3-ALKOXY-1,5-DIARYL-4,5-DIHYDROXYIMIDAZOLIDIN-2-
 ONES AND 3-ALKOXY-1-ALKYL-5-ARYL-4,5-
 DIHYDROXYIMIDAZOLIDIN-2-ONES: SYNTHESIS AND STRUCTURE

V. G. Shtamburg, ${ }^{[\mathrm{a}]^{*}}$ V. V. Shtamburg, ${ }^{[\mathrm{ab]}}$ A. A. Anishchenko, ${ }^{[\mathrm{bl}]}$ S. V. Shishkina, ${ }^{[\mathrm{c]}}$ A. V. Mazepa ${ }^{[d]}$ and I. S. Konovalova ${ }^{[c]}$

Keywords: 4-Nitrophenylglyoxal, N-alkoxy- N '-arylureas, N-alkoxy- N '-alkylureas, 3 -alkoxy-1,5-diaryl-4,5-dihydroxyimidazolidin-2ones, 3-alkoxy-1-alkyl-5-aryl-4,5-dihydroxyimidazolidin-2-ones, synthesis, structure.

Abstract

It has been found that 4-nitrophenylglyoxal reacts with N-alkoxy- N '-arylureas and N-alkoxy- N '-alkylureas in acetic acid medium with the selective formation of the diastereomers of the 3-alkoxy-1,5-diaryl-4,5-dihydroxyimidazolidin-2-ones and 3-alkoxy-1-alkyl-5-aryl-4,5-dihydroxyimidazolidin-2-ones with cis-orientation of OH -groups. The X-ray structural analysis of 3-propyloxy-4S,5S-4,5-dihydroxy-1-methyl-5-(4-nitrophenyl)imidazolidin-2-one and of 3-n-butyloxy-4S,5S-4,5-dihydroxy-1-(4-methylphenyl)-5-(4-nitrophenyl)imidazolidin-2-one has demonstrated this structural feature of these compounds.

* Corresponding Authors

Phone: +380-97-651-61-72
E-Mail: stamburg@gmail.com
[a] 49005 Ukraine, Dnepr, Gagarina st., 8. Ukrainian State University of Chemical Technology
[b] 49050 Ukraine, Dnepr, Nauchnaya st. 25. O. Gonchar Dnepropetrovsk National University.
[c] 61001 Ukraine, Kharkov, Science ave., 60. STC "Institute for Single Crystals," National Academy of Sciences of Ukraine \square
[d] 65080 Odessa, Luystdorfskaya Doroga st., 86. A.V. Bogatsky Physico-Chemical Institute of NAS of Ukraine

Scheme 1. Arylglyoxal's interaction with N-hydroxyurea in acetic acid (Ref. 8).

Arylglyoxals such as phenyl-, 4-bromophenyl-, 4-chlorophenyl-, 4-fluorophenyl-, 4-methoxyphenyl- and 4methylglyoxal easily react with N-hydroxyurea in acetic acid medium (Scheme 1) at the room temperature yielding the proper 5-aryl-3-hydroxyimidazolidine-2,4-diones (5-aryl-3-hydroxyhydantoins) 1a-f. ${ }^{8}$ However, 4nitrophenylgyoxal in acetic acid medium at room temperature reacts with N-hydroxyurea giving only a mixture of 5-aryl-3,4,5-trihydroxyimidazolidin-2-ones, 2a and 3a, in molar ratio near 3:1 (room temp., 25 h). ${ }^{9} 3$ -Hydroxy-5-(4-nitrophenyl)hydantoin (1g) is not formed. This example has demonstrated, that the presence of a strong electron-withdrawing substituent on the benzene ring of arylglyoxals prevents a further conversion of 5-aryl-3,4,5-trihydroxyimidazolidin-2-ones into 5-aryl-3-hydroxy-imidazolidin-2,4-diones. ${ }^{9}$

We have obtained similar results in aqueous medium. 4Nitrophenylgyoxal ${ }^{9}$ and 4-chlorophenylglyoxal ${ }^{7}$ form only the mixtures of 5-aryl-3,4,5-trihydroxyimidazolidin-2-ones ($\mathbf{2 a}, \mathbf{b}$ and $\mathbf{3 a , b}$) at $14-20^{\circ} \mathrm{C}$ (Scheme 2).

Scheme 2. Interaction of 4-nitrophenylgyoxal hydrate and 4chlorophenylglyoxal hydrate with N-hydroxyurea in aqueous medium.

In these mixtures, the diastereomers of 5-aryl-3,4,5-trihydroxyimidazolidin-2-ones (2a, 2b) with cis orientation of hydroxyl groups at C-4,5 carbon atoms are the main products. ${ }^{7-9}$ The structure of compounds 2a,b has been proved by XRD study. ${ }^{7,9}$

Phenylglyoxal reacts with N-hydroxyurea in aqueous solution at the room temperature, forming the mixture of unstable 3,4,5-trihydroxy-5-phenylimidazolidin-2-ones $(2 \mathbf{c}, \mathbf{3 c})$ and 3-hydroxy-5-phenylhydantoin (1a). ${ }^{7,8}$ The compounds 2c and 3c are easily transformed to hydantoin 1a by heating. ${ }^{7,8}$

4-Methoxyphenylglyoxal and form with N-hydroxyurea a hydroxyhydantoins (1c,1d) and (Scheme 3).

Scheme 3. Interaction of 4-methylphenylgyoxal hydrate and 4methoxyphenylglyoxal hydrate with N-hydroxyurea in aqueous solution.

In acetic acid medium, the majority of arylglyoxals reacts with N-alkoxyureas forming only 3-alkoxy-5-arylhydantoins (5a-e) (Scheme 4).

Scheme 4. Interaction of arylglyoxals with N-alkoxyureas in acetic acid medium.

The arylgyoxal's interaction with N-alkoxy- N '-arylureas (6) has been particularly studied. ${ }^{10}$ It has been shown that anhydrous phenylglyoxal reacts with N-ethoxy- N^{\prime} phenylurea (6a) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $20^{\circ} \mathrm{C}$ yielding 3-ethoxy-1,5-bis(phenyl)imidazolidine-2,4-dione 7 in moderate (46 \%) yield ${ }^{10} \quad$ (Scheme 5). Using $\quad N$-benzyloxy- N '-(4nitrophenyl)urea (6b), anhydrous phenylglyoxal produces $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20{ }^{\circ} \mathrm{C}\right)$ 3-benzyloxy-4,5-dihydroxy-1-(4-nitrophenyl)-5-phenylimidazolidine-2-one 8 (56 \%) and 3-benzyloxy-1-(4-nitrophenyl)-5-phenylhydantoin 9 (6 \%). ${ }^{10}$

Scheme 5. Interaction of phenylglyoxal with N-alkoxy- N^{\prime} 'arylureas.

Scheme 6. Synthesis acyclic substituted N-alkoxyureas 10.

But the reaction between phenylglyoxal and N-benzyloxyN^{\prime} '(2-bromophenyl)urea (6c) and N-ethoxy- N^{\prime}-(2bromophenyl)urea (6d) in dichloromethane solution (Scheme 6) at room temperature gives only acyclic ureas (10a,b). ${ }^{10,11}$ It is probable that the bulky ortho-bromo substituent prevents the further cyclization. The structure of ureas 10a,b has been confirmed by XRD study. In the crystalline state, compound 10a exists in two forms (10aA and $\mathbf{1 0 a B}$), which are distinguished by the pyramidality degree of the acyclic amide nitrogen atom. The sum of bond angles centered of this atom $(\Sigma \beta)$ is $336.0(3)^{\circ}$ and $341.2(3)^{\circ}$ in the molecules 10aA and $10 \mathbf{a B}^{10}$, respectively. The urea 10b exists in the single form, the sum of bond angles centered on the nitrogen atom is $340.0(3)^{\circ} .^{11}$

So, the goal of our current research was to investigate the interaction of 4-nitrophenylglyoxal with N-alkoxy- N^{\prime} arylureas $\mathbf{6}$ in acetic acid medium.

