THE UPPER EDGE-TO-EDGE GEODETIC NUMBER OF A GRAPH

A.L. Merlin Sheela ${ }^{1}$ and M. Antony ${ }^{2}$
${ }^{1}$ Research Scholar, Register Number: 18233232092003, Department of Mathematics
St. Jude's College, Thoothoor - 629 176, Tamil Nadu, India.
Email: sheelagodwin@gmail.com
${ }^{2}$ Department of Mathematics
St. Jude's College, Thoothoor - 629 176, Tamil Nadu, India.
Email: m.antonymicheal@gmail.com Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627012.

Abstract

An edge-to-edge geodetic set S in a connected graph G is called a minimal edge-to- edge geodetic set if no proper subset of S is an edge-to-edge geodetic set of G. The upper edge-toedge geodetic number $g_{e e}{ }^{+}(G)$ of G is the maximum cardinality of a minimal edge-to- edge geodetic set of G. The upper edge-to-edge geodetic number $g_{e e}{ }^{+}(G)$ of a graph is studied and is determined for certain classes of graphs. It is shown that, for every pair a, b of integers with $2 \leq a \leq b$, there exists a connected graph G such that $g_{e e}(G)=a$ and $g_{e e}{ }^{+}(G)=b$.

Keywords: geodesic, edge-to-vertex geodetic number, edge-to-edge geodetic number.
Upper edge-to-edge geodetic number
AMSSubjectClassification:05C12.

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1]. For vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. The eccentricity $e(u)$ of a vertex u is defined by $e(u)=\max \{d(u, v): v \in V\}$.Each vertex in V at which the eccentricity function is minimized is called a central vertex of G and the set of all central vertices of G is called the center of G and is denoted by $Z(G)$.The radius r and diameter d of G are defined by $r=\min \{e(v): v \in V\}$ and $d=\max \{e(v): v \in V\}$ respectively. For subsets A and B of $V(G)$, the $\operatorname{distanced}(A, B)$ is defined as $d(A, B)=\min \{d(x, y): x \in A, y \in B\}$. An $u-v$ path of length $d(A, B)$ is called an $A-B$ geodesic joining the sets A, B where $u \in A$ and $v \in B$. A vertex x is said to lie on an $A-B$ geodesic if x is

Section A-Research paper
a vertex of an $A-B$ geodesic. For $A=\{u, v\}$ and $B=\{z, w\}$ with $u v$ and $z w$ edges, we write an $A-B$ geodesic as $u v-z w$ geodesic and $d(A, B)$ as $d(u v, z w)$. A set $S \subseteq E$ is called an edge-to-vertex geodetic set if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The edge-tovertex geodetic number $g_{e v}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{e v}(G)$ is called an edge-to-vertex geodetic basis of G. The edge-tovertex geodetic number of a graph is introduced and studied in [6] and further studied in [8, 9]. The geodetic number of a graph is studied in $[2,3,4,6]$. A set $S \subseteq E$ is called an edge-to-edge geodetic set of G if every edge of G is an element of S or lies on a geodesic joining a pair of edges of S. The edge-to-edge geodetic number $g_{e e}(\mathrm{G})$ of G is the minimum cardinality of its edge-to- edge geodetic sets and any edge-to- edge geodetic set of cardinality $g_{e e}(G)$ is said to be a $g_{e e}$-set of G.A double star is a tree with diameter three. A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. The following theorems are used in sequel.

Theorem 1.1. [5] If v is an extreme vertex of a connected graph G, then every edge-to-edge geodetic set contains at least one extreme edge is incident with v.

Theorem 1.2. [5] For any non-trivial tree T with k end vertices, $g_{\text {eve }}(T)=k$.
Theorem 1.3. [5] For any connected graph $G, g_{e e}(G)=q$ if and only if G is a star.

2. The Edge-to-Edge Geodetic Number of a Graph

Definition 2.1. An edge-to-edge geodetic set S in a connected graph G is called a minimal edge-to-edge geodetic set if no proper subset of S is an edge-to-edge geodetic set of G. The upper edge-to- edge geodetic number $g_{e e}{ }^{+}(G)$ of G is the maximum cardinality of a minimal edge-to- edge geodetic set of G.

