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Abstract 

 

In the realm of the environment, a great deal of research has been done on the poisonous and 

damaging impacts of heavy metals including arsenic, mercury, and others. Due to 

environmental pollution and the bioaccumulation of certain heavy metals in the food chain, 

they adversely impact human health despite their presence in low concentrations (10 ppm). 

Recent research studies suggest that exposure to arsenic during various life stages leads to gut 

microbial dysbiosis and is linked to immune dysfunction, altered lipid metabolism, and 

neurobehavioral damage. Therefore, it is important to detect, analyze and remove it from the 

environment to reduce its direct effect on human health. 
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1. TECHNIQUES FOR ARSENIC 

ANALYSIS 

In current scenario various analytical 

techniques such as hydride generation 

atomic fluorescence spectrometry (HG-

ASF), Inductively coupled plasma atomic 

emission spectroscopy (ICP-AES), 

inductively coupled plasma-mass-

spectrometry (ICP-MS), hydride 

generation atomic absorption spectroscopy 

(HGAAS), graphite furnace atomic 

absorption spectroscopy (AAS), and 

fluorescence spectrometry have been used 

for the detection of heavy metals including 

As (Le et al., 2000). These instruments can 

detect low levels of arsenic, however, 

highly expensive and sophisticated 

instrumentation with a well-established 

laboratory set up is required for effective 

determination. They are also time 

consuming, not easily accessible, and are 

not suitable for on-site analysis. Moreover, 

with these methods, the cost of analyses can 

be as high as 8−10 USD per sample (Hu et 

al., 2012). Now-a-days the focus of 

researchers is on development of simple, 

portable and economical sensors with rapid 

and reliable Arsenite detection/analysis in 

environmental samples, especially in 

developing countries and in areas with 

insufficient infrastructure and technical 

facilities.  

Electrochemical methods are advantageous 

as they are cost-effective, timely, and easy 

to implement. Various electroanalytical 

tools such as cyclic voltammetry (CV), 

linear sweep voltammetry (LSV), Anodic 

stripping voltammetry (ASV), differential 

pulse voltammetry (DPV) and square wave 

ASV (SWASV) can be employed to detect 

low concentrations of As with good 

sensitivity and reliability (Shen et al., 

2017). Furthermore, stripping voltammetry 

techniques are adaptable for successful and 

rapid field screening, high accuracy, and 

enhanced sensitivity and demonstrate a 

very low detection limit (Cavicchioli et al., 

2004). Employing the highly sensitive 

stripping voltammetry technique, 

researchers have detected As to a low 

detection limit and significant sensitivity 

using various electrode materials under 

optimized experimental conditions 

(Forsberg et al., 1975; Rahman et al., 2010; 

Yang et al., 2016).  

Arsenic detection by electrochemical 

methods is investigated using mercury 

electrodes (Wang et al., 2013) such as 

hanging mercury drop electrodes (HMDE) 

because they provide a wider potential 

window for redox reaction of various 

metals and regeneration of a clean surface 

is quite easier via simply creating a new 

mercury drop. However, because of 

obvious toxicity considerations from 

mercury, it is very difficult to discard the 

used mercury and clean the whole 

electrochemical setup after each 

measurement (Kwang-Seok Yun et al., 

n.d.).  Furthermore, various metals such as 

gold (Au), silver (Ag), and Hg could not be 

potentially detected on HMDE. Therefore, 

they have been significantly replaced by a 

number of solid electrodes such as platinum 

(Forsberg et al., 1975) silver, boron-doped 

diamond electrode (A. O. Simm et al., 

2005), gold microwire electrode (Liu et al., 

2014),  gold microdisk (Simm et al., 2004) 

and iridium oxide-modified boron-doped 

diamond electrodes (Salimi et al., 2004).  

Recently, researchers investigated the 

platinum NP-modified glassy carbon 

electrode for electrochemical sensing of 

arsenic in 1 M aqueous HClO4 electrolyte 

solution. After optimization, a lower 

detection limit (LOD) of 2.1 ppb was 

obtained (Dai and Compton, 2006).  

