

= DEVELOPMENT AND VALIDATION OF ANALYTICAL METHOD FOR QUANTIFYING ISOFLAVONES

*¹Swathi K, Rajput Jamatsingh Darbarsingh²

^{1,2}Department of Chemistry, Malwanchal University, Indore, Madhya Pradesh, India

ABSTRACT

Many plant compounds that function as phytoestrogens in mammals are isoflavones, derivatives of the naturally occurring isoflavone. Beans and other members of the Fabaceae family are the only plants that naturally produce isoflavones (Leguminosae). There is little evidence for the safety of long-term supplementation with isoflavones or closely related phytoestrogens, despite the fact that these compounds are sold as dietary supplements and may have health benefits. There may be dangers associated with taking in too many isoflavones, according to some research. For example, there is a lingering fear that breast cancer may be more common in women with a family history of the disease, but good clinical studies have not confirmed this. The study's overarching goal was to establish a protocol for the validation of Isoflavones analysis, with a focus on High Performance Liquid Chromatography (HPLC). Separation was achieved using reversed-phase high-performance liquid chromatography (RP-HPLC) with an endcapped Waters symmetry C18 column (250 4.6 mm, 5 µm). Acetonitrile and 0.1% acetic acid made up the binary mobile phase (55:45). The injection volume was 25µl, the run time was 25 minutes, and the flow rate was 1.0 ml/min in an isocratic programme. At 254 nm, analytes were detected with a Photo-diode array (PDA). System suitability and selectivity parameters were shown to be within acceptable ranges, validating the developed method.

Keywords: Isoflavones, HPLC, Method development, Method Validation.

INTRODUCTION

Isoflavone is a type of flavone that has a phenyl group added to the 2-position of the chromone. The phenyl group in isoflavone is in the 4th spot. Substituted isoflavone derivatives are made by replacing two or three hydrogen atoms with hydroxyl groups on the parent isoflavone¹.

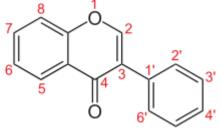


Figure 1: Chemical Structure of Isoflavone

"Isoflavone, numbering. Genistein (5-OH, 7-OH, 4'-OH) or daidzein (7-OH, 4'-OH) are e. g. members of the isoflavone family. Isoflavone differs from flavone (2-phenyl-4H-1-benzopyr-4-one) in location of the phenyl group".¹

Genistein and daidzein² are the main isoflavones in soy. The amino acid phenylalanine starts the phenylpropanoid pathway. The intermediate naringenin is turned into the isoflavone genistein by two enzymes that are only found in legumes: an isoflavone synthase and a dehydratase. In the same way, the enzymes chalcone reductase³, type II chalcone isomerase, and isoflavone synthase work on the intermediate naringenin chalcone to turn it into the isoflavone daidzein.

Isoflavones and related chemicals serve as phytoalexins, which plants use to guard against harmful fungus and other microorganisms that cause disease⁴. Moreover, soybeans use isoflavones to encourage nitrogen-fixing root nodules to grow in the soil bacterium rhizobium⁵. The isoflavone pathway is a subset of the larger phenyl propanoid system responsible for the biosynthesis of flavonoid chemicals in higher plants. For humans, isoflavones are typically obtained through soybeans.⁶

The objective of the study is to develop and validate RP-HPLC analytical method for quantifying Isoflavones. In these current study validation parameters like System suitability, Specificity and Linearity were performed⁷.

MATERIALS & METHOD

"Materials The standard chemicals of Isoflavones were purchased from Sigma (Aldrich, USA). The HPLC grade solvents, water for chromatography (LC-MS grade), methanol and acetonitrile chromatography grade were obtained from E. Merck KgaA (Darmstadt, Germany), acetic acid were also bought from Merck KgaA (Darmstadt, Germany)".

Preparation of Standard solution

Quantitative analysis of Isoflavones standard was performed. Weighed and transfer each of 25 mg of Isofalvones working standard into a 50 mL volumetric flak, added premix diluent of 80:20(V/V)DMSO:Water diluent, Sonicated for 5minutes to dissolve and dilute up to mark with diluent.

Transfer accurately 2 mL of each standard stock solution into a 25 mL volumetric flask, and dilute to volume with diluent

HPLC Instrumentation

"All solutions of samples were subjected to RP-HPLC measurement using the condition as follows Waters symmetry C18 column ($250 \times 4.6 \text{ mm}$, $5\mu\text{m}$) was used for the separation. The binary mobile phase consisted of Acetonitrile and 0.1% acetic acid (55:45). An isocratic program was used with a flow rate at 1.0 ml/min, Run time 25mins and the injection volume was 25μ l. The analytes were detected by using Photo-diode array (PDA) at 254 nm".