Example 2.2. For the graph G given in Figure 2.1, $S=\left\{v_{1} v_{6}, v_{3} v_{4}\right\}$ is a minimum edge-to-edge geodetic set of G so that $g_{e e}(G)=2$. The set $S_{1}=\left\{v_{1} v_{2}, v_{3} v_{4}, v_{5} v_{6}\right\}$ is an edge-to-edge geodetic set of G and it is clear that no proper subset of S_{1} is an edge-to-edge geodetic set of G and so S_{1} is a minimal edge-to-edge geodetic set of G. Also it is easily verified that no four element or five element subset of edge set is a minimal edge-to-edge geodetic set of G, it follows that $g_{e e}{ }^{+}(G)=3$.

Figure 2.1
Remark2.3. Every minimum edge-to- edge geodetic set of G is a minimal edge-to-edge geodetic set of G and the converse is not true. For the graph G given in Figure 2.1, $S_{1}=\left\{v_{1} v_{2}, v_{3} v_{4}, v_{5} v_{6}\right\}$ is a minimal edge-toedge geodetic set but not a minimum edge-to-edge geodetic set of G.
Observation 2.4.
(i) Let G be a connected graph with cut-vertices and S an edge-to-edge geodetic set of G. Then every branch of G contains an element of S.
(ii) Let G be a connected graph with cut-edges and S an edge-to- edge geodetic set of G. Then for any nonpendant cut-edge e of G, each of the two components of $G-e$ contains an element of S.
(iii) Let G be a connected graph and S be a $g_{e e}$-set of G. Then no non-pendant cut-edge of G belongs to S.

Corollary 2.5. For any non-trivial tree T with k end-edges, $g_{e e}{ }^{+}(T)=k$.
In the following we determine the upper edge-to- edge geodetic number of some standard graphs.

Theorem 2.6. For a complete graph $G=K_{p}(p \geq 4), g_{e e}{ }^{+}(G)=p-1$.
Proof. Let S be any set of $p-1$ adjacent edges of K_{p} incident at a vertex, say v. Since each edge of K_{p} is incident with an edge of S, it follows that S is an edge-to- edge geodetic set of G. If S is not a minimal edge-to-edge geodetic set of G, then there exists a proper subset S^{\prime} of S such that S^{\prime} is an edge-to-edge geodetic set of G. Therefore there exists at least one vertex, say u of K_{p} such that u is not incident with any edge of S^{\prime}. Hence u is neither incident with any edge of S^{\prime} nor lies on a geodesic joining a pair of edges of S^{\prime} and so S^{\prime} is not an edge-to-edge geodetic set of G, which is a contradiction. Hence S is a minimal edge-to-edge geodetic set of G. Therefore $g_{e e}{ }^{+}(G) \geq p-$ 1 .Suppose that there exists a minimal edge-to-edge geodetic set M such that $|M| \geq p$. Since M contains at least p edges, $\langle M\rangle$ contains at least one cycle. Let $M^{\prime}=M-\{e\}$, where e is an edge of
a cycle which lies in $\langle M\rangle$. It is clear that M^{\prime} is an edge-to-edge geodetic set with $M^{\prime} \subset M$, which is a contradiction. Therefore, $g_{e e}{ }^{+}(G)=p-1$.

Theorem 2.7. For the complete bipartite graph $G=K_{m, n}(2 \leq m \leq n), g_{e e}{ }^{+}(G)=n+m-2$

Proof. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ be a bipartition of G. Let $S_{i}=\left\{x_{i} y_{1}, x_{i} y_{2}, \ldots, x_{i} y_{n-1}, x_{1} y_{n}, x_{2} y_{n}, \ldots, x_{i-1} y_{n}, x_{i+1} y_{n}, \ldots, x_{m} y_{n}\right\},(1 \leq i \leq m), M_{j}=\left\{x_{1} y_{j}, x_{2} y_{j}, \ldots, x_{m-1} y_{j}\right.$, $\left.x_{m} y_{1}, x_{m} y_{2}, \ldots, x_{m} y_{j-1}, x_{m} y_{j+1}, \ldots, x_{m} y_{n}\right\},(1 \leq j \leq n)$ and $N_{k}=\left\{x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{m-1} y_{m-1}, x_{m} y_{m}, x_{m} y_{m+1}, \ldots\right.$, $\left.x_{m} y_{n}\right\}$ with $\left|S_{i}\right|=\left|M_{j}\right|=n+m-2$ and $\left|N_{k}\right|=n$. It is easily verified that any minimal edge-to-edge geodetic set of G is of the form either S_{i} or M_{j} or N_{k}. Since no proper subset of $S_{i}(1 \leq i \leq m), M_{j}(1 \leq$ $j \leq n)$ and N_{k} is an edge-to-edge geodetic set of G, it follows that, $g_{e e}{ }^{+}(G)=n+m-2$.