Further, an iridium-modified boron-doped 

diamond electrode was generated by ion 

implantation method and exploited directly 

for electrochemical detection of arsenic to 

an LOD of 1.5 ppb. The aforementioned 

sensor was favorably able to selectively 

sense increased arsenic in tap water 

containing a substantial amount of various 

other elements as well (Ivandini et al., 

2006). However, these materials are 

expensive, thus making AsIII detection not 

feasible for long-term applications.  
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The successful large-scale implication of 

the electrochemical sensors mainly depends 

on careful designing and fabrication of 

desired materials, which can facilitate 

adequate accumulation and subsequent 

oxidation of the analyte from its surface 

under optimized electrochemical 

conditions. Among many other solid 

electrode-based sensors, gold (Au)-

centered materials have demonstrated 

enhanced electrochemical activity because 

of their advanced characteristic features in 

the field of catalysis, electroanalysis, and 

nanoscale devices (A. Simm et al., 2005). 

They have excellent electronic, optical, and 

electrical characteristics, which merely 

depend on the surface morphology and size 

of Au particles (Feeney and Kounaves, 

2000). Therefore, 

microstructured/nanostructured Au 

electrodes have been exploited largely for 

applications in the detection of arsenic in 

water. They are superior to the 

commercially available metal electrodes 

because of the presence of more 

electroactive sites, much enhanced 

electron-transfer rate and favorable 

electrochemical kinetics (Welch et al., 

2004).  

Gold-based nanoscale materials can be 

fabricated by chemical synthesis, 

ultraviolet light or electron beam irradiation 

and electrochemical methods (Tan et al., 

2002). Electrochemical methods are much 

facile and easy to use relative to other 

methods (Fukushima et al., 2003). Gold 

nanoparticles can be electrodeposited on 

the electrode using 0.1 mM HAuCl4 

solution, which show good As sensing at 

parts per billion levels (Dai et al., 2004) 

Gold nanoelectrodes also enable 

simultaneous detection of As, Hg, and Cu 

(Joya and de Groot, 2016). Furthermore, 

gold NP-modified indium tin oxide (ITO)-

coated glass electrodes were prepared by 

direct electrodeposition method from 0.5 M 

H2SO4 solution containing HAuCl4 

solution. The Au-based films were 

nanostructured and detected As to an LOD 

of 5.0 ppb using the LSV technique (Babar 

et al., 2019). 

However, it is a tedious method, and during 

deposition, subsequent accumulation of Au 

ions on cathodic sites also poses a 

challenge. To address this issue, separators 

are employed, which make the system more 

complex and thereby increase the cost for 

analyses (Joya and de Groot, 2016). The 

gold nanotextured electrode (Au/GNE) 

assemblage is exceedingly stable with 

promising reproducibility maintaining 

highly active nanoscale surface features by 

repeating the analyses several times and 

allows for very reliable, selective, and 

highly sensitive detection of arsenic using 

CV and SWASV. This method is also 

successfully employed in real water 

samples for arsenic analysis. In the 

complex system containing Cu2+, Ni2+, 

Fe2+, Pb2+, Hg2+ and other ions, Au/GNE is 

amazingly applicable for highly selective 

and sensitive detection of As in water. 

Next, the experiments are under process to 

scale up the Au/GNE-based 

electrochemical sensors for real-time 

applications owing to their simple 

fabrication and assembly, high 

reproducibility and robustness, and electro 

analytical performance for arsenic sensing 

(Babar et al., 2019). 

 

2. REMOVAL OF ARSENIC FROM 

WATER  

Removal of arsenic is very important and is 

the focus of several researchers, industries, 

environmental groups (Alka et al., 2021). 

The removal of arsenic from water can be 

achieved through different mechanisms, 

methods, technologies including 

adsorption, chemical precipitation, ion 

exchange, phytoremediation, electro 

kinetic techniques and membrane 

technology. Recent research focuses on 

different traditional and emerging 

technologies for the improvement of 

complex resources active in the elimination 

of arsenic and other substantial metals. 

Recently, the number of studies on arsenic 
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removal techniques have been continuously 

increasing.  

A. Nanomaterials as adsorbents  

Adsorption has been a commonly used 

technique for water treatment as early as 

4000 BCE. Cutting-edge Egypt, adsorption 

was used for the coloring of silk fibers, 

cotton fibers and some plant and animal 

fibers, in addition to decoloration of 

beverages and diet. Adsorption finds 

several applications in day-to-day life. In 

adsorption, the materials existing in a fluid 

stage are collected or adsorbed on the solid 

stage by physical/chemical adsorption, 

followed by their subsequent removal from 

the liquid, as a mass transfer. Arsenic 

removal by adsorption is economically 

feasible and very efficient, moreover, it 

does not require use of chemical additives. 

