassagh, S. Alapour, K₃PO₄-mediated one-pot synthesis of symmetrical trithiocarbonates, *J. Sulfur Chem.* 34 (2013) 222-224.

https://doi.org/10.1080/17415993.2012.73106 4

31.A.R. Kiasat, F.M.J. Mehrjardi, A Novel One-Step Synthesis of Symmetrical Dialkyl Trithiocarbonates in the Presence of Phase-Transfer Catalysis, *Chin. Chem. Soc.* 55 (2009) 639-642.

https://doi.org/10.1002/jccs.200800094

- 32.N. Aoyagi, T.J. Endo, Functional RAFT agent for radical-controlled polymerization: Quantitative synthesis of trithiocarbonates containing functional group as RAFT agents using equivalent amount of CS₂, *Polym. Sci. Part A Polym. Chem.* 47 (2009) 3702-3709.https://doi.org/10.1002/pola.23410
- 33.Z. Arzehgar, H. Ahmadi, A convenient one-pot method for the synthesis of symmetrical dialkyl trithiocarbonates using NH₄OAc under mild neutral conditions, *J. Chinese Chem Soc.* 66

(2019) 303-306. https://doi.org/10.1002/jccs .201800062

- 34.M. Gholinejad, One-pot Synthesis of Symmetrical Diaryl Trithiocarbonate through Copper-Catlysed Coupling of Aryl Compounds, Sodium Sulfide, and Carbon DisulfideEur. J. Org. Chem. 2 (2013) 257-259. https://doi.org/10.1002/ejoc.201201126
- 35.M. Okada, R. Nishiyori, S. Kaneko, K. Igawa,
 S. Shirakawa, KI-Tetraethylene Glycol Complex as an Effective Catalyst for the Synthesis of Cyclic Thiocarbonates from Epoxides and CS2, *Eur. J. Org. Chem.* 17 (2018) 2022-2027.https://doi.org/10.1002 /ejoc.201800284
- 36.N. Srivastava, Mridula Saxena, Novel Synthesis of Symmetrical Dialkyl/Diarylalkyltrithiocarbonates in Non-Aqueous Medium at Room Temperature Using CS₂, Cs₂CO₃ And Alkyl/Aryl-Alkyl Halides, *Rasayan J. Chem.*, 12 (2019) 333-337. https://doi.org/10.31788/RJC.2019.1215038
- 37.N. Srivastava, Ram Kishore, D. Chaturvedi, Novel and Efficient Method for the synthesis of Cyclic Trithiocarbonates employing Cs₂CO₃/CS₂ system,*Res. J. Chem. and Environ.*, 25 (2021) 142-148.https://doi.org/10.25303/2512rjce142148
- 38.P. Takolpuckdee, C.A. Mars, S. Perrier, Merrifield resin-supported chain transfer agents, precursors for RAFT polymerization, *Org. Lett.* 7 (2005) 3449-3452. https://doi.org/10.1021/ol051078t