DEVELOPMENT AND VALIDATION OF ANALYTICAL METHOD FOR QUANTIFYING ISOFLAVONES

Validation of the analytical method

The established procedure was validated utilising ICH guideline-recommended parameters. Specificity, System Suitability, and Linearity were all checked and found to be within acceptable ranges before the procedure was approved.

Specificity⁷

Method specificity refers to an analytical technique's propensity to reliably and accurately measure the target analyte despite the presence of confounding factors in a given sample. Separation from, or resolution (Rs) from, other compounds is used to identify the desired ones.

Linearity⁷

Daidzin, Glycitin, Genistin, Daidzein, Glycitein, Genistein (500 μ g/ml) were used to create a standard stock solution for the linearity test. The HPLC apparatus was fed six different concentrations. For each, we obtained the linear regression equation and the corresponding correlation coefficients. Analytical linearity refers to the straight-line relationship between the response and the analyte concentrations on the calibration curve.

System suitability criteria⁷

Isoflavones standard solutions were injected at a concentration of 40 μ g/ml, with six time replicates, to determine the system's suitability.

RESULTS AND DISCUSSION

HPLC Condition Optimization

HPLC with a PDA detector was used to analyse isoflavones quantitatively. The PDA detector can generate multiple chromatograms at various wavelengths all at once. UV spectra were recorded online at 200–400 nm using a PDA detector for peak identification. The injection volume was 25 μ l, and the PDA detection was carried out at 254 nm. Retention time (Rt) and resolution were affected by the composition of the mobile phase and the flow rate used in the analysis. We first determined the optimum concentration of isoflavones in a standard solution (40 μ g/ml) and then analysed the chromatographic parameters. Varying amounts of acetonitrile or methanol were mixed with the aqueous solvents to calculate the resolution, tailing factor, and N plate. It was determined what would happen if different concentrations of these solvents were used.

System Suitability & Specificity:

The intended compounds are determined by calculating their separation or resolution (Rs) from other compounds.

		•	• •	•	
Isoflavone	Retention Time	Resolution % RSD USP Tailing		USP Plate count	
Daidzin	4.56	NA	0.37	1.16	3791
Glycitin	6.52	1.75	0.80	1.19	6198
Genistin	7.81	2.68	0.95	1.32	6524

Table 1: System Suitability & Specificity Results

DEVELOPMENT AND VALIDATION OF ANALYTICAL METHOD FOR QUANTIFYING ISOFLAVONES

Section A-Research paper

Daidzein	9.79	5.41	0.66	1.15	6258
Glycitein	15.43	6.54	1.12	1.22	7198
Genistein	19.52	7.69	1.25	1.14	7518

mV

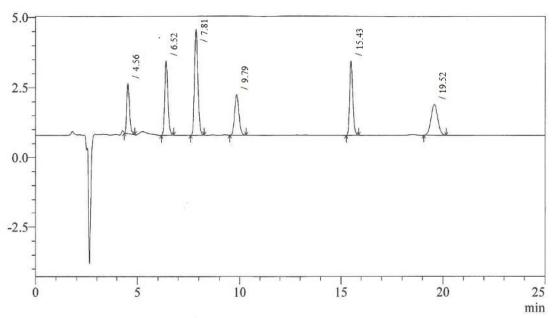


Figure 2: System suitability & Specificity for Isoflavones

Conclusion: "The results obtained showed that the conditions used for the determination of the levels of Isoflavones standard had good system suitability based on retention time, peak area and peak height requirements, $\% \text{RSD} \le 2\%$ "

Linearity

Analytical linearity refers to the straight-line relationship between the response and the analyte concentrations on the calibration curve. The Correlation coefficient should be not less than 0.99. The above results reveal that the method is Linear showed in Table 2-7 & Figure 3-8.

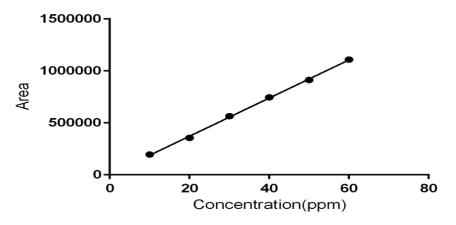
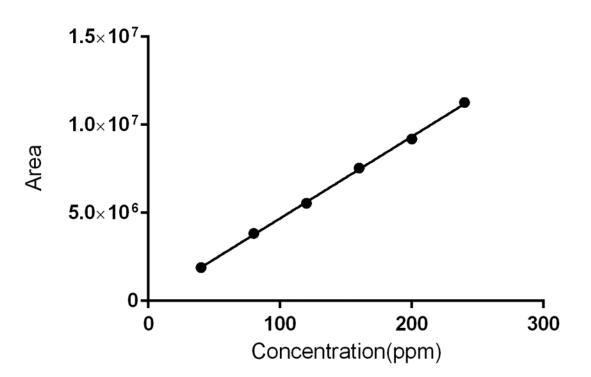