It is easy to use and applicable in areas 

lacking skilled manpower, moreover it does 

not require consistent electricity supply. 

The quantitative removal efficiencies 

reported for arsenate and arsenate 

remediation have been as high as >95% (M. 

Kumar et al., 2019; R. Kumar et al., 2019; 

Ratna Kumar et al., 2004). 

Nanomaterials show significant benefits in 

the adsorption of arsenic from water 

because of grater superficial adsorption 

movement and great reactivity. The 

adsorbent nanomaterials showing excellent 

removal efficiency and less maintenance 

cost, particularly for removal of low 

concentration of heavy metals, highlight the 

use of adsorption as an encouraging method 

in arsenic removal from water. Presently, 

nanomaterial including carbon materials, 

metal oxides, metal-organic framework and 

chitosan have been used for removing 

arsenic from water (Alka et al., 2021; Liu et 

al., 2015, 2018). The unique hollow 

structure of carbon nanotubes, their large 

specific surface area, high porosity,  and 

rapid transport of water make them ideal 

candidates as adsorbents for As elimination 

from water (Addo Ntim and Mitra, 2011; 

Dehghani et al., 2015). Vadahanambi et al. 

designed 3D graphene carbon nanotube-

iron oxide for the elimination of arsenic 

from water. Iron-oxide nanoparticles shows 

significant adsorption of arsenic from water 

(Vadahanambi et al., 2013). Andjelkovic et 

al. also fabricated 3D graphene-iron oxide 

nanoparticle aerogel for elimination of 

arsenic from water (Andjelkovic et al., 

2015). Iron-oxide covered carbon 

nanotubes for elimination of arsenic from 

water (Ma et al., 2018) but the nanotubes 

failed to show effective adsorption because 

of hydrophobic shells, unfortunate 

dispensability, and absence of functional 

groups.  

B. Ion-exchange technology  

Ion-exchange is a physicochemical process 

employed for the elimination of arsenic 

from the environment. In this technique, the 

ions were retained electrostatically on the 

solid surface and exchanged from the 

solution with ions having similar charge 

(Katsoyiannis and Zouboulis, 2006). Ion 

exchange is an effective method for 

adsorption and is mainly applied to 

decrease water hardness. It is also 

employed for excerpt pollutants like nitrate, 

arsenate, chromate and selenite ions from 

water (Al-jubouri and Holmes, 2020). The 

United States Environmental Protection 

Agency (EPA) has suggested definite ion-

exchange materials, particularly chloride 

form, aimed to arsenic elimination (Jadhav 

et al., 2015). The ion-exchange resins 

remove the arsenic via mechanism 

describes ion-exchange resins that are filled 

by chloride ions in an conversation spot 

wherever water contaminated (Shankar et 

al., 2014). A study described the 

elimination of arsenic from water through 

ion-exchange resins. Hence these ion 

exchanges resins can be used for the 

elimination of toxic arsenic from water. 

Some factors that affect the removal of 

arsenic include the entire liquefied items, 

arsenic concentration, kind of resin used for 

removal and competing ions (Karakurt et 

al., 2019; Sarkar and Paul, 2016). Rivero et 

al. also demonstrated the removal of arsenic 

from water by using resin in a hybrid ion 

electrodialysis process.   

C. Membrane technology 
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The membrane is an extensively recognized 

technology for the filtration of water and is 

one of the highest well-organized effective 

methods of arsenic removal with a potential 

to remove 96% of contaminated As from 

portable and groundwater. The technique is 

more effective for removing pollutants and 

cost-effective at the same time as the 

process requirements are minimal. Another 

advantage of this method is that it does not 

involve any chemical usage (Gonzalez et 

al., 2019; Ungureanu et al., 2015). Recent 

reports suggest that several forms of 

membranes are employed in the elimination 

of arsenic from water systems with their 

applications in technologies such as 

nanofiltration, microfiltration, ultra-

filtration, and reverse osmosis (Gonzalez et 

al., 2019; Pramod et al., 2020). However,  

Pramod et al. used the combination of 

microfiltration and heterogeneous Fenton 

method for the elimination of arsenic from 

water (Pramod et al., 2020).  