EXPERIMENTAL

${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian VXP-300 spectrometer and Varian Jemini 400 spectrometer (300 and 400 MHz , respectively). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian VXP-300 spectrometer (75 MHz) and Varian Jemini 400 spectrometer (100 MHz). The solvents were DMSO- d_{6} (for the compounds 6, 11a-g, 13b and 14a, b) and CDCl_{3} (for the compounds 6a, 13a and 14a) ${ }^{1} \mathrm{H}$ NMR chemical shifts were reported relative to the residual solvent protons as an internal standard $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: 2.500 \mathrm{ppm}\right)$ or with TMS as an internal standard (in CDCl_{3}). Solvent carbon atoms served as an internal standard for ${ }^{13} \mathrm{C}$ NMR spectra ((CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}: 39.52 \mathrm{ppm}\right)$. Mass spectra were recorded on a VG 70-70EQ mass spectrometer in fast atom bombardment mode (FAB). The solvents were purified and dried according to the standard procedures.4Nitrophenylglyoxal hydrate was obtained according to published procedures. ${ }^{9}$

N-Ethoxy- N '-phenylurea (6a)

This compound was obtained according to published procedures, ${ }^{10}$ yield was 60%, colorless crystals, m.p. 101$104{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=1.213(3 \mathrm{H}, \mathrm{t}, J$ $\left.=7.2 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{Me}\right), 3.823\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{Me}\right)$, $6.985(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H} \mathrm{Ph}), 7.257(2 \mathrm{H}, \mathrm{t}, J=7.6$, $\mathrm{Hz} \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{Ph}), 7.567(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}$, C(6)H Ph), 8.702 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 9.410 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHO}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.337(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{NOCH}_{2} \mathrm{Me}\right), 3.987\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{Me}\right), 7.105$ $(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H} \mathrm{Ph}), 7.336(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}$, C(3) H, C(5) H Ph), $7.488(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H}$ Ph), $7.608(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.708(1 \mathrm{H}, \mathrm{s}, \mathrm{NHO})$. MS (FAB) m/z $361[2 \mathrm{M}+\mathrm{H}]^{+}(4), 181[\mathrm{M}+\mathrm{H}]^{+}(100)$. Anal. Calc. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 59.99, H 6.71, N 15.55. Found: C 59.81, H 6.83, N 15.44 .

N-Methoxy- N^{\prime}-phenylurea (6e)

A solution of phenyl isocyanate ($918 \mathrm{mg}, 7.706 \mathrm{mmol}$) in dry benzene (8 mL) was added to the solution of methoxyamine ($444 \mathrm{mg}, 9.434 \mathrm{mmol}$) in dry benzene (4
$\mathrm{mL})$. The reaction mixture was maintained in a closed bulb at $20^{\circ} \mathrm{C}$ for 6 days, the obtained precipitate was then filtered off, washed with dry benzene (1 mL) and dried under vacuum (2 mm Hg) to yield $\mathbf{6 e}$ as colorless crystals, m.p. $112-113{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta=3.615(3 \mathrm{H}, \mathrm{s}$, NOMe), 6.984 (1H, t, $J=7.6 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H}$ Ph), 7.255 ($2 \mathrm{H}, \mathrm{t}, J$ $=7.6 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{Ph}), 7.575(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}$, C(2)H, C(6)H Ph), $8.840(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.482(1 \mathrm{H}, \mathrm{s}, \mathrm{NHO})$. MS (FAB) m/z $333[2 \mathrm{M}+\mathrm{H}]^{+}$(10), $167[\mathrm{M}+\mathrm{H}]^{+}(100)$. Anal. Calc. for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 57.82, H 6.07, N 16.86 . Found: C 57.65, H 6.26, N 16.73.

In a similar manner, N-alkoxy- N^{\prime}-arylureas ($\mathbf{6 f - j}$) and N -alkoxy- N '-alkylureas (13a, b) were obtained:

N-Benzyloxy- N '-phenylurea (6f)

This compound was obtained as colourless crystals, yield 78 \%, m.p. $104-105^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=$ $4.824\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{2}\right), 6.981(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H} \mathrm{PhN})$, 7.252 (2H, t, $J=7.6$ Hz, C(3)H, C(5)H PhN), 7.331 (1H, t, J $=6.8 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H} \mathrm{PhCH} 2), 7.384(2 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}$, $\left.\mathrm{C}(5) \mathrm{H} \mathrm{PhCH}_{2}\right), 7.463(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H}$ $\left.\mathrm{PhCH}_{2}\right), 7.514(2 \mathrm{H}, \mathrm{d}, ~ J=7.6 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H} \mathrm{PhN})$, 8.704 (1H, s, NH), 9.465 (1H, s, NHO). MS (FAB) m/z 243 $[\mathrm{M}+\mathrm{H}]^{+}(86), 91 \mathrm{Bn}^{+}$(100). Anal. Calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 69.41, H 5.82, N 11.56. Found: C 69.57, H 5.75, N 11.50.

N-Methoxy- N '-(4-methylphenyl)urea (6g)

Obtained as colourless crystals, yield 95%, m.p. 152-154 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) : $\delta=2.233$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.605 (3H, s, NOMe), 7.059 (2H, d, $J=8.4 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}$, C(5)H Ar), 7.446 (2H, d, $J=8.4 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H} \mathrm{Ar})$, $8.745(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.411$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHO}$). MS (FAB) m/z 181 $[\mathrm{M}+\mathrm{H}]^{+}$(100). Anal. Calc. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 59.99, H 6.71, N 15.55. Found: C 59.68, H 6.56, N 15.39.

N-n-Butyloxy- N '-(4-methylphenyl)urea (6h)

Obtained as colourless crystals, yield 72 \%, m.p. $78-79^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=0.900$ ($3 \mathrm{H}, \mathrm{t}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{NO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right), 1.355(2 \mathrm{H}$, sex, $J=7.2 \mathrm{~Hz}$, $\left.\mathrm{NO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.602(2 \mathrm{H}$, quint, $J=7.2 \mathrm{~Hz}$, $\mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $2.223(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.756(2 \mathrm{H}, \mathrm{t}, J=$ $\left.7.2 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 7.061(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, $\mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{Ar}), 7.426(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H}$ Ar), $8.551(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.348(1 \mathrm{H}, \mathrm{s}, \mathrm{NHO})$. MS (FAB) m/z $223[\mathrm{M}+\mathrm{H}]^{+}$(100), 133 (10), 106 (22). Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 64.84, H 8.16, N 12.60. Found: C 64.79, H 8.21, N 12.43 .

N-Ethoxy- N^{\prime}-(4-bromophenyl)urea (6i)

Obtained as colourless crystals, yield 92%, m.p. 109-110 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=1.204$ ($3 \mathrm{H}, \mathrm{t}, J=$ $\left.7.2 \mathrm{~Hz}, \mathrm{NOCH}_{2} \underline{\mathrm{Me}}\right), 3.812\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{Me}\right)$, 7.432 (2H, d, J = $\left.9.2 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 7.569$ (2H, d, $\left.J=9.2 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{C} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 8.874(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $9.515(1 \mathrm{H}, \mathrm{s}, \mathrm{NHO})$. MS (FAB) m/z $261[\mathrm{M}+\mathrm{H}]^{+}$(16), 259 $[\mathrm{M}+\mathrm{H}]^{+}$(15), 102 (100). Anal. Calc. for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{2}$: C 41.72, H 4.28, N 10.81. Found: C 41.59, H 4.21, N 10.56.

N-n-Butyloxy- N '-(4-bromophenyl)urea ($6 \mathbf{j}$)

Obtained as colourless crystals, yield 61 \%, m.p. 104-105 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=0.89(3 \mathrm{H}, \mathrm{t}, J=7.4$ $\left.\mathrm{Hz}, \mathrm{NO}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right), \quad 1.35(2 \mathrm{H}$, sex, $J=7.4 \mathrm{~Hz}$, $\left.\mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), \quad 1.60(2 \mathrm{H}$, quint, $J=7.4$, $\left.\mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 3.76\left(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{NOCH}_{2}\right), 7.43$ ($\left.2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 7.56(2 \mathrm{H}, \mathrm{d}, J=$ $\left.8.8 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 8.85(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $9.54(1 \mathrm{H}$, s , NHO). MS (FAB) m/z $289[\mathrm{M}+\mathrm{H}]^{+}$(95), $287[\mathrm{M}+\mathrm{H}]^{+}$ (100), 273 (17), 271 (17), 209 (40). Anal. Calc. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2}$: C 46.01, H 5.26, N 9.76. Found: C 46.13, H 5.34, N 9.58.

N-Propyloxy- N '-methylurea (13a)

Obtained as colourless oil, yield $90 \%, n_{D}{ }^{20} 1.4550 .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.95(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $\mathrm{NOCH}_{2} \mathrm{CH}_{2} \underline{\mathrm{Me}}$), 1.67 (3H, sex, $J=7.0 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 2.86 (3H, br. s, NMe), 3.77 ($2 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}, \mathrm{NOCH}_{2}$), $5.73(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.61(1 \mathrm{H}, \mathrm{s}, \mathrm{NHO})$. Anal. Calc. for $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 45.44, H 9.15, N 21.20. Found: C 45.37, H 9.24, N 21.46.

