

THE UPPER EDGE-TO-EDGE GEODETIC NUMBER OF A GRAPH

A.L. Merlin Sheela¹ and M. Antony²

 ¹Research Scholar, Register Number: 18233232092003, Department of Mathematics
St. Jude's College, Thoothoor – 629 176, Tamil Nadu, India. Email: <u>sheelagodwin@gmail.com</u>
² Department of Mathematics
St. Jude's College, Thoothoor – 629 176, Tamil Nadu, India. Email: m.antonymicheal@gmail.com
Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012.

Abstract

An edge-to-edge geodetic set *S* in a connected graph *G* is called a *minimal edge-to- edge* geodetic set if no proper subset of *S* is an edge-to-edge geodetic set of *G*. The upper edge-toedge geodetic number $g_{ee}^+(G)$ of *G* is the maximum cardinality of a minimal edge-to- edge geodetic set of *G*. The upper edge-to-edge geodetic number $g_{ee}^+(G)$ of a graph is studied and is determined for certain classes of graphs. It is shown that, for every pair *a*, *b* of integers with $2 \le a \le b$, there exists a connected graph *G* such that $g_{ee}(G) = a$ and $g_{ee}^+(G) = b$.

Keywords: geodesic, edge-to-vertex geodetic number, edge-to-edge geodetic number. Upper edge-to-edge geodetic number

AMSSubjectClassification:05C12.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of *G* are denoted by *p* and *q* respectively. We consider connected graphs with at least three vertices. For basic definitions and terminologies we refer to [1]. For vertices *u* and *v* in a connected graph *G*, the distance *d* (*u*, *v*) is the length of a shortest *u* –*v* path in *G*. An *u* – *v* path of length *d* (*u*, *v*) is called an *u* – *v* geodesic. The eccentricity e(u) of a vertex *u* is defined by $e(u) = max \{d(u,v) : v \in V\}$. Each vertex in *V* at which the eccentricity function is minimized is called a *central vertex* of *G* and the set of all central vertices of *G* is called the *center* of *G* and is denoted by Z(G). The *radius r* and *diameter d* of *G* are defined by $r = min \{e(v) : v \in V\}$ and $d = max \{e(v) : v \in V\}$ respectively. For subsets *A* and *B* of V(G), the *distanced*(*A*, *B*) is defined as $d(A, B) = min\{d(x, y) : x \in A, y \in B\}$. An *u* –*v* path of length *d* (*A*, *B*) is called an *A* –*B* geodesic joining the sets *A*, *B* where $u \in A$ and $v \in B$. A vertex *x* is said to *lie* on an *A* –*B* geodesic if *x* is

a vertex of an A - B geodesic. For $A = \{u, v\}$ and $B = \{z, w\}$ with uv and zw edges, we write an A - B geodesic as uv -zw geodesic and d(A, B) as d(uv, zw). A set $S \subseteq E$ is called an *edge-to-vertex geodetic set* if every vertex of G is either incident with an edge of S or lies on a geodesic joining a pair of edges of S. The *edge-tovertex geodetic number* $g_{ev}(G)$ of G is the minimum cardinality of its edge-to-vertex geodetic sets and any edge-to-vertex geodetic set of cardinality $g_{ev}(G)$ is called an *edge-to-vertex geodetic basis* of G. The edge-tovertex geodetic number of a graph is introduced and studied in [6] and further studied in [8, 9]. The geodetic number of a graph is studied in [2,3, 4, 6]. A set $S \subseteq E$ is called an *edge-to-edge geodetic set* of G if every edge of G is an element of S or lies on a geodesic joining a pair of edges of S. The *edge-to-edge geodetic number* $g_{ee}(G)$ of G is the minimum cardinality of its edge-to- edge geodetic sets and any edge-toedge geodetic set of cardinality $g_{ee}(G)$ is said to be a g_{ee} -set of G. A double star is a tree with diameter three. A vertex v is an *extreme vertex* of a graph G if the subgraph induced by its neighbors is complete. The following theorems are used in sequel.

Theorem 1.1. [5] If v is an extreme vertex of a connected graph G, then every edge-to-edge geodetic set contains at least one extreme edge is incident with v.

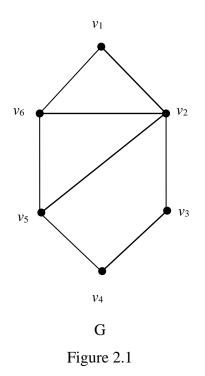
Theorem 1.2. [5] For any non-trivial tree *T* with *k* end vertices, $g_{eve}(T) = k$.