D. Chemical precipitation 

Chemical precipitation is a method which 

usages sulfides, ferric salts,  calcium and 

magnesium salts and other chemicals for 

the elimination of As from water.  The 

chemicals assist in eliminating arsenic by 

changing dissolved form to its lesser 

soluble form. Precipitation by ferric 

arsenate and calcium arsenate is the most 

useful method for removal of arsenic in 

wastewater (Long et al., 2019). Chemical 

precipitation has been also used to treat 

arsenic and calcium from gold mining 

waste using two-stage nanofiltration 

(Sarankumar et al., 2020). Di Iorio et al. 

developed  magnetite nanoparticles  for the 

removal of arsenic from wastewater (Di 

Iorio et al., 2019). 

E. Phytoremediation 

Phytoremediation is a widely recognized 

technique which uses plants for the removal 

of contaminants. The major advantage of 

this technique is limited nutrient 

requirement, lesser maintenance and its role 

in ecological sustainability (Manoj et al., 

2020). Phytoremediation is performed 

using plants by wide root system, great 

acceptance of toxicants and fast growing 

rate. 

 

3. BIOMEDICAL APPLICATIONS 

OF ARSENIC 

Being considered as one of the oldest 

poisons, arsenic is too recognized to 

consume a miracle effect for management 

several illnesses such as cancer, ulcers, 

malaria and bubonic plague (Zhao et al., 

2021). Around 2,000 years ago, Chinese 

and Greek healers used arsenic for the 

treatment of major diseases from syphilis to 

cancer. From the 20th century, the discovery 

of chemotherapy and antibiotics led to the 

abandonment of arsenic based treatments 

(Zhu et al., 2002). Literature review 

suggests that these materials have been 

used as chemotherapeutics in leukemia and 

cancers due to their anti-proliferative and 

pro-apoptotic properties (Dilda and Hogg, 

2007; Ettlinger et al., 2019; Kim et al., 

2017; Tian et al., 2020; Yoon et al., 2016; 

Yu et al., 2020; Zhang et al., 2016). The 

therapeutic success further encouraged 

researchers to explore arsenic as a potential 

future solution for other types of cancers. 

For example, In a study the effectiveness of 

a combination of arsenic trioxide and L-

buthionine-sulfoximine against advanced 

solid tumors was assessed. More detailed 

results of the tumor in figure 1 indicate the 

difference between the treatment and 

control group. The As2O3 (arsenite) shows 

cytotoxic effect by the generation of 

reactive oxygen species (ROS) followed by 

inhibition of radical scavenging that would 

enhance the therapeutic efficacy (Maeda et 

al., 2004). Multiple nanotechnology-based 

therapies are under development for the 

effective delivery of As. However, Zhang et 

al. developed core-shell nanoparticulate 

arsenic trioxide for effective treatment of 

solid tumors through the facile route 

(Zhang et al., 2016). pH-sensitive (zeolitic 

imidazolate framework-8 based) 

nanoparticles were developed for effective 

delivery of arsenic trioxide (Zhang et al., 

2016). The anti-tumor activity of sodium 

meta-arsenite in glioblastoma through 
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advanced Akt activities was assessed. 

Briefly,  to estimate the anti-tumor activity 

of sodium meta-arsenite (dose 2 mg/kg and 

5 mg/kg), the tumor was evaluated for 21 

days in mice injected with U87-MG 

orthotopic xenograft tumor. The results 

showed a important decrease in growth of 

tumor with reduced Akt stimulation as 

shown in figure 2. The effective amounts of 

sodium meta-arsenite employed in this case 

have remained described to be non-toxic 

(Lee et al., 2020). Arsenic trioxide is used 

as an anticancer agent traditionally; it 

demonstrations a important healing 

outcome against severe promyelocytic 

leukemia (Zhu et al., 2002). Recently, the 

U.S. FDA approved arsenic trioxide as the 

first-line management against acute 

promyelocytic leukemia. The mechanism 

of arsenic trioxide triggering both apoptosis 

and differentiation of leukemic cells, in a 

way similar to that of retinoic acid 

(Antman, 2001; Leu and Mohassel, 2009; 

Mathews et al., 2001). The result of arsenic 

trioxide on cervical cancer and reported an 

increased apoptosis by 3-fold related to 

control group was observed (L. Zhang et 

al., 2020). 