N-Ethoxy- N '-(1-naphthyl)methylurea (13b)

Obtained as colourless crystals, yield 74 \%, m.p. 145$146^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=1.157(3 \mathrm{H}, \mathrm{t}, J$ $\left.=7.0 \mathrm{~Hz}, \mathrm{NOCH}_{2} \underline{\mathrm{Me}}\right), 3.752\left(2 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{Me}\right)$, $4.740\left(2 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 7.353-7.386(1 \mathrm{H}, \mathrm{m}, \mathrm{H}$ $\mathrm{C}_{10} \mathrm{H}_{7}$), 7.414-7.430 (1H, m, H C $\mathrm{C}_{0} \mathrm{H}_{7}$), $7.495(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8$ $\mathrm{Hz}, \mathrm{H} \mathrm{C}_{10} \mathrm{H}_{7}$), $7.535-7.572\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NH}\right.$ and $\left.\mathrm{H} \mathrm{C}_{10} \mathrm{H}_{7}\right), 7.827$ $\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H} \mathrm{C}_{10} \mathrm{H}_{7}\right), 7.942(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}$ $\left.\mathrm{C}_{10} \mathrm{H}_{7}\right), 8.173\left(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H} \mathrm{C}_{10} \mathrm{H}_{7}\right), 9.138(1 \mathrm{H}, \mathrm{s}$, NHO). MS (FAB) m/z $245[\mathrm{M}+\mathrm{H}]^{+}$(52), $243[\mathrm{M}-\mathrm{H}]^{+}(7)$, 198 (6), 156 (13), $141 \mathrm{NafCH}_{2}{ }^{+}$(100), 117(14). Anal. Cal. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 68.83, H 6.60, N 11.47. Found: C 68.73, H 6.51, N 11.38.

Preparation of cis-diastereomer, 4S,5S-dihydroxy-3-methoxy-5-(4-nitrophenyl)-1-phenylimidazolidin-2-one (11a)

4-Nitrophenylglyoxal hydrate ($102 \mathrm{mg}, 0.518 \mathrm{mmol}$) was added to the solution of $\mathbf{6 e}(86 \mathrm{mg}, 0.518 \mathrm{mmol})$ in acetic acid (5 mL). The reaction mixture was stirred at $19^{\circ} \mathrm{C}$ for 19 h, then it was frozen and acetic acid was evaporated at $15^{\circ} \mathrm{C}$ under vacuum (2 mmHg), the residue was washed by cold water (5 mL), dried under vacuum (2 mm Hg) to yield 154 mg (86%, purity 95%) cis-diastereomer, 4S,5S-4,5-dihydroxy-3-methoxy-5-(4-nitrophenyl)-1-phenylimidazoli-din-2-one (11a) as colourless crystals, m.p. 158-159 (with decomp., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=3.828(3 \mathrm{H}, \mathrm{s}, \mathrm{NOMe}), 4.931(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \underline{\mathrm{CHOH}})$, $7.066(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H} \mathrm{Ph}), 7.136(1 \mathrm{H}, \mathrm{d}, J=6.5$ $\mathrm{Hz}, \mathrm{CHOH}), 7.207(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{Ph})$, $7.288(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.384(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H}$ $\mathrm{Ph}), 7.763\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)$, $8.150\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }_{6}$): $\delta=64.0$ (OMe), 87.1, 87.6 ($\mathrm{CHOH}, \mathrm{COH}$), 123.2, 124.8, 125.4, 128.26, 128.29 (C-2,C$6 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}, \mathrm{C}-3, \mathrm{C}-5 \mathrm{Ph}, \mathrm{C}-4 \mathrm{Ph}, \mathrm{C}-3, \mathrm{C}-5 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}, \mathrm{C}-2, \mathrm{C}-6$ Ph), 135.9 (C-1, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), 147.0, 147.2 (C-1 Ph, C-4 $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), $156.7(\mathrm{C}=\mathrm{O})$. MS (FAB) m/z $346[\mathrm{M}+\mathrm{H}]^{+}(100)$.

MS (FAB, KI) m/z $384[\mathrm{M}+\mathrm{K}]^{+}(20), 346[\mathrm{M}+\mathrm{H}]^{+}$(82), 192(100). Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{6}$: C $55.65, \mathrm{H} 4.38, \mathrm{~N}$ 12.17. Found: C 55.63, H 4.39, N 12.10 .

3-Ethoxy-4S,5S-4,5-dihydroxy-5-(4-nitrophenyl)-1-phenylimi-dazolidin-2-one (11b)

4-Nitrophenylglyoxal hydrate ($176 \mathrm{mg}, 0.893 \mathrm{mmol}$) was added to the solution of $\mathbf{6 a}(161 \mathrm{mg}, 0.893 \mathrm{mmol})$ in acetic acid (6 mL). The reaction mixture was stirred at $17^{\circ} \mathrm{C}$ for 23 h, then it was frozen and acetic acid was evaporated at $15^{\circ} \mathrm{C}$ under vacuum (2 mmHg), the residue was washed with water (6 mL), dried under vacuum (2 mmHg) to yield 286 mg (89%, purity 96%) cis-diastereomer, 3-ethoxy-4S,5S-4,5-dihydroxy-5-(4-nitrophenyl)-1-phenylimidazolidin-2-
one (11b) as colourless crystals, m.p. $145-146^{\circ} \mathrm{C}$ (with decomp., THF- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{14}$). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $: \delta=1.24\left(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{Me}\right), 4.06$ $\left(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{Me}\right), 4.91(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}$, CHOH), $7.06(1 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H}, \mathrm{Ph}), 7.11(1 \mathrm{H}, \mathrm{d}, J$ $=6.6 \mathrm{~Hz}, \mathrm{CHOH}), 7.21(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H}$ Ph), $7.25(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.40(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}$, $\mathrm{C}(6) \mathrm{H} \mathrm{Ph}), 7.77(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), $8.15\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)$. ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d d_{6}): $\delta=13.97$ (Me), 71.36 $\left(\mathrm{NOCH}_{2}\right), 87.14,87.74(\mathrm{CHOH}, \mathrm{COH}), 123.29,124.72$, 125.33, 128.27, 128.31, 136.03 (C Ph, C C ${ }_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), 147.25, $147.26\left(\mathrm{C}-1 \mathrm{Ph}, \mathrm{C}-4 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 156.93(\mathrm{C}=\mathrm{O})$. MS (FAB) $\mathrm{m} / \mathrm{z} 360[\mathrm{M}+\mathrm{H}]^{+}(100), 342\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(8), 223$ (74), 181 (99), 150 (26), 91 (30). Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 56.82, H 4.77, N 11.69. Found: C 56.55, H 4.70, N 11.79.

3-Benzyloxy-4S,5S-4,5-dihydroxy-5-(4-nitrophenyl)-1-phenyl-imidazolidin-2-one (11c)

4-Nitrophenylglyoxal hydrate ($80 \mathrm{mg}, 0.406 \mathrm{mmol}$) was added to the solution of $\mathbf{6 f}(98 \mathrm{mg}, 0.405 \mathrm{mmol})$ in acetic acid (5 mL), the reaction mixture was stirred at $18^{\circ} \mathrm{C}$ for 21 h, then it was frozen and acetic acid was evaporated at $16^{\circ} \mathrm{C}$ under vacuum (2 mm Hg), the residue was twice washed with cold water (3 mL), dried under vacuum (2 mm Hg) giving 147 mg (86%, purity 96%) 3-benzyloxy-4S,5S-4,5-4,5-dihydroxy-5-(4-nitrophenyl)-1-phenylimidazolidin-2one (11c) as colourless solid, m.p. $62-65^{\circ} \mathrm{C}$ (with decomp., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=4.813$ $(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CHOH}), 5.053\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NOCH}_{2}\right), 7.068$ $(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}, \mathrm{C}(4) \mathrm{H} \mathrm{PhN}), 7.212(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}$, C(3)H, C(5)H PhN), 7.272 ($1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CHOH}$), $2.277(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.313-7.414\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right), 7.481(2 \mathrm{H}$, d, $J=6.8 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H} \mathrm{PhN}), 7.704(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}$, $\left.\mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 8.136(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}$, $\mathrm{C}(5) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=77.86$ $\left(\mathrm{NOCH}_{2}\right), 87.28,87.44$ (CHOH, COH), 123.30, 124.71, 125.37, 128.12, 128.20, 128.28, 128.35, 129.06, (C PhN, C $\mathrm{PhCH}_{2}, \mathrm{C} \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), 135.93, 136.08 ($\mathrm{C}-1 \mathrm{Bn}, \mathrm{C}-1$ $\overline{\mathrm{C}}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), 147.18, $147.29\left(\mathrm{C}-1 \mathrm{PhN}, \mathrm{C}-4 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)$, 156.77 (C=O). MS (FAB) m/z $422[\mathrm{M}+\mathrm{H}]^{+}(16), 243$ (34), 194 (7), 150 (15), $91 \mathrm{Bn}^{+}$(100). Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$ C 62.70, H 4.54, N 9.97. Found: C 62.39, H 4.65, N 9.81.

