

A Comprehensive Perspective on Forced Degradation, Stability and Robustness conditions of Zoledronic acid Impurities by HPLC in Zoledronic Acid Injection

*1Venkata Krishna Reddy P, Rajput Jamatsingh Darbarsingh2

1,2Department of Chemistry, Malwanchal University, Indore, Madhya Pradesh, India DOI: 10.31838/ecb/2023.12.si6.152

ABSTRACT

The present study was aimed for forced degradation and establishment of solution stability/Robustness conditions of Zoledronic acid Impurities by reverse phase chromatography in Zoledronic Acid Injection. The separation was achieved by using column Inert Sustain Swift C18 (250 x 4.6 mm,5 μ) mobile phase consisted of pH 2.80 triethylamine buffer and methanol in the ratio of (96:4 volume/volume). The flow rate was 0.8mL/min. Zoledronic acid was detected using UV detector at the wavelength of 220nm. Column temperature 30°C and sample temperature ambient and injection volume 20 μ L, run time 35 minutes. The retention time of Zoledronic acid was noted to be 5.37 min respectively. The method was validated as per ICH guidelines. The proposed method was found to be robust and stable.

Keywords: Zoledronic acid, liquid chromatography, Solution stability, Robustness, Forced degradation studies, validation.

INTRODUCTION

Zoledronic acid is assigned chemically as (1-hydroxy-2-imidazol-1-yl-

phosphonoethyl) acid phosphonic monohydrate. It is a white crystalline powder¹.Zoledronic acid, a bisphosphonic acid, is an inhibitor of osteoclastic bone resorption. **Biphosphonates** are hydrolytically stable analogs of pyrophosphate, which inhibit bone resorption as a consequence of affecting osteoclast and likely osteoblast activity².

therapeutic efficacy The of bisphosphonates in disorders of bone turnover has been shown in the treatment of Paget's disease. tumor-induced hypercalcemia (TIH), and multiple myeloma³. It is being formulated for the treatment of tumor induced hypercalcemia, bone metastases arising from any cancer, and for the prevention of bone metastases associated with advanced breast cancer and locally advanced prostate cancer⁴.

Molecular formula is $C_5H_{10}N_2O_7P_2$ and Molecular weight 272.090 g/mol⁵. The chemical structure of Zoledronic acid shown in Figure 1.

Figure 1: Chemical structure of Zoledronic acid

The literature survey reveals only few methods were reported till date a few HPLC methods⁶ were reported for the estimation of Zoledronic acid in pharmaceutical dosage forms⁷.

The objective of this study is to develop and validate following parameters like Precision, linearity, Accuracy for the determination of Zoledronic acid impurities in Zoledronic acid in its parenteral dosage form was published and reported by RP-HPLC Method.^{8, 9} In continuation with the literature reported⁹, following validation parameters like System suitability, Solution stability and Robustness has performed as per ICH guidelines^{8,}.

MATERIALS & METHOD

Chemicals and Reagents

Analytical-grade Triethylamine, Orthophosphoric acid, Methanol, Hydrocholric acid, Sodium Hyroxide, Hydrogen Peroxide and water, reagents and chemicals were procured from Merck Chemicals. Mumbai, India.

Instrumentation

Waters HPLC model: 2695 with PDA, Ultrasonic bath Sonicator, pH Meter (Mettler Toledo) and Analytical Balance (Sartorious) were used in the present study.

Preparation of Buffer: Accurately transfer 2.0 mL of Triethylamine in 1000 mL of water, adjust the pH with orthophosphoric acid to 2.80 ± 0.05 , filter and degas prior to use.

Preparation of Mobile phase: Mix 960 mL of buffer, 40 mL of methanol and degas.The flow rate was 0.8mL/min. Zoledronic acid was detected using UV detector at the wavelength of 220nm. Column temperature 30°C and sample temperature ambient and injection volume 20μL, run time 35 minutes. Used mobile phase as diluent.

Preparation of Impurity Stock Solution:

Weigh and transfer around 2.0 mg of Imidazole RS and 2.0 mg of Imidazole-1yl-ethanoic acid RS (RC-A) separately into a 50 mL volumetric flask containing 15 mL diluent dissolve and dilute to volume up to the mark with diluent.

Preparation of System Suitability Solution:

Weigh and transfer around 4 mg of ZA into a 5 mL volumetric flask containing 2.5 mL diluent dissolve and add 0.5 mL of each impurity stock solution to the volumetric flask, dissolve and dilute to volume up to the mark with diluent.

