

ADVANCES IN HYBRID ENERGY SYSTEMS: MODERN DEVELOPMENT TOWARD GREEN ENERGY INITIATIVES

Gayatri Vaidya¹, Vahid M.Jamadar², Raj Kumar^{3*}, Shailandra Kumar Prasad⁴

Article History: Received: 02.10.2022	Revised: 23.12.2022	Accepted: 17.01.2023

Abstract

A hybrid energy system in India with a focus on green initiatives has been discussed in this article. The aim of the study is to examine the advancement of hybrid energy systems in the development towards the methods green technology. The rural locations can be connected by national grid extension although the current electricity access is below the demand with an average growth of GDP. Moreover, different modes of energy production in India are going on with fossil fuel, biomass, and various renewable energy sources are discussed. It is seen that Maharashtra is of particular importance in producing energy from industrial waste. Lastly, the importance of biogas as an alternative to stubble burning in India where tonnes of the residue of crops are in use is conferred.

Keywords: Hybrid energy system, green technology, importance of biogas, renewable resources, rural locations

¹Assistant professor, Department of Studies in Food Technology, Davangere University, Davangere , Karnataka, India, 577007, Email: <u>gay3_pk@yahoo.co.in</u>

²Assistant Professor in Department of Mechanical Engineering, Dr.Daulatrao Aher College of Engineering, Karad Dist.Satara-415124, Maharashtra, India

³Assistant professor, Department of Mechanical Engineering, Swami Keshvanand Institute of Technology, Management and Gramothan, Jaipur, Rajasthan, India, Email: <u>raj.kumar@skit.ac.in</u>

⁴Assistant Professor, Department of Mechanical Engineering, R V S College of Engineering and Technology, Edalbera, Bhilai Pahari, NH -33, Jamshedpur. Pin : 831012, Jharkhand, India. Email : <u>shailandrap39@rvscollege.ac.in</u>

*Corresponding author: Raj Kumar, Assistant professor, Department of Mechanical Engineering, Swami Keshvanand Institute of Technology, Management and Gramothan, Jaipur, Rajasthan, India, Email: <u>raj.kumar@skit.ac.in</u>

DOI: 10.48047/ecb/2023.12.2.015

1. Introduction of the topic

Access to energy can be considered a basic precondition to improving the lives of rural people in the form of education, healthcare, and economic growth. Presently more than 70% of Indian people are deprived of electricity where and access to **RES** or the renewable energy system has the potential to meet the demand (Electricalindia, 2023). It is noteworthy that the clean energy transition of India is underway which can benefit the world. As per the increase in rising income levels with urbanisation, the electricity demand has increased in the industrial and residential sectors as well where green electric and fuel vehicles come in handy.

2. Background

There are a few challenges regarding renewable energy sources in India as the energy is produced only when the wind is blowing or the sun is shining. The output is therefore limited to specific times in the day resulting in lower utilisation of electricity. As imprinted by Kiesecker et al. (2019), issues can be created in matching the power demand with rising transmission costs where gas or hydro-based power is essential. The rural locations can be connected by *national grid extension* although the current electricity access is below the demand with an average growth of GDP (Mohideen et al. 2021). Despite having a hydroelectric potential, the country is lagging behind owing to river weather distribution conflicts.

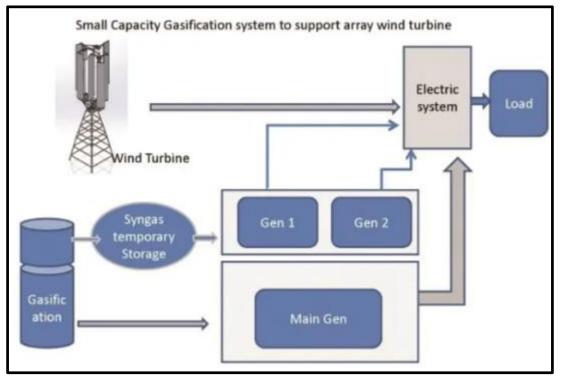


Figure 1: Hybrid hydro-wind system: Source: Kiesecker et al. 2019

As shown in figure 1, current approaches are taken with the utilisation of *wind-hybrid energy* in India. This system is able to heighten reliability and is beer than the standalone systems of wind energy. Hybrid renewable energy systems are the cutting-edge solution to mitigate many education, water supply, and electricity problems across India.

