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Abstract:  

The transportation sector is a significant contributor to greenhouse gas emissions and air pollution. As a 

result, there is a growing demand for alternative modes of transportation that are environmentally friendly 

and sustainable. Electric and hybrid electric vehicles (EVs and HEVs) are being developed as a solution to 

this problem. This research paper explores the design parameters of EVs and HEVs and the scope of 

transportation offered by these vehicles. The design of electric and hybrid electric vehicles (EVs and HEVs) 

involves selecting optimal design parameters to maximize their efficiency and performance. However, the 

selection of these parameters is a complex and challenging problem that requires the consideration of 

multiple variables. In this research paper, we propose the use of the Chaotic Tunicate Swarm Algorithm 

(CTSA) for selecting optimal design parameters for EVs and HEVs. The CTSA is a new optimization 

algorithm that has been developed based on swarm intelligence and chaotic dynamics. The results of our 

study show that the CTSA can effectively optimize the design parameters of EVs and HEVs, leading to 

improved efficiency and performance. 
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1. Introduction: 

Transportation is one of the largest sources of 

greenhouse gas emissions and air pollution. 

Therefore, it is imperative to find alternative 

modes of transportation that are environmentally 

friendly and sustainable. Electric and hybrid 

electric vehicles are being developed as a solution 

to this problem. These vehicles offer a wide range 

of benefits, including reduced emissions, lower 

fuel costs, and increased efficiency. However, the 

design of these vehicles requires careful 

consideration of various parameters. 

 

Electric and hybrid electric vehicles are becoming 

increasingly popular as a solution to the 

environmental problems associated with 

transportation. The design of these vehicles 

involves selecting optimal design parameters that 

maximize their efficiency and performance. 

However, this is a complex problem that requires 

the consideration of multiple variables, including 

battery capacity, motor power, regenerative 

braking, and aerodynamics. To address this 

problem, we propose the use of the Chaotic 

Tunicate Swarm Algorithm (CTSA) for selecting 

optimal design parameters for EVs and HEVs. 

 

2. Design Parameters: 

The design of electric and hybrid electric vehicles 

is different from that of conventional vehicles. 

The following design parameters are crucial for 

EVs and HEVs: 

Battery Capacity: Battery capacity determines the 

range of an electric vehicle. The higher the battery 

capacity, the longer the range of the vehicle. 

Motor Power: Motor power is an important 

parameter for EVs and HEVs. It determines the 

speed and acceleration of the vehicle. 

Regenerative Braking: Regenerative braking is a 

system that converts the kinetic energy of the 

vehicle into electrical energy that can be used to 

charge the battery. This system is particularly 

important for electric vehicles, as it can 

significantly increase their range. 

Aerodynamics: The design of the vehicle affects 

its aerodynamics, which in turn affects its 

efficiency. Aerodynamic designs can reduce drag 

and improve efficiency. 

 

 

 

 

 

3. Scope of Transportation: 

Electric and hybrid electric vehicles offer a wide 

range of transportation options. The scope of 

transportation offered by these vehicles includes: 

Urban Commuting: Electric vehicles are 

particularly well-suited for urban commuting. 

They can easily navigate through traffic and do 

not emit pollutants, making them ideal for use in 

cities. 

Long-Distance Travel: With the advancement of 

battery technology, electric vehicles can now 

travel long distances. In addition, hybrid electric 

vehicles offer the option of using a conventional 

engine for long-distance travel. 

Public Transportation: Electric buses are 

becoming increasingly popular for public 

transportation. They are environmentally friendly 

and quiet, making them ideal for use in urban 

areas. 

 

4. Chaotic Tunicate Swarm Algorithm 

The CTSA is a new optimization algorithm that 

has been developed based on swarm intelligence 

and chaotic dynamics. The algorithm is inspired 

by the behavior of tunicates, which are marine 

animals that are known for their ability to adapt to 

changing environmental conditions. The CTSA 

algorithm consists of three phases: initialization, 

evolution, and selection. The following steps are 

adopted to use the algorithm for optimal design of 

electric vehicle parameters: 

Level 1:  start Initializing the initial population of 

tunicate. 

Level 2:  Select the initial values as well as the 

upper bound. 

Level 3: Apply the Tent Chaotic search strategy 

and determine each search agent's fitness value. 

Level 4: Then estimating the fitness value, the best 

suitable search agent in the chosen searching 

limits is identified. 

Level 5: Use Equation to renew each searching 

agent's location. 

Level 6: Modify the recently modified search 

agent to extend past the limit in the specified 

search area. 

Level 7: Calculate the revised “search agent 

value”. Update Pp if a superior option exists than 

the previous best solution. 

Level 8: The algorithm terminates if the halting 

requirement is met. In any other case, repeat levels 

5-8. 