	Daidzin Linearity										
S.NO	%Level	Standard Stock(mg)	Dil	Vol Taken	final Volume	Final Conc.	Area				
1	25	25	50	2	100	10	195562				
2	50	25	50	4	100	20	355543				
3	75	25	50	3	50	30	563879				

Table 2	: Daidzin	Linearity
---------	-----------	-----------

DEVELOPMENT AND VALIDATION OF ANALYTICAL METHOD FOR QUANTIFYING ISOFLAVONES

Section A-Research paper


4	100	25	50	2	25	40	745852
5	125	25	50	5	50	50	912880
6	150	25	50	3	25	60	1109426
						Intercept	4859.93
						Slope	18352.30
						Correlation	1.000
						%Y-Intercept	0.532

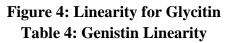


Figure	2.	Iinaa	3 mit ***	for	Doidgin
rigure	5	Linea	11111	IOF	Daidzin

			Gly	citin Linea	rity		
		Standard Stock		Vol	final		
S.NO	%Level	(mg)	Dil	Taken	Volume	Final Conc	Area
1	25	100	50	2	100	40	1891002
2	50	100	50	4	100	80	3826522
3	75	100	50	3	50	120	5541192
4	100	100	50	4	50	160	7543025
5	125	100	50	5	50	200	9199241
6	150	100	50	3	25	240	11265022
						Intercept	45325.00
						Slope	46421.49
						Correlation	1.000
						%Y-	
						Intercept	0.493

٦

			Gen	istin Linea	rity		
		Standard Stock		Vol	final		
S.NO	%Level	(mg)	Dil	Taken	Volume	Final Conc	Area
1	25	100	50	2	100	40	199100
2	50	100	50	4	100	80	375652
3	75	100	50	3	50	120	564119
4	100	100	50	4	50	160	764802
5	125	100	50	5	50	200	958924
6	150	100	50	3	25	240	1216502
						Intercept	-23901.07
						Slope	5026.79
						Correlation	0.998
						%Y-	
						Intercept	-2.492

Figure 5: Linearity for Genistin

			Daid	lzein Linea	rity		
S.NO	%Level	Standard Stock (mg)	Dil	Vol Taken	final Volume	Final Conc	Area
1	25	100	50	2	100	40	189101
2	50	100	50	4	100	80	376652
3	75	100	50	3	50	120	564119
4	100	100	50	4	50	160	758551
5	125	100	50	5	50	200	988924
6	150	100	50	3	25	240	1226502
						Intercept	-37850.47
						Slope	5155.90
						Correlation	0.998
						%Y-	
						Intercept	-3.827

Table	5:	Daid	lzein	Line	earity

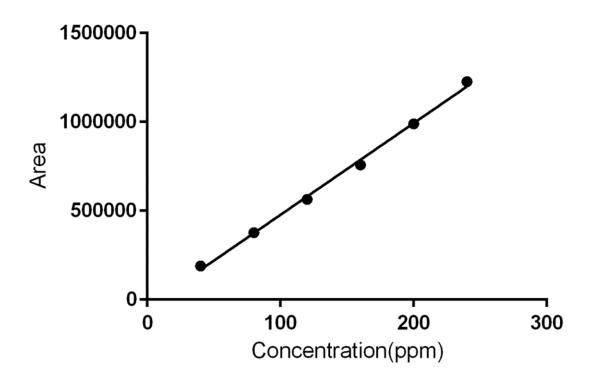
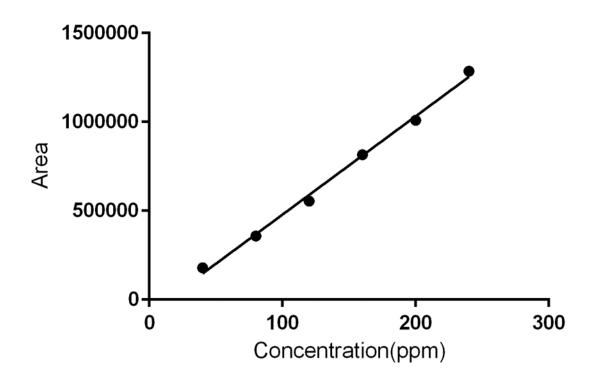



Figure 6: Linearity for Daidzein Table 6: Genisten Linearity

Genisten Linearity									
	%Leve	Standard Stock		Vol	final	Final			
S.NO	1	(mg)	Dil	Taken	Volume	Conc	Area		
1	25	100	50	2	100	40	179101		
2	50	100	50	4	100	80	358453		
3	75	100	50	3	50	120	554518		
4	100	100	50	4	50	160	815351		
5	125	100	50	5	50	200	1008924		
6	150	100	50	3	25	240	1286242		
					•	Intercept	-74363.60		
						Slope	5534.25		
						Correlatio			
						n	0.998		
						%Y-			
						Intercept	-7.371		