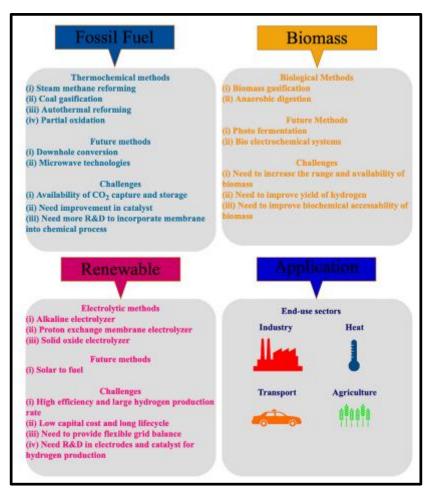


Figure 2: Hydrogen production pathways in India: Source: Mohideen et al. 2021

Different modes of energy production in India are going on with fossil fuel, biomass, and various renewable energy sources. As per the comment of Meena et al. (2019), *HRE* or hybrid renewable energy sources are best suited to the geographical location and pattern in many popular regions. Hence, a completely renewable *HPP* or Hybrid power Plant is required.

Technical process	Current status	Feedstock	Primary energy source	Emission of CO ₂	Efficiency (%)	Remarks
Steam methane reforming	Mature& commercial	Natural gas	Standard fossil fuel	Without CCS- highwith CCS-low	70-85	Works at low temperature Doesn't require O ₂ Excellent H ₂ /O ₂ ratio for H ₂ production
Coal gasification	Mature & commercial	Coal	Standard fossil fuel	Without CCS- Highwith CCS-low	60	 Depends upon gasifier configuration Low H₂/CO ratio
Partial oxidation	Mature & commercial	Natural gas	Standard fossil fuel	High	60-75	 Required no catalyst Low methane slip Works at high temperature Low H₂/CO ratio Complex operational process
Autothermal reforming	Mature & near- term	Natural gas	Standard fossil fuel	High	60-75	 Low operating temperature then par- tial oxidation. Low methane slip required air/O₂.
Biomass gasification	Mature & commercial	Woody biomass	Internally generated steam	Neutral	35–50	 Low cost feedstock Required O₂ and catalyst Works at high temperature Trace of tar and dust formation Need R&D
Electrolysis	Mature & commercial	Water	Solar, wind	No emission	40-60	 Abundant feedstock O₂ as byproduct High cost and low overall efficiency

Table 1: Various well-established Hydrogen production pathways: Source: Mohideen et al. 2021

A comparative analysis of H2 production pathways is depicted in table 1 with analysation of *CCS* or carbon capture storage technology. In this case, the cost of H2 can range from 1.5-3/kg whereas Carbon dioxide accounts for 50/tCO2e. The versatile energy carrier, Hydrogen can easily be produced in different regions of Europe as well (Burke et al. 2019). In Table 1, it is crystal-clear that sans Biomass gasification, all the processes are highly efficient.

Table 2: Solar and GW (Gigawatt) goals in India: Source: Kiesecker et al. 2019

	20	22 Vision Targets (GW	V)	2013	7 Installed Capacity (C	SW)
Name	Solar Rooftop	Solar Ground-Mounted	Wind	Solar Rooftop	Solar Ground-Mounted	Wind
Lakshadweep	0.010				0.001	
Madhya Pradesh	2.200	3.475	6.200	0.017	1.193	2.498
Maharashtra	4.700	7.226	7.600	0.152	0.620	4.778
Manipur	0.050	0.055		0.001		
Meghalaya	0.050	0.111		< 0.001		
Mizoram	0.050	0.022		< 0.001		
Nagaland	0.050	0.011		0.001		
Odisha	1.000	1.377		0.003	0.076	
Puducherry	0.100	0.146		< 0.001	< 0.001	
Punjab	2.000	2.772		0.078	0.836	
Rajasthan	2.300	3.462	8.600	0.053	2.259	4.282
Sikkim	0.050			< 0.001		
Tamil Nadu	3.500	5.384	11.900	0.110	1.712	7.970
Telangana	2.000		2.000	0.027	2.963	0.101
Tripura	0.050	0.055		< 0.001	0.005	
Uttar Pradesh	4.300	6.397		0.056	0.495	
Uttarakhand	0.350	0.550		0.018	0.231	
West Bengal	2.100	3.236		0.023	0.017	