Theorem 1.3. [5] For any connected graph G, $g_{ee}(G) = q$ if and only if G is a star.

2. The Edge-to-Edge Geodetic Number of a Graph

Definition 2.1. An edge-to-edge geodetic set *S* in a connected graph *G* is called a *minimal edge-to-edge* geodetic set if no proper subset of *S* is an edge-to-edge geodetic set of *G*. The *upper edge-to-* edge geodetic number $g_{ee}^+(G)$ of *G* is the maximum cardinality of a minimal edge-to- edge geodetic set of *G*.

Example 2.2. For the graph *G* given in Figure 2.1, $S = \{v_1v_6, v_3v_4\}$ is a minimum edge-to-edge geodetic set of *G* so that $g_{ee}(G) = 2$. The set $S_1 = \{v_1v_2, v_3v_4, v_5v_6\}$ is an edge-to-edge geodetic set of *G* and it is clear that no proper subset of S_1 is an edge-to-edge geodetic set of *G* and so S_1 is a minimal edge-to-edge geodetic set of *G*. Also it is easily verified that no four element or five element subset of edge set is a minimal edge-to-edge geodetic set of *G*, it follows that $g_{ee}^+(G) = 3$.



Remark2.3. Every minimum edge-to- *edge* geodetic set of *G* is a minimal edge-to-edge geodetic set of *G* and the converse is not true. For the graph *G* given in Figure 2.1, $S_1 = \{v_1v_2, v_3v_4, v_5v_6\}$ is a minimal edge-to-edge geodetic set but not a minimum edge-to-edge geodetic set of *G*.

Observation 2.4.

(i) Let G be a connected graph with cut-vertices and S an edge-to-edge geodetic set of G. Then every branch of G contains an element of S.

(ii) Let G be a connected graph with cut-edges and S an edge-to- edge geodetic set of G. Then for any nonpendant cut-edge e of G, each of the two components of G –e contains an element of S.

(iii) Let *G* be a connected graph and *S* be a g_{ee} -set of *G*. Then no non-pendant cut-edge of *G* belongs to *S*. **Corollary 2.5.** For any non-trivial tree *T* with *k* end-edges, $g_{ee}^+(T) = k$.

In the following we determine the upper edge-to- edge geodetic number of some standard graphs.

Theorem 2.6. For a complete graph $G = K_p(p \ge 4)$, $g_{ee}^+(G) = p - 1$.

Proof. Let *S* be any set of p-1 adjacent edges of K_p incident at a vertex, say *v*. Since each edge of K_p is incident with an edge of *S*, it follows that *S* is an edge-to- *edge* geodetic set of *G*. If *S* is not a minimal edge-to-edge geodetic set of *G*, then there exists a proper subset *S* ' of *S* such that *S* ' is an edge-to-edge geodetic set of *G*. Therefore there exists at least one vertex, say *u* of K_p such that *u* is not incident with any edge of *S* '. Hence *u* is neither incident with any edge of *S* ' nor lies on a geodesic joining a pair of edges of *S* ' and so *S* ' is not an edge-to-edge geodetic set of *G*, which is a contradiction. Hence *S* is a minimal edge-to-edge geodetic set of *G*. Therefore $g_{ee}^+(G) \ge p - 1$. Suppose that there exists a minimal edge-to-edge geodetic set *M* such that $|M| \ge p$. Since *M* contains at least *p* edges, $\langle M \rangle$ contains at least one cycle. Let $M' = M - \{e\}$, where *e* is an edge of

a cycle which lies in $\langle M \rangle$. It is clear that M' is an edge-to-edge geodetic set with $M' \underset{\neq}{\subseteq} M$, which is a contradiction. Therefore, $g_{ee}^+(G) = p - 1$.

Theorem 2.7. For the complete bipartite graph $G = K_{m,n} (2 \le m \le n), g_{ee}^+(G) = n + m-2$

Proof. Let $X = \{x_1, x_2, ..., x_m\}$ and $Y = \{y_1, y_2, ..., y_n\}$ be a bipartition of *G*. Let $S_i = \{x_iy_1, x_iy_2, ..., x_iy_{n-1}, x_1y_n, x_2y_n, ..., x_{i-1}y_n, x_{i+1}y_n, ..., x_my_n\}$, $(1 \le i \le m)$, $M_j = \{x_1y_j, x_2y_j, ..., x_{m-1}y_j, x_my_1, x_my_2, ..., x_my_{j-1}, x_my_{j+1}, ..., x_my_n\}$, $(1 \le j \le n)$ and $N_k = \{x_1y_1, x_2y_2, ..., x_{m-1}y_{m-1}, x_my_m, x_my_{m+1}, ..., x_my_n\}$ with $|S_i| = |M_j| = n + m - 2$ and $|N_k| = n$. It is easily verified that any minimal edge-to-edge geodetic set of *G* is of the form either S_i or M_j or N_k . Since no proper subset of $S_i(1 \le i \le m)$, M_j $(1 \le j \le n)$ and N_k is an edge-to-edge geodetic set of *G*, it follows that, $g_{ee}^+(G) = n + m - 2$.