4S,5S-4,5-Dihydroxy-3-methoxy-1-(4-methylphenyl)-5-(4-nitrophenyl)imidazolidin-2-one (11d)

4-Nitrophenylglyoxal hydrate ($151 \mathrm{mg}, 0.765 \mathrm{mmol}$) was added to the solution of $\mathbf{6 g}(138 \mathrm{mg}, 0.765 \mathrm{mmol})$ in acetic acid (5 mL). The reaction mixture was stirred at $17{ }^{\circ} \mathrm{C}$ for 21 h , then it was frozen and acetic acid was evaporated at 16 ${ }^{\circ} \mathrm{C}$ under vacuum (2 mm Hg), the residue was twice washed with cold water (5 mL), dried under vacuum (2 mm Hg) giving 245 mg (89%, purity 95%) 11d as colourless crystals, m.p. $157-159^{\circ} \mathrm{C}$ (with decomp., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=2.168(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 3.825 (3H, s, NOMe), 4.924 ($2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{CHOH}$), $7.005\left(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$, 7.099 $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CHO} \underline{H}), 7.237(1 \mathrm{H}, \mathrm{s}, \mathrm{COH}), 7.248(2 \mathrm{H}$, d, $\left.J=7.6 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H} \mathrm{C}_{6} \underline{\mathrm{H}}_{4} \mathrm{Me}\right), 7.753(2 \mathrm{H}, \mathrm{d}, J=8.4$ $\left.\mathrm{Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 8.142(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, $\mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): δ $=20.43$ (Me), 64.05 (NOMe), 87.13, 87.74 (CHOH, COH), $123.25,125.23,128.39,128.86,133.24,134.90$ (C Ar), 147.18, $147.28\left(\mathrm{C}-1 \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}, \mathrm{C}-4 \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 156.92$ (C=O). MS (FAB) m/z $360[\mathrm{M}+\mathrm{H}]^{+}(86), 342[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}(8), 299$ (28), 257 (10), 209 (100), 181 (85), 150 (40), 133 (44), 106 (25), 90 (39). Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 56.82, H 4.77, N 11.69. Found: C 56.85, H 4.77, N 11.46.

3-n-Butyloxy-4S,5S-4,5-dihydroxy-1-(4-methylphenyl)-5-(4-nitrophenyl)imidazolidin-2-one (11e)

4-Nitrophenylglyoxal hydrate ($105 \mathrm{mg}, 0.533 \mathrm{mmol}$) was added to the solution of $\mathbf{6 h}(119 \mathrm{mg}, 0.533 \mathrm{mmol})$ in acetic acid (4 mL). The reaction mixture was stirred at $17^{\circ} \mathrm{C}$ for 19 h, then it was frozen and acetic acid was evaporated under vacuum (2 mm Hg), the residue was twice washed with cold water (4 mL) at $4{ }^{\circ} \mathrm{C}$ for 20 h , dried under vacuum (2 mmHg) giving 193 mg (90%, purity 94%) 11e as colourless crystals, m.p. 139-141 (with decomposition, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta=0.902(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2$ $\left.\mathrm{Hz}, \mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \underline{\mathrm{Me}}\right), 1.385(2 \mathrm{H}$, sex, $J=7.2 \mathrm{~Hz}$, $\left.\mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $1.617(2 \mathrm{H}$, quint, $J=7.2 \mathrm{~Hz}$, $\mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 2.166 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.948-4.046 (2 H , m, NOCH_{2}), $4.893(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CHOH}), 7.000(2 \mathrm{H}, \mathrm{d}$, $\left.J=8.4 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{C} 6 \mathrm{H}_{4} \mathrm{Me}\right), 7.029(1 \mathrm{H}, \mathrm{d}, J=6.0$ $\mathrm{Hz}, \mathrm{CHOH}), 7.191(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.255(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}$, $\left.\mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.755(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}$, $\left.\mathrm{C}(6) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 8.141(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=13.78$ $\left[\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right], 18.60\left(\mathrm{CH}_{2}\right), 20.39\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 30.08\left(\mathrm{CH}_{2}\right)$, $75.66\left(\mathrm{NOCH}_{2}\right), 87.08,87.94(\mathrm{CHOH}, \mathrm{COH}), 123.21$, 125.06, 128.33, 128.80 (C-3, C-5 $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}, \mathrm{C}-3, \mathrm{C}-5$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}, \mathrm{C}-2, \mathrm{C}-6 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}, \mathrm{C}-2, \mathrm{C}-6 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), 133.33, $134.71\left(\mathrm{C}-4 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}, \mathrm{C}-1 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right.$), 147.24, 147.30 (C-1 $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}, \mathrm{C}-4 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), 157.00 (C=O). MS (FAB) m/z $402[\mathrm{M}+\mathrm{H}]^{+}(12), 384\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(4), 257$ (7), 251 (26), 241 (17), 235 (7), 223 (100), 195 (15), 150 (38), 133 (34), 106 (46). Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 59.84, H 5.78, N 10.47. Found: C 59.73, H 5.86, N 10.39 .

1-(4-Bromophenyl)-3-ethoxy-4S,5S-4,5-dihydroxy-5-(4-nitrophenyl)imidazolidin-2-one (11f)

4-Nitrophenylglyoxal hydrate ($56 \mathrm{mg}, 0.281 \mathrm{mmol}$) was added to the solution of $\mathbf{6 i}(73 \mathrm{mg}, 0.281 \mathrm{mmol})$ in acetic acid (4 mL). The reaction mixture was stirred at $17^{\circ} \mathrm{C}$ for 22 h, then it was frozen and acetic acid was evaporated at $15^{\circ} \mathrm{C}$ under vacuum (2 mm Hg), the residue was twice washed with cold water (5 mL) and dried under vacuum (2 mm Hg) to yield 110 mg (89%, purity 93%) of $\mathbf{1 1 f}$ as colourless crystals, m.p. $165-166^{\circ} \mathrm{C}$ (with decomp.) $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=1.23(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}$, $\left.\mathrm{NOCH}_{2} \underline{\mathrm{Me}}\right), 4.05\left(2 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{Me}\right), 4.90(1 \mathrm{H}$, d, $J=6.6 \mathrm{~Hz}, \underline{\mathrm{CHOH}}), 7.16(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CHOH})$, $7.35(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.35-7.43\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 7.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=8.7 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 8.16(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, $\left.\mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d d_{6}): δ $=13.94(\mathrm{Me}), 71.40\left(\mathrm{NOCH}_{2}\right), 87.13,87.51(\mathrm{CHOH}, \mathrm{COH})$, 117.65, 123.39, 126.12, 128.20, 131.25, 135.49 (C Ar), 146.88, $147.35\left(\mathrm{C}-1 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}, \mathrm{C}-4 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 156.55(\mathrm{C}=\mathrm{O})$. MS (FAB) m/z $440 \quad[\mathrm{M}+\mathrm{H}]^{+}(39), 438 \quad[\mathrm{M}+\mathrm{H}]^{+}(39)$, 261(100): 259 (94), 223 (81), 214 (48), 150 (45). Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{6}$: C 46.59, H 3.68, N 9.59. Found: C 46.32, H 3.74, N 9.35 .

1-(4-Bromophenyl)-3-n-butyloxy-4S,5S-4,5-dihydroxy-5-(4-nitrophenyl)imidazolidin-2-one (11g)

4-Nitrophenylglyoxal hydrate ($50 \mathrm{mg}, 0.254 \mathrm{mmol}$) was added to the solution of $\mathbf{6 j}$ ($73 \mathrm{mg}, 0.254 \mathrm{mmol}$) in acetic acid (5 mL). The reaction mixture was stirred at $18^{\circ} \mathrm{C}$ for 18 h, then it was frozen and acetic acid was evaporated at $16^{\circ} \mathrm{C}$ under vacuum (2 mm Hg), the residue was twice washed with cold water (5 mL) and dried under vacuum (2 mm Hg) to yield 110 mg (93%, purity 93%) of $\mathbf{1 1 g}$ as colourless solid, m.p. $114-117{ }^{\circ} \mathrm{C}$ (with decomp., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=0.90(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.\mathrm{NO}\left(\mathrm{CH}_{2}\right) \mathrm{Me}\right), \quad 1.40(2 \mathrm{H}$, sex, $J=7.0 \mathrm{~Hz}$, $\left.\mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $1.61(2 \mathrm{H}$, quint, $J=7.0 \mathrm{~Hz}$, $\left.\mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 3.97-4.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NOCH}_{2}\right), 4.90(1 \mathrm{H}$, $\mathrm{d}, J=6.3 \mathrm{~Hz}, \underline{\mathrm{CHOH}}), 7.16(1 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CHOH})$, 7.33-7.47 (5H, m, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}$ and COH), 7.76 (2H, d, $J=8.4$ $\left.\mathrm{Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 8.17$ ($2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, $\mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d d_{6}): δ $=13.78\left[\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Me}\right], 18.58\left(\mathrm{CH}_{2}\right), 30.04\left(\mathrm{CH}_{2}\right), 75.72$ $\left(\mathrm{NOCH}_{2}\right), 87.12,87.59(\mathrm{CHOH}, \mathrm{COH}), 117.69(\mathrm{C}-4$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 123.40\left(\mathrm{C}-3, \mathrm{C}-5 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right.$), 126.18, 128.24 (C-2,C-6 $\left.\quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}, \quad \mathrm{C}-2, \mathrm{C}-6 \quad \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), \quad 131.26 \quad(\mathrm{C}-3, \mathrm{C}-5$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}\right), 135.50\left(\mathrm{C}-1 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 146.89,147.38$ (C-1 $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}, \mathrm{C}-4 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), 156.59 (C=O). MS (FAB) m/z 468 $[\mathrm{M}+\mathrm{H}]^{+}$(19), $466[\mathrm{M}+\mathrm{H}]^{+}$(18), $450\left[\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(10), 289 (100), 287 (84), 251 (88), 195 (68), 150 (94). Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{6}$: C 48.94, H 4.32, N 9.01. Found: C 48.75, H 4.46, N 8.96.