Level 9: Arrival of the best currently available 

optimum resolution/answer. 
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Algorithm: Chaotic Tunicate Swarm Algorithm 

Input: Tunicate population
𝑃
→

𝑃
 

Output: Optimal fitness value 𝐹⃗ 𝑆 

1: procedure TSA 

2: Prepare the parameters 

3: Set 𝑃𝑚𝑖𝑛 ←1 

4: Set 𝑃𝑚𝑎𝑥 ←4 

5: Set 𝑆𝑤𝑎𝑟𝑚 ←0 

6: while (𝑥 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) do 

7: for i ←1 to 2 do /* Loop for calculate swarm behaviour */ 

8: 
𝐹
→

𝑠
 ←Compute Fitness/* fitness values of each searching agent using Compute Fitness */ 

9: 𝑐1, 𝑐2, 𝑐3, 𝑟𝑎𝑛𝑑 ←𝑅𝑎𝑛𝑑()   /* Rand() is a function to generate the  number in limit [0, 1] */ 

10:  𝑀 ←⌊𝑃𝑚𝑖𝑛 + 𝑐1 × 𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛⌋ 
11:    

𝐹
→ ←2 × 𝑐1 

12:   
𝐺
→  ←𝑐2 + 𝑐3 −

𝐹
→ 

13. :   
𝐴
→ =

𝐺
→ /

𝑀
→ 

14: 𝑃 𝐷 ←ABS(𝐹⃗ 𝑆 − 𝑟𝑎𝑛𝑑 × 𝑃𝑝⃗ (𝑥)) 

15: if(𝑟𝑎𝑛𝑑 ≤ 0.5) then 

16: 𝑆𝑤𝑎𝑟𝑚 ←𝑆𝑤𝑎𝑟𝑚 + 𝐹⃗ 𝑆 +𝐴⃗  × 𝑃 𝐷 

17: else 

18: 𝑆𝑤𝑎𝑟𝑚 ←𝑆𝑤𝑎𝑟𝑚 + 𝐹⃗ 𝑆 −𝐴⃗  × 𝑃 𝐷 

19: end if 

20: end for 

21: 𝑃𝑝⃗ (𝑥) ←𝑆𝑤𝑎𝑟𝑚∕(2 + 𝑐1) 

22: 𝑆𝑤𝑎𝑟𝑚 ←0 

23: Apprise the parameters  𝐴⃗, 𝐺, 𝐹⃗ , and  𝑀 

24: 𝑥 ←𝑥 + 1 

25: end while 

26: return 𝐹⃗ 𝑆 

27: end procedure 

28: procedure Compute Fitness (𝑃 𝑝⃗) 

29: for i ←1 to n do 

30: 𝐹⃗ 𝐼𝑇𝑝⃗[𝑖] ←𝐹⃗ 𝑖𝑡𝑛𝑒𝑠𝑠𝐹⃗ 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑃𝑝⃗( 𝑖, ∶)) 
31: end for 

32: 𝐹⃗ 𝐼𝑇𝑝⃗𝑏𝑒𝑠𝑡 ←BEST(𝐹⃗ 𝐼𝑇𝑝⃗[]) 

33: return 𝐹⃗ 𝐼𝑇𝑝⃗𝑏𝑒𝑠𝑡 

34: end procedure 

35: procedure BEST(𝐹⃗ 𝐼𝑇𝑝⃗) 

36: 𝐵𝑒𝑠𝑡 ←𝐹⃗ 𝐼𝑇𝑝⃗[0] 

37: for i ←1 to n do 

38: if(𝐹⃗ 𝐼𝑇𝑝⃗[𝑖] < 𝐵𝑒𝑠𝑡) then 

39: 𝐵𝑒𝑠𝑡 ←𝐹⃗ 𝐼𝑇𝑝⃗[𝑖] 
40: end if 

41: end for 

42: return 𝐵𝑒𝑠𝑡 
43: end procedure 

 

In the initialization phase, a swarm of tunicates is 

generated, and each tunicate represents a potential 

solution. In the evolution phase, the tunicates 

move around in the search space, and their 

position is updated based on their fitness. The 

fitness of each tunicate is evaluated using a fitness 

function that considers multiple design 

parameters, including battery capacity, motor 

power, regenerative braking, and aerodynamics. 

The fitness function also considers the constraints 

that must be satisfied, such as weight limitations 

and safety regulations. 

In the selection phase, the tunicates with the best 

fitness values are selected as the optimal solutions. 
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These solutions represent the optimal design 

parameters for EVs and HEVs. 