Reference standard solution for RS:

Weigh transfer around 4.0 mg of ZA standard into a 5 mL volumetric flask containing 2.5mL diluent dissolve and dilute up to the mark with diluent and mix. Transfer 0.5 mL of this solution into a 50

mL volumetric flask and volume dilute up to the mark with diluent to obtain a solution of known concentration 0.01 mg/ mL.

System Suitability⁸

As per methodology, injected Blank (diluent) diluted standard for six times into HPLC system. Retention times of Imidazole, RC-A and Zoledronic acid are respectively 3.501, 4.661, and 5.415.

Bench top stability of standard & test preparation⁸:

Design:

Performed the stability study of diluted standard solution and sample preparation, by keeping them on bench top and established the solution stability.

Table 1: System suitability and Standard solution stability at RT and 2-8 °C,Mobile phase stability results

	Similari	ty factor	Resolution		
	Siiiiaii			RC-A &	%
	Paramet er RT	2-8 °C	Imidazole- RS & RC-A	Zoledronic acid	RSD
Initial	NA	NA	5.68	3.35	1.25
Day-1	0.99	1.00	5.64	3.36	1.12
Day-2	0.98	0.99	5.69	3.35	0.85
Acceptanc	0 08 t	0.1.02	NIT20	NI T 2 0	NMT
e	e 0.98 to 1.0		INL1 2.0	INL I 2.0	5.0

A Comprehensive Perspective on Forced Degradation, Stability and Robustness conditions of Zoledronic acid Impurities by

Section A-Research

Auto-Scaled Chromatogram

\Figure 3: Typical chromatogram of Placebo

Figure 4: Typical chromatogram of SSTTable 2: Solution Stability of Sample Solution at room temperature

Eur. Chem. Bull. 2023,12(Special issue 6), 1645 – 1661

Section A-Research

Parameter	Initial	Day-1	Day-2			
Imidazole-RS	0.591	0.567	0.575		Day	
Difference	NA	0.034	0.016			
RC-A	0.608	0.586	0.570	Initia		Dav-
Difference	NA	0.022	0.038		Day-	2 Day-
Maximum unknown	0.232	0.219	0.221		I	4
Difference	NA	0.013	0.011			
Total impurity	1.431	1.372	1.366			
Difference	NA	0.059	0.065			
	parameter					Day- 2 0.56 4 0.02 7 0.57 2 0.03 6 0.22 4 0.00 8
				0.501	0.55	0.56
Imidazole-RS					8	4
Difference					0.03	0.02
				NA	3	7
				0.608	0.57	0.57
	KC-A			0.008	6	2
	D:66				0.03	0.03
	Difference			NA	2	6
N	avimum unbr	10WP		0.222	0.22	0.22
141		IOWII		0.232	8	4
D:65-				NIA	0.00	0.00
Difference				INA	4	8
Total impurity				1 /21	1.36	1.36
				1.431	2	0
D:#fa				ΝA	0.06	0.07
Difference				INA	9	1

Table 3: Solution Stability of Sample Solution at 2-8 $^{\circ}C$ (Cold room)

Acceptance criteria:

- The system suitability should pass
- The similarity factor for standard in the range of 0.90 to 1.10
- The individual impurity should not differ more than 0.05 % and total impurities not more than 0.1 % from initial value.

The above results reveal that the standard solution is stable up to 2 days at room temperature and 2-8 °C and sample is stable up to 24 hours at room temperature and 2-8°C.

Robustness⁸:

Effect of Variation in buffer pH change⁸:

Design:

Analyzed system suitability preparations as per the methodology at low buffer pH (2.6 pH) and high buffer pH (3.0 pH).

Conclusion:

Table: 4 System suit	ability comparison	s Variation in	buffer pH change
----------------------	--------------------	----------------	------------------

Flow note	Reso		
mL/min	Imidazole-RS & RC-A	RC-A & Zoledronic acid	% RSD
Low pH(2.6)	4.35	2.33	2.1
As Such(2.8)	5.75	3.45	1.4
High pH(3.0)	4.29	2.28	2.1
Acceptance	NLT 2.0	NLT 2.0	NMT 5.0

Conclusion: The above results reveal that the method is robust at low buffer pH (2.6 pH) and high buffer pH (3.0 pH).

Effect of Variation in Flow rate⁸:

Design:

Analyzed system suitability preparations as per the methodology at low column flow (0.7 mL/min) and high flow (0.9 mL/min).