4S,5S-4,5-Dihydroxy-1-methyl-5-(4-nitrophenyl)-3-propyloxyimidazolidin-2-one (14a)

A solution of 13a ($177 \mathrm{mg}, 1.336 \mathrm{mmol}$) in acetic acid (4 mL) was added to the mixture of nitrophenylglyoxal hydrate ($263 \mathrm{mg}, 1.336 \mathrm{mmol}$) and acetic acid (2 mL). The reaction mixture was stirred at $11^{\circ} \mathrm{C}$ for 4 h , then it was frozen and acetic acid was evaporated at $11^{\circ} \mathrm{C}$ under vacuum (2 mm $\mathrm{Hg})$, the residue was dissolved in water $(3 \mathrm{~mL})$ at $4^{\circ} \mathrm{C}$ and
the aqueous solution was frozen and acetic acid was evaporated at $10^{\circ} \mathrm{C}$ under vacuum (2 mm Hg) to give 400 mg (96%, purity 99%) of $\mathbf{1 4 a}$ as colourless crystals, m.p. $151-152^{\circ} \mathrm{C}$ (with decomp., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, ~ D M S O-d_{6}\right), \delta=0.92(3 \mathrm{H}, \mathrm{t}, \quad J=7.2 \mathrm{~Hz}$, $\mathrm{NOCH}_{2} \mathrm{CH}_{2} \underline{\mathrm{Me}}$), $1.62\left(2 \mathrm{H}\right.$, sex, $J=7.2 \mathrm{~Hz}$, $\left.\mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, 2.52-2.74 (3H, m, NMe), 3.84-3.96 (2H, m, NOCH 2), 4.71 $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \underline{\mathrm{CHOH}}), 6.73(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{CHO} \underline{H})$, $6.78(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.72(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), 8.28 ($2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.95(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.69\left(2 \mathrm{H}\right.$, sex, $\left.J=7.2 \mathrm{~Hz}, \mathrm{NOCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $2.69(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 3.97\left(2 \mathrm{H}, \mathrm{td},{ }^{3} J=6.9 \mathrm{~Hz},{ }^{2} J=1.8 \mathrm{~Hz}\right.$, $\left.\mathrm{NOCH}_{2}\right), 4.50(1 \mathrm{H}$, br. s, $\underline{\mathrm{CHOH}}), 4.61(1 \mathrm{H}$, br. s, $\mathrm{CHO} \underline{H})$, $4.92(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.66(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H}$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), 8.27 ($2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}, \mathrm{C}(5) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d ${ }^{2}$): $\delta=10.30$ (Me), 21.23 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 25.15(\mathrm{NMe}), 77.44\left(\mathrm{NOCH}_{2}\right), 85.85,88.25$ $(\mathrm{CHOH}, \mathrm{COH}), 123.39\left(\mathrm{C}-3, \mathrm{C}-5 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 128.07123 .39$ (C-2,C-6 $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), 147.12, $147.47\left(\mathrm{C}-1, \mathrm{C}-4 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)$, 158.79 (C=O). MS (FAB) m/z $312[\mathrm{M}+\mathrm{H}]^{+}(69), 294[\mathrm{M}+\mathrm{H}-$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}(20), 278$ (5), 237 (100), 221 (15), 195 (32), 150 (62), 133 (58). Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$: C $50.16, \mathrm{H} 5.50, \mathrm{~N}$ 13.50. Found: C 50.08, H 5.67, N 13.46 .

3-Ethoxy-4S,5S-4,5-dihydroxy)-1-(1-naphthyl)methyl-5-(4-nitrophenyl)imidazolidin-2-one (14b)

A mixture of 4-nitrophenylglyoxal hydrate ($134 \mathrm{mg}, 0.680$ mmol) and 13b ($157 \mathrm{mg}, 0.641 \mathrm{mmol}$) was dissolved in acetic acid (4 mL) with stirring. The reaction mixture was maintained at $16^{\circ} \mathrm{C}$ for 6 h , then acetic acid was evaporated at $16^{\circ} \mathrm{C}$ under vacuum (2 mm Hg), the residue was washed by cold water (5 mL), then it was filtered off and dried under vacuum (2 mm Hg) yielding 252 mg (93%, purity 93 \%) of 14b as yellowish solid, m.p. $155-156^{\circ} \mathrm{C}$ (with decomp., $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$): $\delta=1.254\left(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}, \mathrm{NOCH}_{2} \underline{\mathrm{Me}}\right), 3.98-4.13(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NOCH}_{2} \mathrm{Me}\right), 4.531\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J=15.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 4.837(1 \mathrm{H}$, d, $J=6.9 \mathrm{~Hz}, \underline{\mathrm{CHOH}}), 4.918\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J=15.0, \mathrm{NCH}_{2}\right)$, 6.894-6.916 ($2 \mathrm{H}, \mathrm{M}, \mathrm{CHOH}, \mathrm{COH}$), 7.09-7.17 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{10} \mathrm{H}_{7}$), $7.321\left(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{C}(2) \mathrm{H}, \mathrm{C}(6) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)$, $7.43-7.52\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{10} \mathrm{H}_{7}\right), 7.672(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{C}(3) \mathrm{H}$, $\mathrm{C}(5) \mathrm{H} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), $7.75-7.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{10} \mathrm{H}_{7}\right)$,), $8.07-8.13$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{10} \mathrm{H}_{7}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=14.00$ $\left(\mathrm{NOCH}_{2} \mathrm{Me}\right), 41.29\left(\mathrm{NCH}_{2}\right), 71.38\left(\mathrm{NOCH}_{2}\right), 86.02,87.82$ ($\mathrm{CHOH}, \mathrm{COH}$), $122.05\left(\mathrm{C}-3, \mathrm{C}-5 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 123.37,124.80$, $125.55,126.10,127.49,127.50\left(\mathrm{C}_{10} \mathrm{H}_{7}\right), 127.63(\mathrm{C}-2, \mathrm{C}-6$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 128.26,130.87,132.53,132.91\left(\mathrm{C}_{10} \mathrm{H}_{7}\right), 146.63$ (C-1 $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$), $147.14\left(\mathrm{C} 4 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 158.80(\mathrm{C}=\mathrm{O}) . \mathrm{MS}$ (FAB) m/z $424[\mathrm{M}+\mathrm{H}]^{+}$(15), 245(18), 223(29), 182(28), 156(20), $141 \mathrm{NafCH}_{2}{ }^{+}$(100). Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 62.41, H 5.00, N 9.92. Found: C 62.28, H 4.86, N 9.83.

Crystals of the compound 11e were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{C}_{6} \mathrm{H}_{14}$ at $10{ }^{\circ} \mathrm{C}$. The studied crystal was monoclinic, $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$, at $20^{\circ} \mathrm{C}, a=15.261(3) \AA, b=19.409(2) \AA, c=$ 15.676(3) $\AA, \beta=117.31(2){ }^{\circ}, V=4125.6(14) \AA^{3}, M_{\mathrm{r}}=$ 401.41, $Z=8$, space group $\mathrm{P}_{1} / \mathrm{c}$, $d_{\text {calc. }}=1.293 \mathrm{~g} / \mathrm{cm}^{3}, \mu$ $\left(\mathrm{MoK}_{\alpha}\right)=0.097 \mathrm{~mm}^{-1}, \mathrm{~F}(000)=1696$. Crystals of the compound 14a were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{C}_{6} \mathrm{H}_{14}$ at $-14{ }^{\circ} \mathrm{C}$. The studied crystal was monoclinic, $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$, at $20{ }^{\circ} \mathrm{C}$, a $=25.112(5) \AA, b=11.250(2) \AA, c=10.591(2) \AA, \beta=$ 94.360(17) ${ }^{\circ}, V=2983.6(11) \AA^{3}, M_{\mathrm{r}}=311.29, Z=8$, space group $\mathrm{P}_{1} / \mathrm{c}, d_{\text {calc. }}=1.386 \mathrm{~g} / \mathrm{cm}^{3}, \mu\left(\mathrm{MoK}_{\alpha}\right)=0.111 \mathrm{~mm}^{-1}$,
$F(000)=1312$. X-ray structural study of compounds 11e and 14a was performed on a Xcalibur 3 automatic fourcircle diffractometer $\left(\mathrm{MoK}_{\alpha}\right.$-radiation, graphite monochromator, Sapphire-3 CCD detector, ω-scanning, $2 \theta_{\max }=50^{\circ}$).