 

 
 

Fig 1: In vivo tumor growth inhibition and 

survival rates in the orthotopic mouse 

model of androgen-independent prostate 

cancer treated with As2O3 (Arsenic 

trioxide) and BSO (Buthionine-

sulfoximine). (A) Representative cases 7 

weeks after orthotopic inoculation of PC-3 

cells. Seminal vesicles (SV) and the bladder 

(B) Representative histology of an 

orthotopic tumor formed by PC-3 cells after 

treatment. Hematoxylin and eosin staining 

(a, b) and in situ TUNEL (TdT-mediated 

dUTP Nick End Labeling) assay for 

detection of apoptosis (c, d) were 

performed in the saline-treated group (a, c) 

and the group treated with 2 mg/kg As2O3 

plus BSO (b, d). Growth inhibition is clear 

both in the orthotopic tumor (black arrow-

heads) and retroperitoneal lymph node 

metastases (black arrows) in the mouse 

treated with 2 mg/kg As2O3 plus BSO. 

(Modified from Maeda H, Hori S, Ohizumi 

H, Segawa T, Kakehi Y, Ogawa O, et al. 

Effective treatment of advanced solid 

tumors by the combination of arsenic 

trioxide and L-buthionine-sulfoximine. 

Cell Death Differ 2004; 11:737–46. 

https://doi.org/10.1038/sj.cdd.4401389) 

(Maeda et al., 2004). 

https://doi.org/10.1038/sj.cdd.4401389
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Fig 2: Anti-tumor effects of sodium meta-

arsenite in orthotopic xenograft models. (A) 

Brain MRI images on day 21 of mice 

(control, and subjected to 2 mg/kg and 5 

mg/kg of sodium meta-arsenite). 

Representative pictures indicate mouse 

brain regions of the corpus callosum and its 

surrounding structures. (B) Tumor tissues 

were fixed and stained with anti-pAkt 

antibodies. Scale bars = 100 µm. White 

arrows indicate tumors. (Adapted from Lee 

EJ, Sung JY, Koo KH, Park JB, Kim DH, 

Shim J, et al. Anti-tumor effects of sodium 

meta-arsenite in glioblastoma cells with 

higher akt activities. Int J Mol Sci 

2020;21:1–19. 

https://doi.org/10.3390/ijms21238982.) 

(Lee et al., 2020) 

Several radioisotopes of arsenic and their 

traces are used in medical, biomedical and 

environmental applications. Arsenic is 

versatile and is incorporated into several 

chemical structures that permit the 

synthesis of radiopharmaceuticals through 

possible usefulness in treatment and 

identification of numerous illness (Emran 

and Phillips, 1991).  

A photosensitizer is used in combination 

with chemotherapy toward kill cells by 

ROS generation in the occurrence of 

oxygen and light radiation (Agostinis et al., 

2011; Cheng et al., 2019; Dhas et al., 

2021a; Zhang et al., 2018; Zhou et al., 

2016). The arsenical-based chemotherapy 

might not only encourage cell apoptosis, 

but also control cancer microenvironments 

to progress the photodynamic therapy 

against hypoxic tumors. A photodynamic 

therapy based on chemotherapy 

sensitization in contradiction of hypoxic 

tumors and demonstrated the effective drug 

filling of phenyl arsine oxide in the 

porphyrinic metal-organic structure along 

with surface modification of hyaluronic 

acid. The results demonstrated an 

improvement in biocompatibility and 

improved the special tumor buildup and 

exact cellular uptake of the surface-

modified formulation (Yuan et al., 2020). 

Potassium arsenite (Fowler's solution) has 

been used for the management of malaria 

and syphilis in the late 1700s (Bjorklund et 

al., 2020; Drobna et al., 2009b). Numerous 

clinical applications for Fowler's solutions 

have been studied and applied over the 

years, but toxicities have limited their 

usefulness (Ho and Lowenstein, n.d.). The 

therapeutic effects of As included 

limitations of serious adverse reactions, 

unsatisfactory therapeutic effect and 

toxicity at a high level of dose (Ettlinger et 

al., 2019; Zhang et al., 2016).  
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