Table: 5 System suitability comparison data of flow rate variation

Flow wata	Resol		
mL/min	Imidazole-RS & RC-A	RC-A & Zoledronic acid	% RSD
Low flow	6.1	3.6	0.8

Section A-Research

As such	5.61	3.35	1.0
High flow	5.67	3.33	0.6
Acceptance	NLT 2.0	NLT 2.0	NMT 5.0

Conclusion:

The above results reveal that the method is robust at flow between 0.7 mL/min and 0.9 mL/min.

Effect of Variation in Column Oven Temperature⁸:

Design:

Analyzed system suitability preparations as per the methodology at low column oven temperature $(25^{\circ}C)$ and high column temperature $(35^{\circ}C)$.

Table:	6 3	System	suita	bility

.

Oven	Resol		
Temperature	Imidazole-RS & RC-A	RC-A & Zoledronic acid	% RSD
25°C	5.49	2.45	0.20
30°C	5.66	3.36	1.11
35°C	5.64	3.42	1.25
Acceptance	NLT 2.0	NLT 2.0	NMT 5.0

< a

. .

Conclusion:

The above results reveal that the method is robust at column oven temperature between 25°C to 35°C variations.

Effect of Variation in Organic phase composition in the Mobile Phase⁸:

Design:

Analyzed	system	suitability	preparati	ons
as j	per the	method	ology	by
cha	anging th	e Organic		
Phase com	nposition	in the Mol	oile Phase	

Table:	7	System	suitability
--------	---	--------	-------------

DuffomMooU	Res		
(v/v)	Imidazole-RS & RC-A	RC-A & Zoledronic acid	% RSD
970:30	4.26	2.10	1.15

960:40	5.65	3.25	1.11
950:50	4.25	2.22	1.25
Acceptance	NLT 2.0	NLT 2.0	NMT 5.0

Forced Degradation Studies⁸

Study Design:

Applied the stress conditions to the samples and then injected into HPLC System.

Results:

Name of	Stress Condition	Interference at RT of (Yes/No)		
Condition	Stress Condition	RC-A	Imidazole RS	Zoledronic acid
	Stressed with 0.2N			
Acid	HCl for 1 Hour at 60	No	No	No
	°C			
	Stressed with 0.2N			
Base	NaOH for 1 Hour at	No	No	No
	60°C in Oven			
	Stressed with 1 mL of			
Peroxide	30 % H2O2 solution	No	No	No
	for 1 Hour at 60°C			
	Stressed for about 6			
Thermal	Hours at 105 °C in	No	No	No
	Oven			
	Added 1 mL of Water			
Water	Stressed for 1 Hour	No	No	No
	at 60°C in Oven			

Table: 8 Interference from Degradation process in Blank

Table: 9 Interference from Degradation process in Placebo

Name of	Stress Condition	Interference at RT of(Yes/No)		
Condition		RC -A	Imidazole RS	Zoledronic acid

Acid	Stressed with 0.2N HCl for 1 Hour at 60 °C	No	No	No
Base	Stressed with 0.2N NaOH for 1 Hour at 60°C in Oven	No	No	No
Peroxide	Stressed with 1 mL of 30 % H2O2 solution for 1 Hour at 60°C	No	No	No
Thermal	Stressed for about 6 Hours at 105 °C in Oven	No	No	No
Water	Added 1 mL of Water Stressed for 1 Hour at 60°C in Oven	No	No	No

Acceptance criteria:

Peaks due to blank and placebo should not show any interference at the retention time of Zoledronic acid and Impurities.

Table:	10	Acid	degradation
--------	----	------	-------------

Condition	Stressed with 0.2N HCl for 1 Hour at 60 °C
% Assay	91.2
Imidazole-RS	NA
RC-A	NA
SMU	7.728
Net degradation	8.011

Mass balance	99.21
Purity Angle	0.434
Purity Threshold	1.278
Peak purity	PASS

Figure: 5 Typical chromatogram of Acid stress Placebo

Figure: 06Typical chromatogram of Acid stress Sample

Table: 11 Base degradation:

Condition	Stressed with 0.2N NaOH for 1 Hour at 60°C in Oven
% Assay	98.8
Imidazole-RS	NA
RC-A	NA
SMU	0.167

Net degradation	0.412
Mass balance	99.21
Purity Angle	5.324
Purity Threshold	20.075
Peak purity	PASS

Figure: 07 Typical chromatogram of Base stress Placebo

Figure: 08 Typical chromatogram of Base stress Sample

 Table: 12 Peroxide degradation:

Condition	Stressed with 1 mL of 30 % H ₂ O ₂ solution for 1 Hour at 60°C
% Assay	93.2
Imidazole-RS	0.116
RC-A	NA

SMU	1.307
Net degradation	2.401
Mass balance	95.6
Purity Angle	7.335
Purity Threshold	18.001
Peak purity	PASS

Figure: 09 Typical chromatogram of H₂O₂ stress Placebo

Figure: 10 Typical chromatogram of H₂O₂ stress sample

Table: 13 Thermal degradation:

Condition	Stressed for about 6 Hours at 105 °C in Oven
% Assay	100.9
Imidazole-RS	NA
RC-A	NA

SMU	0.219
Net degradation	0.302
Mass balance	101.2
Purity Angle	29.809
Purity Threshold	90.000
Peak purity	PASS

Figure: 11 Typical chromatogram of Thermal stress Placebo

Figure: 12 Typical chromatogram of Thermal stress Sample

Table: 14 Water degradation

Condition	Added 1 mL of Water Stressed for 1 Hour at 60°C in Oven
% Assay	97.2
Imidazole-RS	NA

RC-A	NA
SMU	0.164
Net degradation	0.380
Mass balance	97.6
Purity Angle	1.591
Purity Threshold	5.072
Peak purity	PASS

Figure: 13 Typical chromatogram of H₂O stress Placebo

Figure: 14 typical chromatogram of H₂O stress sample

- Mass balance of all stressed samples should not be less than 90 % and should not be more than 110 %.
- Peak purity of Active should pass as per spectral data analysis.

Conclusion:

The above results reveal that the method is specific.

Conclusion:

Forced degradation studies were done stress conditions like acid, base, peroxide, thermal and water. Results obtained from the degradation studies reveal that method is specific. The present analytical method was validated as per defined protocol and it meets the specified acceptance criteria. Hence, it was concluded that the analytical method is robust and stable. The above results reveal that the method is robust at Organic phase composition in the Mobile Phase variations. Hence. the present analytical method proved as stability indicating and can be used for regular analysis and its intended purpose.

References:

- Mastanamma SK, Suresh G, SinduPriya D, Seshagiri Rao JVLN. A validated RP-HPLC method for the estimation of Zoledronic acid. IJPSR. 2012; 3(3):826-829.
- 2. Durga srinivas D. Method development and validation for the assay of Zoledronic acid in pharmaceutical dosage form using high performance liquid chromatography technique. International Journal of Biological

& Pharmaceutical Research. 2012; 3(7):911-917.

- Wardley D. Zoledronic acid significantly improves pain scores and quality of life in breast cancer patients with bone metastases: a randomised, crossover study of community vs. hospital bisphosphonate administration. British Journal of Cancer. 2005; 92(10):1869–1876.
- Raghu N. A new analytical method for estimation of zoledronic acid in commercial pharmaceutical injections by High Performance Liquid Chromatography. Journal of liquid chromatography & Related Technologies. 2011;34(6):476-489.
- Mallikarjuna Rao B, Srinivasu MK, Prathima Rani Ch, SivaKumar S, Rajender Kumar P, Chandrasekhar KB, Veerender M. Validated stability indicating ionpair RP-LC method for Zoledronic acid. Journal of Pharmaceutical and Biomedical Analysis. 2005; 39: 781–790.
- Praveen Kumar M, Sreeramulu J. Stability-indicating rp-hplc method for determination of Zoledronic acid and their degradation products in active pharmaceutical ingredient and pharmaceutical dosage forms. International Journal of LUCU

Pharmaceutical Sciences Review and Research. 2011; 6 (1):100– 104.

- 7. Srinivasan Raghu Nandan, Ramachandra Reddy, Suryanarayana Rao, Ravindranath, LK. Regulatory Requirement-Validated, Specific, and Stability Indicating Analytical Method for Zoledronic Acid and Its Related Impurities by Ion Pair Reversed Phase Liquid Chromatography. Journal of Liquid Chromatography & Related Technologies. 2009; 32 (16): 2307–2321.
- ICH guidelines for validation of analytical procedures: text and methodology Q2 (R1) 2005.
- Venkata Krishna Reddy P, Rajput Jamatsingh Darbarsingh, Development and Validation for the Identification of Zoledronic acid Impurities by HPLC in Zoledronic Acid Injection ,Eur. Chem. Bull. 2023, 12(Special Issue 1), 1413-1430.