The structures were solved by direct methods using the SHELX-2016 ${ }^{13}$ software. The positions of the hydrogen atoms were located from electron density difference maps and refined by the "riding" model with $U_{\text {iso }}=n U_{\text {eq }}$ of the carrier atoms ($n=1.5$ for methyl groups and hydroxyl groups and $n=1.2$ for other hydrogen atoms). Full-matrix leastsquares refinement of the structures against F^{2} in anisotropic approximation for non-hydrogen atoms was converged to $w R_{2}=0.230$ using 7224 reflections ($R_{1}=0.1037$ for 2769 reflections with $\mathrm{F}>4 \sigma(\mathrm{~F}), \mathrm{S}=0.981$) for structure 11e and $w R_{2}=0.292$ using 1759 reflections ($R_{1}=0.1256$ for 635 reflections with $F>4 \sigma(F), S=0.958$) for structure 14a. The atomic coordinates, molecular geometry parameters, and crystallographic data of compounds 11e and 14a were deposited at the Cambridge Crystallographic Data Center, 12 Union Road, CB2, 1EZ UK [fax:+44-1223-336033, email: deposit@ccdc.cam.ac.uk and is available on request quoting the deposit number CCDC 1942124 (11e) and number CCDC 1942123 (14a)].

RESULTS AND DISCUSSION

We have found that 4-nitrophenylglyoxal with N-alkoxyN^{\prime} '-arylureas ($6 \mathbf{a}, \mathbf{e}-\mathbf{j}$) in acetic acid medium at $17-20^{\circ} \mathrm{C}$ selectively forms 3-alkoxy-1-aryl-4,5-dihydroxy-5-(4-nitrophenyl)imidazolidin-2-ones (11a-g), mainly as diastereomers with cis orientation of $4-\mathrm{HO}-$ and $5-\mathrm{HO}-$ groups (93-96\%) (Scheme 7). The diastereomers 12a-g with trans orientation of 4-HO- and 5-HO-groups have been observed in the trace amounts in the reaction mixtures $\left({ }^{1} \mathrm{H}\right.$ NMR).

Scheme 7. Synthesis of 3-alkoxy-1-aryl-4,5-dihydroxy-5-(4-nitrophenyl)imidazolidin-2-ones (11a-g, 12a-g).

Under similar conditions, 4-nitrophenylglyoxal reacts with N-propyloxy- N '-methylurea (13a) and N-ethoxy- N '-(1naphthyl)methylurea (13b) give 3-alkoxy-1-alkyl-4,5-dihydroxy-5-(4-nitrophenyl)imidazolidin-2-ones (14a,b) mainly as cis diastereomer (Scheme 8).

The trans diastereomers 15a,b have been observed in reaction products in the trace amounts as well. The cis diastereomers $\mathbf{1 1}$ and 14 can be easily obtained in pure form by the crystallization.

Scheme 8. Synthesis of 3-alkoxy-1-alkyl-4,5-dihydroxy-5-(4-nitrophenyl)imidazolidin-2-ones (14a,b, 15a,b).

Firstly, the cis orientation of 4-HO- and 5-HO-groups has been proposed for the compounds 11a-j and 14a,b based on their ${ }^{1} \mathrm{H}$ NMR spectra. For compounds 11a-j and 14a,b the doublet of $\mathbf{C H O H}$ proton is situated in the higher field than doublet of $\mathbf{C H O H}$ proton of trans diastereomers 12a-j and $\mathbf{1 5 a}, \mathbf{b}$, as earlier it has been demonstrated for 5 -aryl-3,4,5-trihydroxyimidazolidin-2-ones $\mathbf{2 a}, \mathbf{b}^{7-9}$ (Table 1).

Table 1. The characteristic ${ }^{1} \mathrm{H}$ NMR chemical shifts of doublet of $\mathbf{C H O H}$ proton of 2a,b, 3a,b, 11a-g, 12a-g and 14a,b, 15a,b.

cis Diastereomers		trans Diastereomers	
	$\delta, \operatorname{ppm}(\mathrm{J}, \mathrm{Hz})$		$\delta, \operatorname{ppm}(\mathrm{J}, \mathrm{Hz})$
2a	$4.55(7.5)^{9}$	3 a	4.91(5.4) ${ }^{9}$
2b	$4.52(7.2)^{7}$	3b	4.84(5.7) ${ }^{8}$
11a	4.93(6.5)	12a	5.20(5.5)
11b	4.91(6.6)	12b	5.18(6.0)
11c	4.81(6.0)	12c	5.23(6.0)
11d	4.92(6.4)	12d	5.19(4.8)
11e	4.90(6.0)	12e	5.17(3.9)
11f	4.90(6.8)	12f	5.17(5.7)
11g	4.90(6.3)	12g	5.16(5.1)
14a	4.71(7.8)	15a	5.04(6.0)
14b	4.81(7.2)	15b	5.16(6.0)

Figure 1. The molecular structure of 3-n-butyloxy-4S,5S-4,5-dihydroxy-1-(4-methylphenyl)-5-(4-nitrophenyl)-imidazolidin-2one (11eA), showing the atom labelling. Displacement ellipsoids are drawn with the 50% probability level according to the data X ray structural analysis.

There are two molecules of compound 11e (11eA and $\mathbf{1 1 e B}$) in the asymmetric part of the unit cell. Molecules 11eA and 11eB have some different structural parameters. Earlier the similar existence of compound in the two geometrical forms in the crystal was found for the N alkoxyurea 10a ${ }^{10}$ and in other cases. ${ }^{13-15}$

The five-membered ring has an envelope conformation in both molecules. The C(2) atom deviates on $0.37 \AA(11 e A)$ and $0.53 \AA(\mathbf{1 1 e B})$ off the plain of remaining ring atoms. The $\mathrm{N}(1)$ atom has a pyramidal configuration. The sum of bond angles centered at the $\mathrm{N}(1)$ atom $(\Sigma \beta)$ is 339.3° in molecule 11eA and 336.8 in molecule 11eB. The $\mathrm{N}(2)$ nitrogen atom has a planar configuration $\left(\Sigma \beta\right.$ is 358.3° in molecule 11eA and 359.5° in molecule 11eB). The C(3)OH group has axial orientation relative to five-membered ring(the torsion angle $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{O}(3)$ is $97.0(5)^{\circ}$ (molecule 11eA), -87.9(6) ${ }^{\circ}$ (molecule 11eB). The C(2)-OH group has equatorial orientation to five-membered ring (the torsion angle $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{O}(2)$ is $143.7(5)^{\circ}$ (molecule 11eA), 154.6(5) ${ }^{\circ}$ (molecule 11eB).

The 4-nitrophenyl substituent has equatorial orientation to five-membered ring [the torsion angle $\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ is $-142.0(5)^{\circ}($ molecule 11eA $), 152.3(5)^{\circ}($ molecule 11eB)]. It is rotated relatively to the $\mathrm{C}(2)-\mathrm{C}(3)$ endocyclic bond [the torsion angle $C(2)-C(3)-C(4)-C(9)$ is 75.8° (molecule 11eA), 104.4° (molecule 11eB)]. The nitro group is slightly rotated towards the plane of the aromatic cycle [the torsion angle $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(3)-\mathrm{O}(4)$ is $-7.2(2)^{\circ}$ (molecule 11eA), $15.4(2)^{\circ}$ (molecule 11eB), the torsion angle $C(8)-C(7)-$ $\mathrm{N}(3)-\mathrm{O}(5)$ is $-0.3(1)^{\circ}$ (molecule 11eA), $-18.6(9)^{\circ}$ (molecule $11 \mathrm{eB})$].

In the compound 11e the ordinary bonds $\mathrm{O}(2)-\mathrm{C}(2)$ and $\mathrm{O}(3)-\mathrm{C}(3)$ are in some way different: the $\mathrm{O}(3)-\mathrm{C}(3)$ bond [1.399(6) $\AA(11 \mathrm{eA}), 1.405(6) \AA(11 \mathrm{eB})]$ is little bit longer than the $\mathrm{O}(2)-\mathrm{C}(2)$ bond $[1.380(7) \AA(11 \mathrm{eA}), 1.369(7) \AA$ $(11 e B)]$. The similar bond difference was found for 5 -aryl-3,4,5-trihydroxyimidazolidin-2-ones $2 \mathbf{a}^{9}, 2 \mathbf{b}^{7}$. The lengths of $\mathrm{O}(6)-\mathrm{N}(1)$ bond $[1.410(6) \AA(11 \mathrm{eA}), 1.401(6) \AA(11 \mathrm{eB})]$ is similar to the same bond's lengths in compounds $\mathbf{2 a , b}$ [1.398(7) \AA in compound $\mathbf{2 a},{ }^{9} 1.405(1) ~ \AA$ in compound $\mathbf{2 b} \mathbf{b}^{7}$].