THE EDGE-TO-EDGE GEODETIC NUMBER AND UPPER EDGE-TO- EDGE GEODETIC NUMBER OF A GRAPH

In this section, connected graphs G of size q with upper edge-to- edge geodetic number q or $q-1$ are characterized.

Theorem 2.8. For a connected graph $G, 2 \leq g_{e e}(G) \leq g_{e e}{ }^{+}(G) \leq q$.
Proof. Any edge-to-edge geodetic set needs at least two edges and so $g_{e e}(G) \geq 2$. Since every minimal edge-to-edge geodetic set is an edge-to-edge geodetic set, $g_{e e}(G) \leq g_{e e}{ }^{+}(G)$. Also, since $E(G)$ is an edge-to-edge geodetic set of G, it is clear that $g_{e e}{ }^{+}(G) \leq q$. Thus $2 \leq g_{e e}(G) \leq g_{e e}{ }^{+}(G) \leq q$.

Remark 2.9. The bounds in Theorem 2.8 are sharp. For any non-trivial path $P, g_{e e}(P)=2$. For any tree T, $g_{e e}(T)=g_{e e}{ }^{+}(T)$ and $g_{e e}{ }^{+}\left(K_{1, q}\right)=q$ for $q \geq 2$. Also, all the inequalities in the theorem are strict. For the complete graph $G=K_{5}, g_{e e}(G)=3, g_{e e}{ }^{+}(G)=4$ and $q=10$ so that $2<g_{e e}(G)<g_{e e}{ }^{+}(G)<q$.
Theorem 2.10. For a connected graph $G, g_{e e}(G)=q$ if and only if $g_{e e}{ }^{+}(G)=q$.
Proof. Let $g_{e e}{ }^{+}(G)=q$. Then $S=E(G)$ is the unique minimal edge-to-edge geodetic set of G. Since no proper subset of S is an edge-to- edge geodetic set, it is clear that S is the unique minimum edge-to- edge geodetic set of G and so $g_{e e}(G)=q$. The converse follows from Theorem 2.8.
Corollary 2.11. For a connected graph G of size q, the following are equivalent:
i) $\quad g_{e e}(G)=q$
ii) $\quad g_{e e}{ }^{+}(G)=q$
iii) $\quad G=K_{1, q}$.

Proof. This follows from Theorem 2.10

Theorem 2.12. For every two positive integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $g_{e e}(G)=a$ and $g_{e e}{ }^{+}(G)=b$.
Proof. If $a=b$, let $G=K_{1, a}$. Then by Corollary 2.11, $g_{e e}(G)=g_{e e}{ }^{+}(G)=a$. So, let $2 \leq a<b$. Let $P: x, y$ be a path on two vertices. Let G be the graph in Figure 2.2 obtained from P by adding new vertices z, x_{1}, x_{2}, \ldots, $x_{b-a+1}, y_{1}, y_{2}, \ldots, y_{a-1}$ and joining each vertex $y_{i}(1 \leq i \leq a-1)$ and each vertex $x_{i}(1 \leq i \leq b-a+1)$ with z, each vertex $x_{i}(2 \leq i \leq b-a+1)$ with x and x_{1} with y. Let $S=\left\{z y_{1}, z y_{2}, \ldots, z y_{a-1}\right\}$ be the set of end-edges of G. Clearly, S is contained in every edge-to-edge geodetic set of G. It is clear that S is not an edge-to- edge geodetic set of G and so $g_{e e}(G) \geq a$. However $S^{\prime}=S \cup\{x y\}$ is an edge-to- edge geodetic set of G so that $g_{e e}(G)=a$.