THE EDGE-TO-EDGE GEODETIC NUMBER AND UPPER EDGE-TO- EDGE GEODETIC NUMBER OF A GRAPH

In this section, connected graphs G of size q with upper edge-to- edge geodetic number q or q-1 are characterized.

Theorem 2.8. For a connected graph $G, 2 \le g_{ee}(G) \le g_{ee}^+(G) \le q$.

Proof. Any edge-to-edge geodetic set needs at least two edges and so $g_{ee}(G) \ge 2$. Since every minimal edge-to-edge geodetic set is an edge-to-edge geodetic set, $g_{ee}(G) \le g_{ee}^+(G)$. Also, since E(G) is an edge-to-edge geodetic set of G, it is clear that $g_{ee}^+(G) \le q$. Thus $2 \le g_{ee}(G) \le g_{ee}^+(G) \le q$.

Remark 2.9. The bounds in Theorem 2.8 are sharp. For any non-trivial path P, $g_{ee}(P) = 2$. For any tree T, $g_{ee}(T) = g_{ee}^+(T)$ and $g_{ee}^+(K_{1,q}) = q$ for $q \ge 2$. Also, all the inequalities in the theorem are strict. For the complete graph $G = K_5$, $g_{ee}(G) = 3$, $g_{ee}^+(G) = 4$ and q = 10 so that $2 < g_{ee}(G) < g_{ee}^+(G) < q$.

Theorem 2.10. For a connected graph G, $g_{ee}(G) = q$ if and only if $g_{ee}^+(G) = q$.

Proof. Let $g_{ee}^+(G) = q$. Then S = E(G) is the unique minimal edge-to-edge geodetic set of G. Since no proper subset of S is an edge-to- edge geodetic set, it is clear that S is the unique minimum edge-to- edge geodetic set of G and so $g_{ee}(G) = q$. The converse follows from Theorem 2.8.

Corollary 2.11. For a connected graph G of size q, the following are equivalent:

i) $g_{ee}(G) = q$ ii) $g_{ee}^{+}(G) = q$ iii) $G = K_{1,q}$.

Proof. This follows from Theorem 2.10

Theorem 2.12. For every two positive integers *a* and *b* with $2 \le a \le b$, there exists a connected graph *G* such that $g_{ee}(G) = a$ and $g_{ee}^+(G) = b$.

Proof. If a = b, let $G = K_{1,a}$. Then by Corollary 2.11, $g_{ee}(G) = g_{ee}^+(G) = a$. So, let $2 \le a < b$. Let P: x, y be a path on two vertices. Let G be the graph in Figure 2.2 obtained from P by adding new vertices $z, x_1, x_2, ..., x_{b-a+1}, y_1, y_2, ..., y_{a-1}$ and joining each vertex y_i $(1 \le i \le a - 1)$ and each vertex $x_i(1 \le i \le b - a + 1)$ with z, each vertex $x_i(2 \le i \le b - a + 1)$ with x and x_1 with y. Let $S = \{zy_1, zy_2, ..., zy_{a-1}\}$ be the set of end-edges of G. Clearly, S is contained in every edge-to-edge geodetic set of G. It is clear that S is not an edge-to- edge geodetic set of G so that $g_{ee}(G) = a$.

Now, $T = S \cup \{yx_1, xx_2, \dots, xx_{b-a+1}\}$ is an edge-to- edge geodetic set of G. We show that T is a minimal edge-to-edge geodetic set of G. Let W be any proper subset of T. Then there exists at least one edge $\in T$ such that €W. First assume say е е that $e = zy_i$ for some i $(1 \le i \le a - 1)$. Then the edge zy_i is neither incident with an edge of W nor lies on any geodesic joining a pair of edges of W and so W is not an edge-to- edge geodetic set of G. Now, assume that $e = xx_i$ for some i ($2 \le i \le b - a + 1$). Then the edge xx_i is neither incident with an edge of W nor lies on a geodesic joining any pair of edges of W and so W is not an edge-to- edge geodetic set of G. Next, assume that $e = yx_1$. Then the edgey x_1 is neither incident with an edge of W nor lies on a geodesic joining any pair of edges of W and so W is not an edge-to-edge geodetic set of G. Hence T is a minimal edge-to- edge geodetic set of G so that $g_{ee}^+(G) \ge b$. Now, we show that there is no minimal edge-to- edge geodetic set X of G with $|X| \ge b + 1$. Suppose that there exists a minimal edge-to- edge geodetic set X of G such that $|X| \ge b + 1$. Clearly, S $\subseteq X$. Since S' is an edgeto- edge geodetic set of G, it follows that $xy \notin X$. Let $M_1 = \{yx_1, xx_2, xx_3..., xx_{b-a+1}\}$ and $M_2 = \{zx_1, xy_2, xy_3, ..., xy_{b-a+1}\}$ *zx*₃..., zx_2 ,