	20	22 Vision Targets (GW	n	2013	7 Installed Capacity (G	W)
Name	Solar Rooftop	Solar Ground-Mounted	Wind	Solar Rooftop	Solar Ground-Mounted	Wind
Andaman & Nicobar	0.020	0.007		0.001	0.011	
Andhra Pradesh	2.000	7.834	8.100	0.022	2.143	3.835
Arunachal Pradesh	0.050			0.004	< 0.001	
Assam	0.250	0.413		0.002	0.010	
Bihar	1.000	1.493		0.004	0.138	
Chandigarh	0.100	0.053		0.014	0.005	
Chhattisgarh	0.700	1.083		0.013	0.166	
Dadar & Nagar Haveli	0.200	0.249		0.003		
Daman & Diu	0.100	0.099		< 0.001	0.010	
Delhi	1.100	1.662		0.067	0.003	
Goa	0.150	0.208		0.001		
Gujarat	3.200	4.820	8.800	0.092	1.262	5.537
Haryana	1.600	2.542		0.086	0.130	
Himachal Pradesh	0.320	0.456		0.001		
Jammu & Kashmir	0.450	0.705		0.001	0.001	
Jharkhand	0.800	1.195		0.007	0.017	
Karnataka	2.300	3.397	6.200	0.085	1.717	3.793
Kerala	0.800	1.070		0.038	0.050	0.052

In an aim to reduce conflicts, with degradation and loss of human lands, the projection of India based on the 2022 vision of GoIs in utilising wind and solar energy is depicted in table 2. A detailed forecast for a temporal and spatial roadmap is highly dependent on the GW (Bhuvaneshwari et al. 2019). Table 1 summarised the technical potential for ground-mounted solar for energy generation which is sector specific. Lastly, the proliferation of various rooftop solar-energy is shown in the table which is slightly slowed down in India where the development involves ground-mounted solar energy.

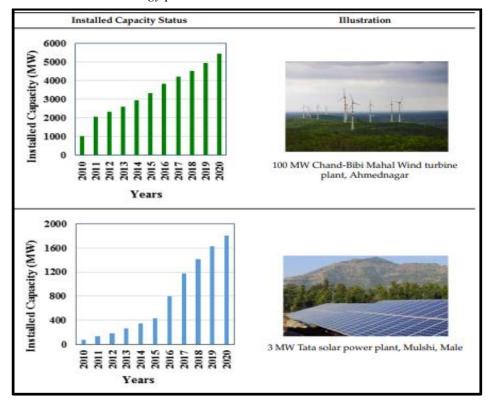
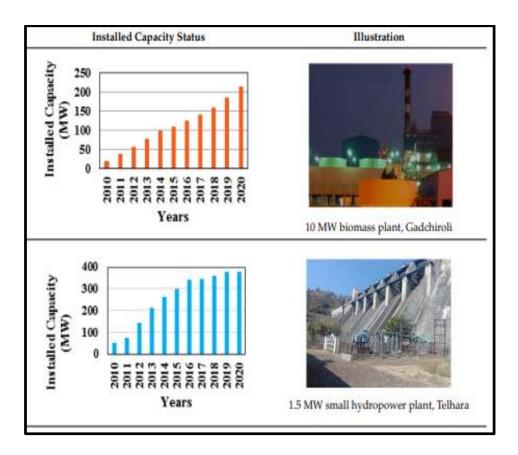



Table 3: Renewable energy production in Maharashtra: Source: Kumar et al. 2020

Maharashtra is of particular importance in producing energy from industrial waste. As per the data

obtained from Tata Energy Research Institute, Maharashtra has the potential of energy production of 350 MW from wastes as shown in table 3. Under the 2012 prospective plan of MEDA, 200 MW remains fixed as the power generation to generate renewable energy (Karuppiah et al. 2020). In the production of wind energy, solar energy, and biomass energy, Maharashtra has excelled in many cases in the last decade (Kumar et al. 2020).

3. Research aim

The aim of the research is to analyse the advancement in hybrid energy systems in India along with the development of green energy initiatives

4. Research objectives

The key objectives of the article are outlined below:

• To assess the importance of green energy initiatives and hybrid and renewable energy systems in India.

- To identify various challenges faced by the states in generating renewable energy sources.
- To provide feasible recommendations for the generation of renewable energy to eradicate the existing issues.
- To examine the different tactics used for the improvement of the usage of renewable energy in the society

5. Research questions

- What is the importance of green energy initiatives and hybrid and renewable energy systems in India?
- What kind of challenges is faced by the states in generating renewable energy sources?
- What types of recommendations can be made for the generation of renewable energy to eradicate the existing issues?
- What are the different tactics used for the improvement of the usage of renewable energy in the society?

6. Scope of the research

The research is extremely valuable in delving into the key areas of hybris energy systems in India. The research paper is advantageous in assessing the key areas where the states are supposed to take initiatives in rural development as well as green energy production system. As claimed by Ansari (2022), Maharashtra has been doing a great job of utilising waste to generate energy. Moreover, it is important to note that Andhra Pradesh and West Bengal are well behind in grid-scale storage systems of batteries to produce solar energy.