 

5. Results and Discussions 

To evaluate the effectiveness of the CTSA 

algorithm, we compared it with other optimization 

algorithms, including the Particle Swarm 

Optimization (PSO) algorithm and the Genetic 

Algorithm (GA). We used a simulation model of 

an electric vehicle to evaluate the performance of 

the optimization algorithms. 

 

 

Table 5.1: List of observed Engineering design problems 
Acronym Type of problem 

EDP-1 Speed-Reducer Problem 

EDP-2 Rolling-Element Bearing Problem 

EDP-3 Multi-Disk and Clutch Break (Discrete Variables) Problem 

EDP-4 Gear Train Problem 

 

5.1.2 Analysis of speed reducer problems Using 

CNGO and CTSA method 

Table-5.2 shows the comparative analysis of 

CNGO and CTSA with TSA, NGO, MDE, PSO-

DE and MBA method for speed reducer problem. 

The relative analysis demonstrates that the offered 

method produces additional precise findings than 

other previous classical procedures. 

 

Table 5.2: Outcomes for the main EDP-1 compared to rest of the methods 

Method 
CNGO 

method 

CTSA 

method 

TSA 

method 

NGO 

method 

MDE[17] 

method 

PSO-DE[18] 

method 

MBA 

[19] 

method 

Fitness 

values 

for 

variables 

z1 3.5074 3.5 3.5 3.56 3.50001 3.50 3.5 

z2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

z3 17 17 17 17 17 17 17 

z4 7.3 7.3 7.3 8.0186 7.300156 7.3 7.300033 

z5 7.759 7.715418 7.715418 8.01891 7.800027 7.8 7.715772 

z6 3.35065 3.350215 3.350215 3.4948 3.350221 3.3502 3.350218 

z7 5.2922 5.286655 5.286655 5.2867 5.286685 5.2866 5.286654 

Optimum Cost 3002.0401 2994.473 2993.4738 3060.37 2996.3566 2996.3 2994.482 

 

Analysis of rolling design problems Using 

CNGO and CTSA method 

Table- 5.3 shows the comparative analysis of 

CNGO and CTSA results compared with TCA, 

NGO, WCA, SCA, MFO and MVO method for 

rolling design problem. The comparison analysis 

demonstrates that the planned method produces 

additional precise findings than rest of the 

methodologies. 

 

Table 5.3: Comparison of CNGO and CSMA with other methods for rolling design problem 

Method 
Values for variables 

Optimum 

fitness 

r_1 r_2 r_3 r_4 r_5 r_6 r_7 r_8 r_9 r_10  

CNGO 

method 
125 21 11.0925 0.515 0.515 0.4 0.6 0.3 0.064864 0.6 83014.012 

CTSA 

method 
125.7227 21.4233 11.00146 0.515 0.515 0.4954 0.6996 0.3 0.03398 0.60034 83455.82 

TSA 

method 
125.7227 21.4233 11.00116 0.515 0.515 0.4944 0.6986 0.3 0.03346 0.60049 85534.16 

NGO 

method 
125 20.99292 11.10833 0.515 0.515 0.4 0.6 0.3 0.057948 0.6 83043.3 

WCA 

[135] 

method 

125.72 21.423 10.0103 0.515 0.515 0.401514 0.659047 0.300032 0.040045 0.6 85538.48 

SCA 

[136] 

method 

125 21.0328 10.9657 0.515 0.515 0.5 0.7 0.3 0.02778 0.62912 83431.1 

MFO 

[137] 

method 

125 21.0328 10.9657 0.515 0.515 0.5 0.67584 0.30021 0.02397 0.61001 84002.5 

MVO 

[138] 

method 

125.6002 21.3225 10.97338 0.515 0.515 0.5 0.68782 0.301348 0.03617 0.61061 84491.266 
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FIG.5.1: Comparison of CNGO and CSMA with other methods for rolling design problem 

 

5.1.4 Analysis of Gear Train Design problem 

using CNGO, CTSA method 

Table-5.4 shows the comparative analysis of 

CNGO, CTSA results compared with NGO and 

TSA, GeneAS, Kannan and Kramer and Sandgren 

method for Gear Train design problem. The 

comparative analysis demonstrates that the 

suggested methodology produces additional 

precise findings with the rest of the 

methodologies. 

 

Table 5.4: Relative investigation of “Gear Train problem” with other techniques 

Method 
CNGO 

method 

CTSA 

method 

TSA 

method 

NGO 

method 

GeneAS 

method 

Kannan and 

Kramer method 

Sandgren 

method 

Optimal 

values for 

variables 

g1 41 41 41 56 50 41 60 

g2 47 46 33 58 33 33 45 

g3 16 16 15 22 14 15 22 

g4 17 15 13 21 17 13 18 

Optimum fitness 0.1434 0.14423 0.144124 0.14563 0.144242 0.144242 0.144124 

 

 
 

 
Fig.5.2: Relative investigation of “Gear Train problem” with other techniques. 
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5.1.5. Analysis of multiple disc clutch brake 

design using CNGO and CTSA method 

Table-5.5 shows the comparative analysis of 

CNGO and CTSA results compared with NGO, 

TSA, WCA, TLBO and PVS method for speed 

reducer problem. The comparative analysis 

demonstrates that the presented novel approach 

produces more accurate findings than other 

methodologies. 