 zx_{b-a+1} . Let $X = S \cup S_1 \cup S_2$, where $S_1 \subseteq M_1$ and $S_2 \subseteq M_2$. First we show that $S_1 \subseteq M_1$ and $S_2 \subseteq M_2$.

Suppose that $S_1 = M_1$. Then $T \subseteq X$ and so X is not a minimal edge-to- edge geodetic set of G, which is a contradiction. Suppose that $S_2 = M_2$. If $yx_1 \notin X$, then y is neither incident with an edge of X nor lies on a geodesic joining any pair of edges of X and so X is not an edge-to- edge geodetic set of G, which is a contradiction. If $yx_1 \in X$ and if xy_i do not belong to S_1 for all i ($2 \le i \le b - a + 1$), then x is neither incident with an edge of X nor lies on a geodesic joining any pair of edges of X and so X is not an edge-to- edge geodetic set of G, which is a contradiction. Therefore xx_i belong to S_1 for some i ($2 \le i \le b - a + 1$). Without loss of generality let us assume that $xy_2 \in S_1$. Then $X' = X - \{zx_2\}$ is an edge-to- edge geodetic set of G with $X' \subseteq X$, which is a contradiction. Therefore, $S_1 \subseteq M_1$ and $S_2 \subseteq X$

*M*₂. Next we show that $V(< S_1>) \cap V(< S_2>)$ contains no x_i $(1 \le i \le b - a + 1)$. Suppose that $V(< S_1) \cap V(< S_2)$ contains v_i for some i $(1 \le i \le b - a + 1)$. Without loss of generality let us assume that $y_2 \in V$ $(< S_1) \cap V(< S_2)$. Then $X'' = X - \{zx_2\}$ is an edge-to-edge geodetic set of G with $X'' \subset X$, which is a contradiction. Therefore $|S_1 \cup S_2| = b - a + 1$. Hence it follows that |X| = a - 1 + b - a + 1 = b, which is a contradiction to $|X| \ge b + 1$. Therefore $g_{ee}^+(G) = b$.

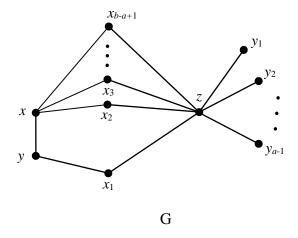


Figure 2.2

REFERENCES

- [1] F. Buckley and F. Harary, Distance *in Graphs*, Addison-Wesley, Redwood City, CA, 1990.
- [2] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, *Discuss. Math. Graph Theory*, 19 (1999), 45-58.
- [3] G. Chartrand, F. Harary and P. Zhang, Geodetic Sets in Graphs, *Discussiones Mathematicae Graph Theory*, 20(2000),129 – 138.
- [4] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, *Networks*, 39 (2002), 1-6.
- [5] J. John, A. Vijayan and S. Sujitha, The upper edge-to-vertex geodetic number of a graph, *International Journal of Mathematical Archive*-3(4), (2012), 1423-1428
- [6] A. P. Santhakumaran and J. John, Edge Geodetic Number of a Graph, *Journal of Discrete Mathematical Sciences and Cryptography* 10(3), (2007), 415-432.
- [7] A. P. Santhakumaran, J. John, On the edge-to- vertex geodetic number of a graph, *Miskolc Mathematical Notes HU ISSN* 1787-2405, 13(1) (2012), 107–119.
- [8] S. Sujitha, J. John, and A. Vijayan, Extreme edge-to- vertex geodesic graphs, *International Journal* of *Mathematical Research*, 6(3), (2014), 279-288.
- [9] S. Sujitha, J. John, and A. Vijayan, The forcing extreme edge-to- vertex geodetic number of a graph, *International Journal of Pure and Applied Mathematics* 103 (1) (2015), 109-121