Figure 7: Linearity for Genisten

		Glycitein Linearity					
		Standard		Vol	final	Final	
S.NO	%Level	Stock (mg)	Dil	Taken	Volme	Conc	Area
1	25	100	50	2	100	40	209101
2	50	100	50	4	100	80	385652
3	75	100	50	3	50	120	575119
4	100	100	50	4	50	160	778541
5	125	100	50	5	50	200	999924
6	150	100	50	3	25	240	1116502
						Intercept	19148.87
						Slope	4702.32
						Correlation	0.998
						%Y-	
						Intercept	1.915

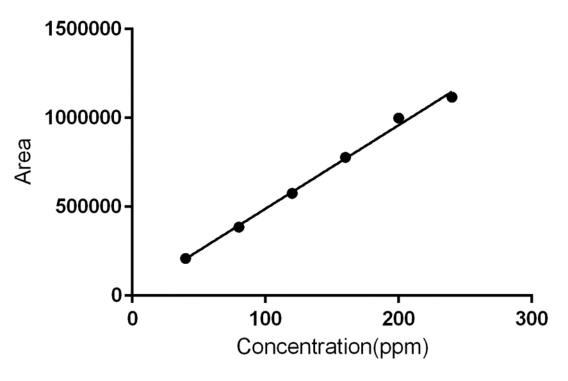


Figure 8: Linearity for Glycitein

CONCLUSION

Although HPLC has found widespread use in the laboratory already. Using a cost-effective technique, we have developed the first HPLC approach for simultaneous measurement of Isoflavones. Although the analytes have different physicochemical properties, careful method development allowed for their measurement using a single method. The HPLC method in reversed phase mode provided a robust and well-validated approach to the determination of isoflavone concentrations. The developed technique is straightforward, and it could be used in regular quality assurance tests. The method is specific and Linearity for multiple drug dosage form.

REFERENCES

- Gaspar, Alexandra; Matos, Maria João; Garrido, Jorge; Uriarte, Eugenio; Borges, Fernanda (2014). "Chromone: A Valid Scaffold in Medicinal Chemistry". Chemical Reviews. 114 (9): 4960–4992. doi:10.1021/cr400265z. PMID 24555663.
- Jump up to:^{a b} Cotrim, G. S.; Silva, D. M.; Graça, J. P.; Oliveira Junior, A.; Castro, C.; Zocolo, G. J.; Lannes, L. S.; Hoffmann-Campo, C. B. (2023). "Glycine max (L.) Merr. (Soybean) metabolome responses to potassium availability". Phytochemistry. 205:113472. doi:10.1016/j.phytochem.2022.113472. IS SN 0031-9422. PMID 36270412. S2CID 253027906.
- 3. Boué, Stephen M.; Wiese, Thomas E.; Nehls, Suzanne; Burow, Matthew E.; Elliott, Steven; Carter-Wientjes, Carol H.; Shih, Betty Y.; McLachlan, John A.; Cleveland,

Thomas E. (2003). "Evaluation of the Estrogenic Effects of Legume Extracts Containing Phytoestrogens". Journal of Agricultural and Food Chemistry. 51 (8): 2193–2199. doi:10.1021/jf021114s. ISSN 0021-8561. PMID 12670155.

- Luca SV, Macovei I, Bujor A, Trifan A (2020). "Bioactivity of dietary polyphenols: The role of metabolites". Critical Reviews in Food Science and Nutrition. 60 (4): 626–659. doi:10.1080/10408398.2018.1546669. PMID 30614249. S2CID 58651581.
- Kasparovska, J; Pecinkova, M; Dadakova, K; Krizova, L; Hadrova, S; Lexa, M; Lochman, J; Kasparovsky, T (2016). "Effects of Isoflavone-Enriched Feed on the Rumen Microbiota in Dairy Cows". PLOS ONE. 11 (4): e0154642. Bibcode: 2016PLoSO...1154642K. Doi:10.1371/journal.pone.0154642. PMC 4849651. PMID 27124615.
- Mulsow K, Eidenschink J, MF Melzig MF. FT-IR method for the quantification of isoflavonol glycosides in nutritional supplements of soy (Glycine max (L.) Merr.). Sci Pharma 2015; 83:377-86. 15. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal 2002; 89:178-82. 16. Luthria DL, Biswas R, Natarajan S. Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chem 2007; 105:325-33.
- ICH guidelines for validation of analytical procedures: text and methodology Q2 (R1) 2005.