The butyloxy group has $+a c$-conformation to the endocyclic $\mathrm{C}(2)-\mathrm{N}(1)$ bond in the molecule 11eA and -acconformation in the molecule 11eB [the torsion angle $C(2)$ -$\mathrm{N}(1)-\mathrm{O}(6)-\mathrm{C}(17)$ is $121.3(6)^{\circ}$ (molecule 11eA), $-107.6(6)^{\circ}$ (molecule 11eB)]. It has transoid conformation [the torsion angle $\mathrm{N}(1)-\mathrm{O}(6)-\mathrm{C}(17)-\mathrm{C}(18)$ is $-179.0(7)^{\circ}$ (molecule 11eA), 170.1(6) ${ }^{\circ}$ (molecule 11eB), the torsion angle $\mathrm{O}(6)-$ $\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$ is $171.7(1)^{\circ}$ (molecule 11eA), 159.4(1) ${ }^{\circ}$ (molecule 11eB)].

In the crystal, the molecules 11eA and 11eB are linked into dimers by the intermolecular hydrogen bond $\mathrm{O}(3 \mathrm{~B})$ $\mathrm{H}(3 \mathrm{~B}) \ldots \mathrm{O}(1 \mathrm{~A})^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})\left(\mathrm{H} \ldots \mathrm{O} 1.87 \AA\right.$, O-H...O $\left.167^{\circ}\right)$. These dimers form the chains toward crystallographic direction $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ due to intermolecular hydrogen bonds $\mathrm{O}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A}) \ldots \mathrm{O}(2 \mathrm{~A})^{\prime}(1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z})(\mathrm{H} . . . \mathrm{O} 2.23 \AA, \mathrm{O}-$ Н...О 148°) и $\mathrm{O}(3 \mathrm{~B})-\mathrm{H}(3 \mathrm{~B}) \ldots \mathrm{O}(1 \mathrm{~A})^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})(\mathrm{H} . . . \mathrm{O} 1.87$ \AA, О-Н... O 167°).

The molecular structure 4S,5S-4,5-dihydroxy-1-methyl-5-(4-nitrophenyl)-3-propyloxyimidazolidin-2-one (14a) is very similar to the molecular structure of compound 11e.

There are two molecules of 4S,5S-4,5-dihydroxy-1-methyl-5-(4-nitrophenyl)-3-propyloxyimidazolidin-2-one (14a) (14aA and 14aB) in the asymmetric part of the unit cell. These molecules have different structural parameters.

Figure 2. Molecular structure of 4S,5S-4,5-dihydroxy-1-methyl-5-(4-nitrophenyl)-3-propyloxyimidazolidin-2-one (14aA) with atoms represented by thermal vibration ellipsoids of 50% probability level according to the data of X-ray structural analysis.

The five-membered ring has an envelope conformation in both molecules. The $\mathrm{C}(3)$ atom deviation of the plane of the remaining ring atoms is $0.42 \AA$ in the molecule 14 aA and $0.46 \AA$ in the molecule $\mathbf{1 4 a B}$. The nitrogen atom $\mathrm{N}(1)$ has the planar configuration $\left(\Sigma \beta=356^{\circ}\right.$ in the molecule 14aA and $\Sigma \beta=357^{\circ}$ in the molecule $\mathbf{1 4 a B}$). The nitrogen atom $N(2)$ has the pyramidal configuration ($\Sigma \beta=337.4^{\circ}$ in the molecule 14aA and $\Sigma \beta=336^{\circ}$ in the molecule 14aB). The hydroxyl group at the $C(2)$ atom has an axial orientation relatively to the five-membered ring the $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(4)$ torsion angle is $-90.6(7)^{\circ}$ in $\mathbf{1 4 a A}, 92.3(7)^{\circ}$ in $\left.\left.\mathbf{1 4 a B}\right)\right]$. The hydroxyl group at the C3 atom has an equatorial orientation to the five-membered ring (the $\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{O}(3)$ torsion angle is $-146.2(7)^{\circ}(\mathbf{1 4 a A}), 152.1(7)^{\circ}(\mathbf{1 4 a B})$).

The 4-nitrophenyl substituent is equatorially oriented to the five-membered ring [the torsion angle $\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)-$ $\mathrm{C}(5)$ is $147.6(6)^{\circ}(\mathbf{1 4 a A}),-150.6(7)^{\circ}(\mathbf{1 1 e B})$. It is rotated towards the $\mathrm{C}(2)-\mathrm{C}(3)$ endocyclic bond (the torsion angle $C(3)-C(2)-C(5)-C(6)$ is $\left.-68.6^{\circ}(14 a A), 74.4^{\circ}(\mathbf{1 4 a B})\right]$. The nitro group is slightly rotated towards the plane of the aromatic cycle [the torsion angle $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(3)-\mathrm{O}(5)$ is $2.8(2)^{\circ}(14 a A), 10.5(2)^{\circ}(14 a B)$, the torsion angle $C(9)-$ $\mathrm{C}(8)-\mathrm{N}(3)-\mathrm{O}(6)$ is $\left.-4.9(2)^{\circ}(\mathbf{1 4 a A}), 5.4(1)^{\circ}(\mathbf{1 4 a B})\right]$.

In the compound 14a the ordinary bonds $\mathrm{O}(4)-\mathrm{C}(2)$ and $O(3)-C(3)$ are in some way different: the $O(4)-C(2)$ bond [1.427(8) $\AA(\mathbf{1 4 a A}), 1.431(9) \AA(\mathbf{1 4 a B})]$ is a longer than the $\mathrm{O}(3)-\mathrm{C}(3)$ bond $[1.381(9) \AA(\mathbf{1 4 a A}), 1.387(9) \AA(\mathbf{1 4 a B})]$. The similar bond difference takes place in the compounds $\mathbf{2 a , 2 b}, 11 \mathbf{e} .{ }^{7,9}$ The length of $\mathrm{O}(2)-\mathrm{N}(2)$ bond $[1.420$ (8) \AA (14aA), 1.418 (8) $\AA(\mathbf{1 4 a B})]$ is similar to the same bond's length in the compound 11e. The propyloxy group has $-a c$ conformation to the endocyclic $\mathrm{C}(3)-\mathrm{N}(2)$ bond in the molecule 14aA and $+a c$-conformation in the molecule $14 \mathbf{a B}$ [the torsion angle $\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{O}(2)-\mathrm{C}(11)$ is $-106.8(8)^{\circ}$ (14aA), 115.5(8) (14aB)]. It has transoid conformation [the torsion angle $\mathrm{N}(2)-\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$ is $175.8(8)^{\circ}(14 \mathbf{a A})$, $175.5(9)^{\circ}(14 a B)$, the torsion angle $O(2)-C(11)-C(12)-$ $\mathrm{C}(13)$ is $\left.-174.2(9)^{\circ}(\mathbf{1 4 a A}),-179.0(1)^{\circ}(\mathbf{1 4 a B})\right]$.

In the crystal molecules $14 a \mathbf{a}$ and $14 \mathbf{a B}$ are linked in the dimers by the intermolecular hydrogen bond $\mathrm{O}(3 \mathrm{~B})-$ $\mathrm{H}(3 \mathrm{~B}) \ldots \mathrm{O}(1 \mathrm{~A})^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ ($\mathrm{H} . . . \mathrm{O} 1.98 \AA, \mathrm{O}-\mathrm{H} . . \mathrm{O} 167^{\circ}$). These dimers form the chains toward crystallographic direction [$\left.\begin{array}{lll}0 & 1 & 0\end{array}\right]$ due to intermolecular hydrogen bonds $\mathrm{O}(3 \mathrm{~A})-\mathrm{H}(3 \mathrm{~A}) \ldots \mathrm{O}(4 \mathrm{~B})^{\prime}(\mathrm{x}, 1+\mathrm{y}, \mathrm{z})(\mathrm{H} . . \mathrm{O} 2.06 \AA, \mathrm{O}-\mathrm{H} . . \mathrm{O}$ 178°) and $\mathrm{O}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{~A}) \ldots \mathrm{O}(2 \mathrm{~A})^{\prime}(\mathrm{x}, 1.5-\mathrm{y},-0.5+\mathrm{z})(\mathrm{H} . . \mathrm{O}$ $2.12 \AA, \mathrm{O}-\mathrm{H} . . . \mathrm{O} 136^{\circ}$) (Figure 3).

Figure 3. The rearrangement molecules $14 \mathbf{a} A$ and $14 \mathbf{a B}$ in the crystal according to the data of X-ray structural analysis.

