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Abstract

Aset L ={l;, 15, ..., 1.} € V(G) is a geodetic resolving set of G if L is a geodetic set and for
every [;,l; € V(G), the representations are distinct, that is, R(l;|L = {l;, 1, .., k}) #
R(L|L = {ly, 15, ..., ;}) for all I, ; € V(G) . The minimum cardinality of geodetic resolving
set is known as a geodetic resolving number, it is denoted by g,.s(G). Here, we construct the
extended mesh and enhanced mesh of ladder graph and step ladder graphs. Also we found
the geodetic resolving number of honey comb regular triangulene mesh HRrTM(n) and
honey comb derived regular triangulene mesh HDRrTM (n).
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INTRODUCTION

In 1945, the concept ““ Resolving set” defined by Slater and in 2000, Chartrand et al. defined
the concept of resolving number [see 1,2,7]. Extended mesh EX(2,n) is a 2 X n mesh in
which every 4-cycle is turned into a complete graph. There are mn vertices in an extended
mesh and we denote each vertex as (k,1) for k =1,2,.......,n and 1 = 1,2. Enhanced mesh
EN(2,n) is obtained by replacing each 4 cycle of M(2,n) by a wheel, the hub of the wheel
being a new vertex. Let hy;, 1 < k < n—1,1 = 1 be the hub vertices.

1. Geodetic resolving number of cycle related graphs

Definition 1.1

Aset T = {t;,t,, ..., tx}  V(G) is a geodetic resolving set of G if T is a geodetic set and for
every  t;,t; € V(G), R(GIT = {ty, ty, .., i) # R(4|T = {ty, ty, ..., ty}), that is, the
representations are distinct for all t;,t; € V(G) . The minimum cardinality of geodetic
resolving set is known as a geodetic resolving number, it is denoted by g, (G).

Example 1.2
m; 14,4 (5,0,1)
my,
;rnf m
L
(3.2,2) (4,1,1)
Figure 1.1: R(m|M = {m,,my,m;}); m € V(G)
In Figure 1.1, M = {m,, my, m;} is a geodetic set and R(mp|M = {m,, my, m;}) =

R(m.M = {m,, my, m;}) = R(myg|M = {m,, m;, m;}). Thus M does’t form a geodetic
resolving set in G. Thereafter, append the vertex my, to M, then we observed from Table (1)
, M" = {m,, my,, m;,, m;} make a geodetic resolving set in G S0 as g..s(G) = 4.

Table 1: R(m|M’)

m € V(G) Representations
R(m,|M’) (0,1,5,5)
R(mp M) (1,0,4,4)
R(m.|M") (1,1,4,4)
R(m4|M") (1,2,4,4)
R(m.|M’) (2,1,3,3)
R(m¢|M) (3,2,2,2)
R(mg|M’) (4,3,1,1)
R(my,|M’) (5,4,0,1)
R(m1|M') (5!411’0)

Eur. Chem. Bull. 2023,12(Special Issue 1, Part-B), 1375-1385 1376



GEODETIC RESOLVING NUMBER OF SOME CYCLE RELATED GRAPHS Section A-Research paper

Remark: 1.3
From Figure 1.1, g(G) = 3,res (G) =2 and g..s(G) =4. Thus the geodetic resolving
number and resolving number can be different.

Theorem: 1.4

n if n=3
For the Gear graph G, , gres(Gp) =in—1 if n=4,5
n—2 if n=6

Proof

Let V(Gy) = {ly, 1y o, [} U {ty, by, o, ty} U v, where deg(t;) = 3,deg(l) = 2; i,j €
[1,n] and the central vertex is v.

Case (i) If n = 3.

Suppose N; = {l, t} forms a geodetic resolving set of G5. Since d(l,t) = diam (G3) and every
vertex of Gz lies in I[N;]. Also R(Ij|N; = {I,t}) = R(tj|[N; = {l,t}) for some |; ,t; €
V(G3),which is conflict to the description of geodetic resolving set. Obviously N; =
{11, 1,, 13} is a geodetic resolving set of G3. Thus g,.s(G3) = 3 = n.