Now, $T=S \cup\left\{y x_{1}, x x_{2}, \ldots, x x_{b-a+1}\right\}$ is an edge-to- edge geodetic set of G. We show that T is a minimal edge-to-edge geodetic set of G. Let W be any proper subset of T. Then there exists at least one edge say $e \in T$ such that $e \notin W$. First assume that $e=z y_{i}$ for some $i(1 \leq i \leq a-1)$. Then the edge $z y_{i}$ is neither incident with an edge of W nor lies on any geodesic joining a pair of edges of W and so W is not an edge-to- edge geodetic set of G. Now, assume that $e=x x_{j}$ for some $j(2 \leq j \leq b-a+1)$. Then the edge $x x_{j}$ is neither incident with an edge of W nor lies on a geodesic joining any pair of edges of W and so W is not an edge-to- edge geodetic set of G. Next, assume that $e=y x_{1}$. Then the edgey x_{1} is neither incident with an edge of W nor lies on a geodesic joining any pair of edges of W and so W is not an edge-to-edge geodetic set of G. Hence T is a minimal edge-to- edge geodetic set of G so that $g_{e e}{ }^{+}(G) \geq b$. Now, we show that there is no minimal edge-to- edge geodetic set X of G with $|X| \geq b+1$. Suppose that there exists a minimal edge-to- edge geodetic set X of G such that $|X| \geq b+1$. Clearly, $S \subseteq X$. Since S^{\prime} is an edge-to- edge geodetic set of G, it follows that $x y \notin X$. Let $M_{1}=\left\{y x_{1}, x x_{2}, x x_{3} \ldots, x x_{b-a+1}\right\}$ and $M_{2}=\left\{z x_{1}\right.$, $z x_{2}$,
$z x_{3} \ldots$,
$\left.z x_{b-a+1}\right\}$. Let $X=S \cup S_{1} \cup S_{2}$, where $S_{1} \subseteq M_{1}$ and $S_{2} \subseteq M_{2}$. First we show that $S_{1} \subset M_{1}$ and $S_{2} \subset M_{\neq}$.
Suppose that $S_{1}=M_{1}$. Then $T \subseteq X$ and so X is not a minimal edge-to- edge geodetic set of G, which is a contradiction. Suppose that $S_{2}=M_{2}$. If $y x_{1} \notin X$, then y is neither incident with an edge of X nor lies on a geodesic joining any pair of edges of X and so X is not an edge-to- edge geodetic set of G, which is a contradiction. If $y x_{1} \in X$ and if $x y_{i}$ do not belong to S_{1} for all $i(2 \leq i \leq b-a+1)$, then x is neither incident with an edge of X nor lies on a geodesic joining any pair of edges of X and so X is not an edge-to- edge geodetic set of G, which is a contradiction. Therefore $x x_{i}$ belong to S_{1} for some $i(2 \leq i \leq b-a+1)$. Without loss of generality let us assume that $x y_{2} \in S_{1}$. Then $X^{\prime}=X-\left\{z x_{2}\right\}$ is an edge-to- edge geodetic set of G with $X^{\prime} \subset X$, which is a contradiction. Therefore, $S_{1} \subset M_{1}$ and $S_{2} \subset$ M_{2} Next we show that $V\left(<S_{1}>\right) \cap V\left(<S_{2}>\right)$ contains no $x_{i}(1 \leq i \leq b-a+1)$. Suppose that $V\left(<S_{1}\right) \cap V\left(<S_{2}\right)$ contains v_{i} for some $i(1 \leq i \leq b-a+1)$. Without loss of generality let us assume that $y_{2} \in V\left(<S_{1}\right) \cap V\left(<S_{2}\right)$. Then $X^{\prime \prime}=X-\left\{z x_{2}\right\}$ is an edge-to-edge geodetic set of G with $X^{\prime \prime} \subset X$, which is a contradiction. Therefore $\left|S_{1} \cup S_{2}\right|=b-a+1$. Hence it follows that $|X|=a-1+b-a+1=b$, which is a contradiction to $|X| \geq b+1$. Therefore $g_{e e}{ }^{+}(G)=b$.

Figure 2.2

REFERENCES

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[2] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19 (1999), 45-58.
[3] G. Chartrand, F. Harary and P. Zhang, Geodetic Sets in Graphs, Discussiones Mathematicae Graph Theory ,20(2000),129-138.
[4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks,39 (2002), 1-6.
[5] J. John, A. Vijayan and S. Sujitha, The upper edge-to-vertex geodetic number of a graph, International Journal of Mathematical Archive-3(4), (2012), 1423-1428
[6] A. P. Santhakumaran and J. John, Edge Geodetic Number of a Graph, Journal of Discrete Mathematical Sciences and Cryptography 10(3), (2007), 415-432.
[7] A. P. Santhakumaran, J. John, On the edge-to- vertex geodetic number of a graph, Miskolc Mathematical Notes HU ISSN 1787-2405, 13(1) (2012), 107-119.
[8] S. Sujitha, J. John, and A. Vijayan, Extreme edge-to- vertex geodesic graphs, International Journal of Mathematical Research, 6(3), (2014), 279-288.
[9] S. Sujitha, J. John, and A. Vijayan, The forcing extreme edge-to- vertex geodetic number of a graph, International Journal of Pure and Applied Mathematics 103 (1) (2015), 109-121