For the studied reaction of arylglyoxals with N hydroxyurea, ${ }^{7-9} N$-alkoxy- N '-arylureas ${ }^{10}$ and N-alkoxy- N 'alkylureas a possible mechanism results dominating the formation of the diastereomers with cis orientation of 4-HOand 5-HO-groups has been proposed (Scheme 9). At the first stage, the open-chain N-alkoxyurea $\mathbf{1 6 A}$ is formed which has intramolecular hydrogen bond. The intermediate 16A can isomerize into the enolic form 16B possessing the same intramolecular hydrogen bond. In the further cyclization of intermediate 16A (route i Scheme 9), or intermediate 16B (rout ii Scheme 9) yields the diastereomer with cis orientation of $4-\mathrm{HO}$ - and $5-\mathrm{HO}$-groups due to presence of this intramolecular hydrogen bond. The mild conditions of the reaction (no heating) preserve the further isomerization of the forming cis diastereomers 11, $\mathbf{1 4}$ into trans diastereomers 12, 15.

Scheme 9. The proposed mechanism of the interaction of 4nitrophenylglyoxal with N-alkoxy- N '-arylureas and N-alkoxy- N 'alkylureas.

It is probable that the presence of such a strong electronegative substituent in 5-aryl's moiety, as nitro group, destabilizes "benzylic" cation \mathbf{C} and makes impossible the further transformation of the compounds 11 and 14 into
hydantoins 1. ${ }^{9}$ Thus, as for the reaction of 4nitrophenylglyoxal with N-alkoxy- N '-arylureas (6a,e-i) and N-alkoxy- N '-alkylureas (13a,b) it has been discovered that the process leads only to the mixture of diastereomers of 3-alkoxy-4,5-dihydroxy-5-(4-nitrophenyl)imidazolidin-2-ones
(11a-g,12a-g) and 3-alkoxy-1-alkyl-4,5-dihydroxy-5-(4-nitrophenyl)imidazolidin-2-ones (14a,b and 15a,b).

The diastereomer with sic orientation of HO-groups is the main product in both cases. The structure of $3-n$-butyloxy-4S,5S-4,5-dihydroxy-1-(4-methylphenyl)-5-(4-nitrophenyl)-imidazolidin-2-one (11e) and $4 S, 5 S$-4,5-dihydroxy-1-methyl-5-(4-nitrophenyl)-3-propyloxyimidazo-lidin-2-one (14a) has been studied by X-ray structural analysis.

Conclusions

4-Nitrophenylglyoxal reacts with N-alkoxy- N '-arylureas (6a,e-i) and N-alkoxy- N '-alkylureas (13a,b) in acetic acid medium at the room temperature forming mainly 3 -alkoxy-4,5-dihydroxy-5-(4-nitrophenyl)imidazolidin-2-one (11a-g) and 3-alkoxy-1-alkyl-4,5-dihydroxy-5-(4-nitrophenyl)-imidazolidin-2-ones (14a,b), respectively, which have cis oriented hydroxyl groups. X-Ray structural analysis of 3-n-butyloxy-4S,5S-4,5-dihydroxy-1-(4-methylphenyl)-5-(4-nit-rophenyl)imidazolidin-2-one (11e) and 4S,5S-4,5-dihydroxy-1-methyl-5-(4-nitrophenyl)-3-propyloxyimidazo-lidin-2-one (14a) has confirmed this special structural feature of these compounds.

References

${ }^{1}$ Eftekhari-Sis, B., Zirak, M., Akrabi, A., Arylglyoxals in Synthesis of Heterocyclic Compounds, Chem. Rev., 2013, 113(5), 2958-3043, DOI 10.1021/cr300176g.
${ }^{2}$ Konnert, L., Lamaty, F., Martinez, J., Colacino, E., Recent Advances in the Synthesis of Hydantoins: The State of the Art of Valuable Scaffold, Chem. Rev., 2017, 117(23), 1375713809, DOI 10.1021/acs.chemrev.7b00067.
${ }^{3}$ Meusel, M., Gutschow, M., Recent Developments in Hydantoin Chemistry. A Review, Org. Prep. Proceed. Int., 2004, 36(5), 391-443, http// dx.doi.org/10.1080/00304940409356627.
${ }^{4}$ Suarez, A., Martinez, F., Sanz, R., Synthesis of α-functionalized α-indol-3-yl carbonyls through direct SN reactions of indol3 -yl α-acyloins, Org. Biomol. Chem., 2016, 14, 11212-11219. https://doi.org./10.1039/c6ob02125e.
${ }^{5}$ Suarez, A., Martinez, F., Suarez-Pantiga, S., Sanz, R., PTSACatalysed Reaction of Indoles with 2-Oxoaldehydes: Synthesis of Bis- α, α (indol-3-yl) Ketones. Chem. Select, 2017, 1, 1-5. DOI: 10.1002/slct. 201700013.
${ }^{6}$ Anishchenko, A. A., Shtamburg, V. G., Shtamburg, V. V., Mazepa, A. V., Unusual Spontaneous $\alpha \rightarrow \beta$ Isomerization of Unsymmetrical Benzoins, Eur. Chem. Bull., 2013, 2, 361366, https://doi.org./10.17628/ecb2013.2/361-366
${ }^{7}$ Shtamburg, V. G., Anishchenko, A. A., Shtamburg, V. V., Shishkin, O. V., Zubatyuk, R. I., Mazepa, A. V., Rakipov, I. M., Kostyanovsky, R. G., Synthesis and crystal structure of new imidazolidine-2,4-dione and imidazolidin-2-one derivatives, Mendeleev Commun., 2008, 18, 102-104. DOI: 10.1016/j.mencom.2008.03.018.
${ }^{8}$ Shtamburg, V. G., Shtamburg, V. V., Anishchenko, A. A., Zubatyuk R. I., Mazepa, A. V., Klotz, E. A., Kravchenko, S. V., Kostyanovsky, R. G., Single-stage synthesis of 3-hydroxy- 3-alkoxy-5-arylimidazolidine-2,4-diones by
reaction of arylglyoxal hydrates with N-hydroxy- and N alkoxyureas, Chem. Heterocycl. Compd., 2015, 51(6), 553559, DOI 10.1007/s10593-015-1735-0
${ }^{9}$ Shtamburg, V. G., Shtamburg, V. V., Anishchenko, A. A., Mazepa, Shishkina, S. V., Konovalova, I. S., Synthesis and structure of 3,4,5-trihydroxy-5-(4-nitrophenyl)imidazolidin-2-one. Eur. Chem. Bull., 2019, 8(4), 110-114. DOI: 10.17628/ecb.2019.8.110-114.
${ }^{10}$ Kostyanovsky, R. G., Shtamburg, V. G., Shishkin, O. V., ., Zubatyuk R. I., Shtamburg, V. V., Anishchenko, A. A., Mazepa, A. V., Pyramidal nitrogen in the crystal of N -[(benzoyl)-(hydroxy)methyl]- N-benzyloxy- N ’-(2-bromophenyl)urea. Mendeleev Commun., 2010, 20, 167-169. DOI: 10.1016/j.men.com.2010.05.015.
${ }^{11}$ Shtamburg, V.G., Anishchenko, A. A., Shtamburg, V. V., Pletenez, A. V., Zubatyuk R. I., Shishkin, O. V., Synthesis and structure of N-[(benzoyl)-(hydroxy)methyl]- N-ethoxy-N’-(2-bromophenyl)urea. Voprosy Khim, Khim. Technol., 2011, N5, 13-17 [In Russian].
${ }^{12}$ Sheldrick, G. M., SHELXT - integrated space-group and crystalstructure determination, Acta Crystallogr., Sect. A: Found. Crystallogr., 2015, A71(1), 3-8. https://doi.org./10.1007/S2053273314026370
${ }^{13}$ Shishkin, O. V., Shtamburg, V. G., Zubatyuk R. I., Olefir, D. A., Tsygankov, A. V., Prosyanik, A. V., Mazepa, A. V., Kostyanovsky, R. G., Chiral Ureas with Two Electronegative Substituents at $1-N$ and Unusual Case of Coexisting a Pyramidal and Almost Planar $1-N$ in The Same Crystal, Chirality, 2009, 21(7), 642-647. https://doi.org/10.1002/chir. 20668
${ }^{14}$ Shtamburg, V. G., Kostyanovsky, R. G., Tsygankov, A. V., Shtamburg, V. V., Shishkin, O. V., Zubatyuk R. I., Mazepa, A. V., Kravchenko, S. V., Geminal systems. 64. N-Alkoxy-N-chloroureas and N,N-dialkoxyureas, Russ. Chem. Bull., 2015, 64(1), 62-75. https://doi.org./10.1007/s11172-015-0822-9
${ }^{15}$ Shtamburg, V. G., Anishchenko, A. A., Shishkina, S. V., Shtamburg, V. V., Mazepa, A. V., Kravchenko, S. V., Klots, E. A., The reaction of alloxan with indole and furanes. The structure of 5-indol-3-yl-5-hydroxypyrimidin-2,4,6(1H,3H,5H)-trione, Eur. Chem. Bull., 2017, 6(4), 151154. DOI: 10.17628/ecb.2017.6.151-154.

Received: 01.08.2019.
Accepted: 31.08.2019.