Table (2): Finding the representation of geodetic resolving set for G, (n 1s even).

v RWw|My ={l,15, ... L} —
v ' _ o _n+2 1 162 n
€ V(Gn) R(U|M1 = {Il’ liz, .......,In} {EI'EL 3 }) € V(Gn) {Il'zi _ %})
t 33,....31
I 244 A2 R
L, — t, 1.3,3,...,3.1
L E——
0.2,4,4,........4 ts n—3
I n—4 1.1.3,3, _Ei
: 20244 i ; n-d
- 4 3,1.1.33,.....3
Ly 42.0.2.4.4,.....4 ' s
44,..42.0.44,...4 tn 33,....31133 .3
IE n=(i+2) n—i n=(i+2) (n=1)
Inss 44, .. ..422.44 ... 4 tnsz 33,..3133 .3
2 n—(i+1) n—(i+1) 2 fe=(14+1) =i
44,...40244,..4 fots 33..3,133.3
(n-i) -(1+2) ) n—i n—(i+1)
" A fate 33,..31.133,..3
‘-\*_'J ‘-\*_'J
n=i n=(i+2)
ln 44,..420 :
T t, 3,3,..3,1.1
n—i4

Case (ii) If n = 4,5

Let M; = {l4,1, .....,l,_1} be the geodetic resolving set of G,. Since g(G,) =2 = {l,1;}
where  d(l,1;) = diam (G,)and  g(Gs) =3 ={L,1,,;}; d(,1,) = d(L,1;) = diam (G,).
Also R(IIM; = {iy,15, ..., 1,_1}) #= R(t|My = {I4, 1, ....,1,_1}) for every Lt €V(G,).
Hence g,.s(G,) =n—1,n = 4,5.
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Case (iiijlIfn>6

Choose M; = {ly, 1y, ... ..., In} — {l;, |;}, Where [;,; doesn’t have common neighbors. Based
on Table (2), all the representations are different. Also M; forms a geodetic set, hence
I[M{] = V(G,). Clearly M; make a geodetic resolving set of G, and |M;| = n — 2. Suppose
Gres(Gp) <n—2 . Assume g,.s(G,) =n—3. Let N = {l;,1,,.....,l,,_3} be the geodetic
resolving set of G,,. Since all the vertices of G, belongs to I[N;] and it satisfies the geodetic

condition. But R(I|N; = {l3, 13, ... ..., Ly—3}) = R(t|IN{ = {l3, L5, ... ..., L,_3}) for some [, t in
G,, which is conflict to the definition of resolving set. Thus N{ = {l4, 5, ... ..., l,_5} is the
geodetic resolving set of G,,. Hence g,..s(G,) = n — 2.

Theorem: 1.5

For the connected graph G with cardinality n, 1 < res (G) < g(G) < gres(G) < n.

Proof:

A resolving set needs atleast one vertex and so res(G) = 1. Also each geodetic set contains
minimum two vertices and size of the resolving set is doesn’t exceeds the geodetic set, so as
res (G) < g(G). As well as, every geodetic resolving set act as a geodetic set, so as g(G) <
Jres(G). Further more, each geodetic set needs atmost n vertices so that g,..(G) < n.

Remark: 1.6
From table (3), the bounds are clear .

Table (3): [ Bounds of G]

G g(G) ; gres(G); res (G)
Path graph res (B,) =1
By,n=3 9Py = gres(Py) and gyos(Py) <.
Cycle graph res (Cyp) > 1
Cop,n 2= 2 res (CZn) = g(Czn)
g(CZn) < gres(CZn)
Complete graph res(K,) < g(K,)
Kn,n =3 gres(Kn) =n

Theorem: 1.7
If G = Cy248nHg14n 1S @n n- acene[b, h]biphenylene, then g,.,(G) = 3

Proof:

Consider G = Cy24+gn=tHgyan=m

—_— T
m—2 = W

Vim—2

Figurel.2 (a): Dibenzo [b, h] biphenylene G = C,yH;;
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Suppose M = {u,v,,_,} forms a geodetic resolving set of G. Thereafter d(w,v,,_, ) =
diam(G). From Figure 1.2 (a) u, v,,_, are mutually eccentric vertices and all the vertices of
G lies in I[u, vy,_,] but the representations R(w;|M) and R(v;|M) are equal for some wu;, v;
in G.

V-2

Figure 1.2 (b): Dinaphtho[b,h]biphenylene G = C,5H,¢

It is conflict to the description of geodetic resolving set. Let M' = {u, v, w} be the geodetic
resolving set of G. From Figure 1.2 (b), d(u,w) = diam(G) — 1; u, w exist on the first and
last cycle of G, and d(u, v) = rad(G),d(v,w) = rad(G) — 1. Since all the vertices of G lies
in I[M'] and from table (4), the representations R(u|M") and R(v|M") are different for all
u,v € V(G). Thus g,.s(G) =3

Table (4): Finding the representation of geodetic resolving set for G( Figure 1.2 b)

u€ev(a) R(ulM") v eV(G) R(v|M")