7. Methodology

methodology The is considered а theoretical and systematic discussion of all the methods, which are applied by the researcher. As stated by Javed et al. (2019), the effective utilisation of several appropriate tools is beneficial to assess the methods. All the authentic journals have been taken from **ProQuest** with the maintenance of authenticity. The research methodology is an efficient process of accumulating, analysing, as well as utilisation the data in order to achieve profound conclusions (Newman & Gough, 2020).

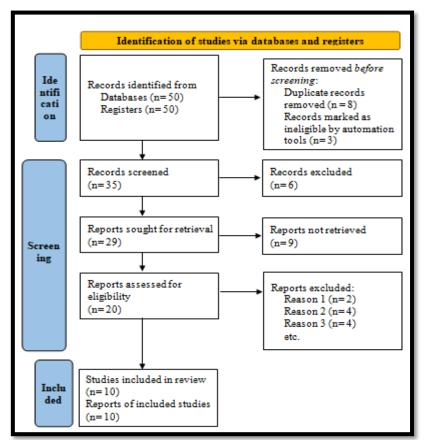


Figure 3: PRISMA diagram: Source: Newman & Gough, 2020

The Prisma diagram, depicted above is of particular interest as it shows how the entire process has been carried out in a suitable fashion. Here out of 50 journals, only 10 journals have been chosen to frame the systematic review table. The 40 journals were brushed aside as there was duplicate information plus they were deprived of authenticity. The systematic review table is of immense significance as various themes would cater to the intelligibility of the research topic in a significant way (Alzahrani, 2020).

8. Findings and analysis Quality review of chosen articles Table 3: CASP table

Ser ial no.	Title	Author	Ye ar	Citati on in the name of the autho r	Clea rly focus ed resea rch quest ions	Clear ly menti oned aim	Meeti ng of the resea rch objec tives	Appropri ateness of the participa nt recruitm ent strategy to meet the aim	Rigo rous data anal ysis	Applic ation of the results	Conside ration of ethical issues	Colle ction of data to meet the resea rch issues	Usa ge of rele vant stud ies
1	Journal of Energy Chemist ry	Mohame dazeem M. Mohidee n a , Seeram Ramakris hna b , Sivapras ath Prabu c , Yong Liu	20 20	Mohi deen et al. 2020	~	×	~	*	✓	*	~	~	✓
2	Biogas as an alternati ve to stubble burning in India	Preseela Satpathy 1 & Chinmay Pradhan 1	20 20	Satpat hy and Pradh an (2023)	~	~	~	X	V	✓	~	~	Ý
3	Hybrid Renewa ble Energy Microgr id for a Residen tial Commu nity: A Techno- Econom ic and Environ mental Perspect ive in the Context of the SDG7	Ansari, M. S.	20 22	Ansar i (2022)	V		Ý	~	V	~	X	Ý	Ý

									1		~~	
4	A Holistic Review of the Present and Future Drivers of the Renewa ble Energy Mix in Maharas htra, State of India	Rajvikra m Madurai Elavaras an , Leoponra j Selvama nohar , Kannada san Raju , Raghave ndra Rajan Vijayara ghavan , Ramkum ar Subburaj , Moham mad Nurunna bi , Irfan Ahmad Khan , Syed Afridhis , Akshaya Harihara n , Rishi Pugazhe ndhi , Umashan kar Subzama niam and Narottam Das	20 19	Elava rasan et al. (2019)				X			X	
5	Cost optimiz ation of a stand- alone hybrid energy system with fuel cell and PV	Shakti Singh , Prachi Chauhan , Mohd Asim Aftab , Ikbal Ali and S. M. Suhail Hussain and Taha Selim Ustun	20 20	Ansar i (2020)	✓	Ý	×	~	×	~	×	Ý

6	Renewa ble Energy and Land Use in India: A Vision to Facilitat e Sustaina ble Develop ment	Joseph Kiesecke r, Sharon Baruch- Mordo, Mike Heiner , Dhaval Negandh i , James Oakleaf , Christina Kennedy and Pareexit Chauhan	20 19	Kiese cker et al. (2019)	×	*	X		~	~	~	×	~
7	Optimal Plannin g of Hybrid Energy Convers ion Systems for Annual Energy Cost Minimiz ation in Indian Residen tial Buildin gs	Nand K. Meenaa, Abhishek Kumarb, Arvind R. Singhc , Anil Swarnkar d , Nikhil Guptad , K. R. Niazid , Praveen Kumare , R. C. Bansal	20 19	Meen a et al. (2019)	✓	×	X	X		~	X	Ý	Ý
8	A State- of-the- Art Review on the Drive of Renewa bles in Gujarat, State of India: Present Situatio n, Barriers and Future Initiativ es	Elavaras an, R. M., Shafiulla h, G. M., Manoj Kumar, N., & Padmana ban, S.	20 19	Elava rasan et al. (2019)	V	V	✓		V	~	 ✓ 	X	X