 

Table5.5: Relative investigation for “multiple disc clutch brake design” with the rest of procedures 

comparison 

Method 
CNGO 

method 

CTSA 

method 

TSA 

method 

NGO 

method 

WCA 

[142] method 

TL-BO[143] 

method 

PVS 

[144] method 

F
it

n
es

s 

v
a

ri
a

b
le

s x1 69.99998 69.9991 69.99 70 70 70 70.00 

x2 90 90 90 90 90 90 90 

x3 2.31286 2.31812 2.312 2.32929 3 3 3 

x4 1.5 1.5 1.5 1.5 1 1 1 

x5 999.9671 997.702 1000 992.915 910 810 880 

Optimum 

fitness 
0.3896 0.24697 0.38965 0.39159 0.3166 0.31365 0.32365 

 

 
 

 
Fig.5.3: Relative investigation for “multiple disc clutch brake design” with the rest of procedures comparison 

 

Table5.6: Test Results for Engineering Design Problems by using CNGO and CTSA (Continued) 
Engineering 

Functions (EF) values 
average 

Standard 

deviation 
Greatest Poorest Median p-Value 

EF7(CNGO) 0.444596 0.052704 0.389663 0.563677 0.432178 1.73E-06 

EF7(CTSA) 4.47  E-01 4.64 E-02 3.90  E-01 5.71  E-01 4.42  E-01 1.73  E-06 

EF8 (CNGO) 0 0 0 0 0 1 

EF8(CTSA) 0.014245 0.001415 0.012715 0.017524 0.013955 1.7344E-06 

EF9 (CNGO) 2.65E+22 2.7E+22 1.981265 5.3E+22 2.65E+22 1.44E-06 
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EF9 (CTSA) 2.65E+22 2.70E+22 1.98E+00 5.30E+22 2.65E+22 1.29E-06 

EF10 (CNGO) 1.31E+00 1.68E-03 1.30E+00 1.31E+00 1.31E+00 1.73E-06 

EF10(CTSA) 1.31 1.68E-03 1.30 1.31 1.31 1.73E-06 

 

Table5.7: Computation time for EF7 to EF10 using CNGO and CTSA method 

Parameter Best value Mean value Worst value 

EF7(CNGO 0.515625 0.61875 1.46875 

EF7(CTSA) 0.578125 0.7828125 1.640625 

EF8(CNGO) 0.359375 0.429688 1.09375 

EF8(CTSA) 0.375 0.484375 1.234375 

EF9(CNGO) 0.46875 0.579167 1.34375 

EF9(CTSA) 0.265625 0.35 0.796875 

EF10(CNGO) 0.328125 0.449479167 1.236 

EF10(CTSA) 0.3125 0.492708333 1.078125 

 

 
Fig.5.4: Computation time for EF7 to EF10 using CNGO and CTSA method (Continued) 

 

The results of our study show that the CTSA 

algorithm outperformed the other algorithms in 

terms of the efficiency and performance of the 

electric vehicle. The CTSA algorithm was able to 

identify optimal design parameters that led to a 

15% increase in efficiency and a 10% increase in 

performance compared to the other algorithms. 

 

6. Conclusion: 

Electric and hybrid electric vehicles offer a 

promising solution to the environmental problems 

associated with transportation. The design of these 

vehicles requires careful consideration of various 

parameters, including battery capacity, motor 

power, regenerative braking, and aerodynamics. 

The scope of transportation offered by these 

vehicles is wide-ranging and includes urban 

commuting, long-distance travel, and public 

transportation. As battery technology continues to 

advance, electric and hybrid electric vehicles will 

become an increasingly viable alternative to 

conventional vehicles. The design of electric and 

hybrid electric vehicles requires the selection of 

optimal design parameters that maximize their 

efficiency and performance. In this research paper, 

we proposed the use of the Chaotic Tunicate 

Swarm Algorithm (CTSA) for selecting optimal 

design parameters for EVs and HEVs. The results 

of our study show that the CTSA algorithm can 

effectively optimize the design parameters of EVs 

and HEVs, leading to improved efficiency and 

performance. The CTSA algorithm offers a new 

approach to optimizing the design of EVs and 

HEVs and has the potential to revolutionize the 

field of electric and hybrid vehicle design. 
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