Uy (0, r,d—1) 2 @ ,r—1,d
Uy (Lr—1,d-2) v, (2,r—2,d-1)

Us (2,r—2,d—-3) Vg (3,r—3,d—-2)

(. 3 ) (. 2 )

(. 2 ) (. 1 )
Uy, (r—1,1,d—1) Vg (r,0,d — (r—1))

( 2 ) (. 1 »

(. 3 ) (- 2 )

Um—3 d-2,r—-21) Vm—3 d—-1,r-3,2)
Upm—2 d-1,r-1,0) V-2 (d,r-=2, 1)

Theorem: 1.8
3 if n=

If G = C4ni2Hans4 1S an [n] phenacene then g,..(G) = {n if n>3

Proof

Eur. Chem. Bull. 2023,12(Special Issue 1, Part-B), 1375-1385 1379
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(233 (413) -
{a) (b)

Figure 1.3 Representation of geodetic resolving set of (a) C;oHg (b) CigH1,

Case() Ifn=2

Clearly G = C,yHg and one edge is common for two even cycles. The geodetic number of
Cyn is 2. Let S = {u';, v';} be the geodetic set of G. Further u’; and v'; are mutually eccentric
vertices and d(u';,v';) = diam(G). Obviously every vertex of G lies in I[S] and the
representations R(u,|S) and R(vy|S) are equal for some wug,vgin G. Hence S’ =
{u';,w';,v';} act as a geodetic resolving set in G. Thus g,..s(G) = 3.

Case (i) Ifn>3

Choose S = {a,, a,, ....,a,} is a geodetic resolving set of G. Since none of the vertex in S
belongs to the same cycle of G. Therefore each vertex in S belongs to distinct cycles of G and
it satisfies the condition of geodetic resolving set. Obviously S is geodetic and R(u;|S) and
R(vj|S) are different for every w;,v;in G. Suppose g,.:(G) <n. Consider S'=
{ay,a,, ....,a,_1} be the geodetic resolving set in G. Certainly it is a geodetic set and some
representations are same with respect to S’, which is a contradiction. Thus S =
{ay,a,, ....,a,} act as a geodetic resolving set in G s0 as g,.;(G) = n.

Table (5): The representation of geodetic resolving number for [4] phenacene [Figure
1.3 (b)]

v eV(G) r(w|S = {a,a,, as,a,}) veV(G) | rw|S ={a,a, a3 a,})
Uy (1,4,6,8) v, (0,5,5,7)
U, (2,3,5,7) v, (1,4,4,6)
U (3,2,4,6) Vs (2,3,3,5)
Uy (4,1,5,5) v, (3.2,2.4)
Us (5,0,4,4) Vs (4,3,1,5)
U 4,1,3,3) Vg (5,4,0,4)
Uy, (5,2,2,2) vy (6,3,1,3)
Ug (6,3,3,1) Vg (7,4,2,2,)
U (7,4,4,0)

Uso (8,5,3,1)

2. Construction of the extended mesh and enhanced mesh from ladder graph

Eur. Chem. Bull. 2023,12(Special Issue 1, Part-B), 1375-1385 1380
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Theorem: 2.1
3 if  G=S(,
If a step ladder graph S(L,,), Gres(G) = 3 if G=EN[S(L,)]
n+2 if G=EX[S(Ly)]

Proof:

Case (i): If 6 = S(L,),n > 2

Let V[S(Ly)] = {x11,%X12, -0, X1n } U {X21, X202, e e X} U {X31, X332, cve e X301 } U
{X41, X42) v e Xgn_2} Ui U {xn1,xn2} and let H = {x,,, x,,;} be the geodetic set of G.

Also d(x1,, Xn1) = diam (G) and all the vertices of G lies in I[xy,,x,1]. Hence g(G) = 2.
Further more R(x;; | H = {X1n,Xn1}) = R(xji| H = {x1p, xn1}) for some x;; and x;;, 1 <
i< j < n. Obviously H = {x11, X1, Xn2} forms a geodetic resolving set of G. Since
g9(G) = 2and R(x;j|H = {x11,X1n, Xn2}) qtR(le- |H’ = {xll,xln,xnz}) for every
xij, Xj; € V[S (L)]. Thus g,.s(G) = 3.

Case (ii) If 6 = EN [S(L,)]

Consider  V(G) = V[S (Ly)] U {hy1, hizy e hiin-y Y U {ha1, hopy e hy(o2y) 3 U
...... Uhm-11 where h;;,1<ij <n-—11is the hub of each wheel. Suppose H =
{X1n, xn1} IS the geodetic resolving set of G. Further d (x15, xn1) = e (x1) and xq,, Xp1
are mutually eccentric vertices of G. But R(x;;| H = {x1, Xn1}) = R (xji| H = {x1p, Xn1})
for some x;; and x;; , which is conflict to the description of geodetic resolving set. Clearly
from Figure 1.4 (a), H' = {x11, X1, Xn2 } forms a geodetic resolving set of G. Further it act
as a geodetic set as well as it is a resolving set. Thus g,.s(G) = 3.

Xa1 ¥sa Vb

X5y ¥sa

Yan

Xa1

¥Y3a

X331

X3 ¥2a

Xy

Figure 1.4: () EN[S(L¢)] (b): EX[S(L,=6)]

Case (iii) If G = EX[S(L,]

EX [S(Ly,)] contains 3n complete graphs. Each one is in the form of K, and the degree of
each vertex in K,is 3. Clearly g(K,) = 4. Suppose H = {yi1,Vin Yn1, Yn2} fOrms a
geodetic resolving set in G = EX[S(L,] .Theorem 1.1[see 11], extreme vertices

Eur. Chem. Bull. 2023,12(Special Issue 1, Part-B), 1375-1385 1381
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Yon» Y3(n—1) - Yn-1)3 lies in H, which is a contradiction. Therefore we include each

extreme vertices of G t0 H. Now H' = {y11, Vi, Y2n Yan—1) Yan—2s ws wee e Yn2) Y1} 1S @
geodetic set and the representations are different for all y,;,yi, € G. Thus H' =
(V11 Vn1» Yin Yans - - -+, Yn2} aCt @s a geodetic resolving set in G. S0 as  g,.s(G) =
n+2

Corollary 2.2

3 if  G=Lg

If G isan 2 x n; (n = gk) mesh then g,..(G) = 3 if G=EN(Lg)
gk+2 if G=EX(Lg)

Poof

a1 51

g

s

ﬂfgk-_

ﬁgk

gk

(a) (k) (c)

Figure 1.5: (@) Ly (b): EN(Lgx) (C): EX(Lgy)
[Table 6]: The Representation of geodetic resolving set for Figure 1.5 (a) ,(c)

v R(le R(le = {Bl' aq, Ay, .....agk,ﬂgk })v € EX(Lgk)gk =3
gk | = {cxl Ok s Byj_q

a; | (0, gk—-1gk-1)| (1, 01, 2, 3. (gk-2), (gk-1), (gk—1))

a, | (1, gk —2, gk (1, 1, o0 1, 2.., gk-3
—2) gk —2,gk —2)
as (2,gk —3,9k—3) (2, 2,1, 0, 1,.... gk—4, gk =3, gk —3)
Qy . ( 3, 3 2, 1, 0, 1, ... gk — 4, gk —4)
agg—1 | (9k-2, 1+ ., .
Agi (gk—-1, 0 2| (gk—-1 , gk-—-1, gk —2 e e 1, 0, 1)

ﬁl ( 1 Jgk'gk - 2) ( O, 11 11 21 3’
. gk —3,9k— 2,9k —1,gk — 1)

B, 2,gk—1,9gk-3)| (1 , 1,1,1, gk —(gk—2),........gk — 3,9k — 2,gk — 2)

Eur. Chem. Bull. 2023,12(Special Issue 1, Part-B), 1375-1385 1382
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B (3, gk — 2,gk — 4) (2,2, 1,1, 1, gk—(gk—-2) ... gk —4,gk -3,
gk —3)

Ba 3, 3,2, 1, 1, 1,gk—(gk—2),..,gk—5, gk—4,
gk —4)

Bok-1 | (gk—1, 2 ,0) |(gk—2,gk—2,9k—3, gk—4, .., gk—(gk—-2), 1, 1, 1,
D

Bgk gk, 1, 1) (gk—1,9k—1, gk-—2,
gk —3, ... gk —(gk—2),1,1 0)

Table (7): The Representation of geodetic resolving set for Figure 1.5 (b)

v R(v/H v R(v/H v |R(v/H
€ EN(Lgi = {our, 0gic . By_4 ) = {ou, ogie B4 } = {0t , 0gie By _q
a 0,9k-1,g9k—=1) | h |(Lgk—19k B | (1, gk,gk—2)
-2)
a, 1,9k —2,gk —2) h, (2,gk — 2,gk B- (2,gk —1, gk
—3) —3)

as (2,gk — 3,9k —3) hs (3,9k — 3, gk

Agk—1 (gk—-2, 1, 1) . Bgk-1 (gk — 1, 2,0)
gk (gk -1, 0, 2) hgk—l (gk -1, 1, 1) .ng (gk' 1, 1)

Honey Comb Regular Triangulene Mesh HRrTM (n)

Theorem: 2.3

If G = HRrTM (n) is a honey comb regular triangulene Mesh then
L if n=2m+k m=1 k=m-1

Gres(G) =122 if  n=3m, m>1

3

= if n=4m—k m21 k=m-1

Proof:
Honey comb regular Triangulene Mesh HRrTM (n),n = 2 is a group of hexagons arranged

in the form of pyramid. It contain n hexagonal layers and in each layer one cycle is
decreased from the previous.

Case(iln=2,30r4

Let H = {l,,l,,l5} be the geodetic resolving set of G. Since d (I4,1;) = d(l;,1l3) =
d(l3,l;) = diam (G) - 1 and all the vertices of G lies in I[S]. Also representations
R(l|H ),R(l'|H) are different for every [,I"in G. Thus gres (G) = 3.

Eur. Chem. Bull. 2023,12(Special Issue 1, Part-B), 1375-1385 1383
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Figure 1.6: Representing the geodetic resolving set of HRrTM (6)

2Zm+k m>2 k= m-1
Case(ii):lfn={ 3m m > 2
dm—-k m=22 k=m-1

Let us indicate the vertex 1; in the final layer and 1,,15,........1142; 2 < m < n in the
initial layer. First we find the lower end of geodetic resolving number is m + 2, that is
gres(G) = m+ 2. Suppose g(G) < m+ 2. Accordingly H={l;,l,,l,42}. Since each
vertex in H forms two distinct geodesic paths between themselves. So it cover only the three
side layers of G, it is conflict to the description of geodetic resolving set. Hence we require
atleast m + 2 vertices to attain the condition of geodetic resolving set. Moreover, we will
verify an upper end of geodetic resolving set of G is m+2, that is g,s(G) < m+ 2. LetL =
{l1,1,...,1n42} be the geodetic resolving set of G. Since
d(ly,1); d(q,13); wvweed(y, 1y ) are same asdiam (G)—1 and d(ly,lnhe2) =
diam (G) — 1. Further more all the vertices of G lies in I[L] and R(l|L), R (" |L) are
different for every 1,1'in G. Thus |L| = m+ 2 and g..s (G) < m + 2. For distinct values
of m, we get different forms of geodetic resolving number which is same as m + 2.

Definition: 2.4
A graph G is called a perfect geodetic resolving if g(G) = res(G) = gres (G).

Theorem: 25 If G = HDRrTM (n) is a honey comb Derived Regular Triangulene Mesh
then G is a perfect geodetic resolving .

Proof

Honey Comb Derived Regular Triangulene Mesh of dimension 1 is obtained by taking the
union of honey comb Regular Triangulene Mesh and its stellation. Each hexagons of
HRrTM(n) is turned into a wheel graph. To prove G is a perfect geodetic resolving ie,
g(G) = res(G) = gres (G). First we find g(G) = gres (G). Suppose g(G) # gres (G) that
is only the possibility is g(G) < gres (G). Let H = {u",v"",w"} be the geodetic resolving
set of G. (5,1,6) (5,6,1)

(2,44)

(6,0,6) (4,3,3)

Eur. Chem. Bull. 2023,12(Special Issue 1, Part-B), 1375-1385 1384
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(6,1,5)  (53,3) (6.5.1)
FIGURE 1.7: Representing the geodetic resolving set of HDRrTM(3)

Since d(u”,v"") = du",w'") = d(v",w") = diam(G) and all the vertices of G lies in I[H],
representations R(u;|H ) and R (v; |[H) are different for every u;,v; € V(G) . Consider H' =
{u”,v"'} c H, then the vertex w'’ & I[H'] . Obviously H' = {u",v"'} is not a geodetic set ,
which is conflict to our assumption. Thus g(G) = gres (G). Next we confirm res(G) =
gres (G). Assume res(G) # gres (G), that is only the possibility is res(G) < gres (G). Let
H={u”,v",w"} be the geodetic resolving set of G. Since d(u”,v'") =d@"”,w") =
d(v",w'") = diam(G) then all the vertices of G lies in I[H] and the representations
R(u;|H) and R (v; |H) are different for every u;,v; € V(G) . Consider H" = {v"",w"} c H,
then the representations R (u; [H'") and R (v; |H") are equal for some u;, v; € V(G) which is
conflict to our assumption. Thus res(G) = g (G), and we attain g(G) = res(G) =
gres (G). Hence G is a perfect geodetic resolving m
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