9	Techno- economi c analysis of a hybrid renewab le energy system for an energy poor rural commu nity	Krishan, O., & Suhag, S.	20 19	Krish an & Suhag (2019)	X	X	Ý	~	V	V	¥	X	X
10	Augmen ted Reality: A Systema tic Review of Its Benefits and Challen ges in E- learning Context s	Alzahran i, N. M.	20 20	Alzah rani (2020)	~	~	~	*	~	~	~	X	X

Status of BIPV and BAPV systems in India considering hybrid energy systems

The BIPV or Building Integrated PV and BAPV or Building attached PV is the going concern across India. As viewed by Gyamfi et al. (2021), climate change issues and the share of electricity generation have been increasing of late. For this reason, bearing in mind the global renewable energy scenario, India is planning to harvest renewable energy and maximise it whereas Gujarat is proactive (Gyamfi et al. 2021).

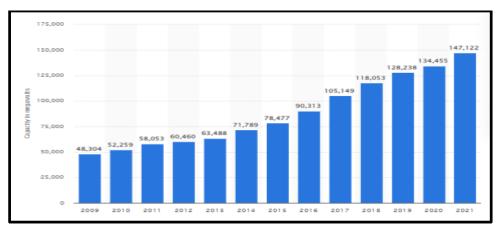


Figure 4: Renewable energy capacity in India: Source: Statista, 2023

It is clear from figure 4 that the energy capacity in the South Asian countries is more than 147 GW in 2021 which is a notch higher than 134 GW in 2020. This has been beneficial for India to become the PV or the photovoltaic country with meeting the IEA targets. Silicon solar cells, *CDTE* solar cells, and organic solar cells are of immense use in recent days which are low-cost materials with high advantages.

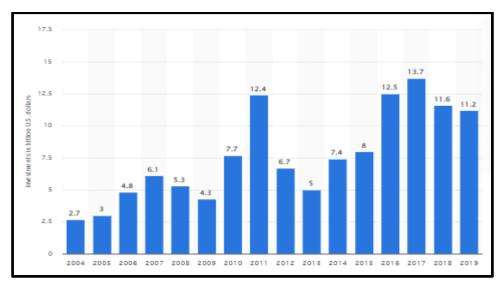


Figure 5: Investments in renewable energy in India: Source: Statista, 2023

Figure 5 describes that 11.2 billion USD has been done as expenditure in India to produce renewable energy which is commendable. Thus investment is helpful in making several BIPV windows, and building blocks

Techno-economic analysis of Biogas in India as a green energy initiative

Biogas is an alternative to stubble burning in India where tonnes of the residue of crop are in use. For example, paddy straw burning results in the loss of 4 million organic carbon, 20,000 tonnes of P, and 59,000 tons of N2 (Satpathy & Pradhan, 2023). Hence, to reduce the effects of greenhouse gases, VOC or volatile organic compounds, and OM or particulate matter, biogas is highly essential.



Figure 6: Co-digestion of crops in biogas generation: Source: Satpathy & Pradhan, 2023

The production of biogas is making a significant aspect across India. In this regard, the *waste-to-energy mission* is trending across various rural regions of India. 9. Discussion and conclusion

Discussion

A cumulative electricity generation areawise has been mentioned in this article which is fruitful. Hydrogen production pathways and hydro-wind technology are advantageous in the Indian context with the development of hybris systems (Krishan & Suhag, 2019). Besides, an analysis of excluded water bodies and terrestrial lands is of immense importance for green energy production. The LULC or the land use land cover system of India is highly relevant where ground-mounted solar and wind technology development is discussed (Elavarasan et al. 2019). The consumption and production of electricity per year are significant to assess the economic growth of the country where India is supposed to play a pivotal role.

The energy which is produced from PV panels is more than 90% of the total energy production whereas rest 9% is produced by fuel cells (Diemuodeke et al. 2019). Of late, a major part of the population of India is residing in rural areas where electricity is highly required for being the second most populous country. It is seen that almost 70% of the 1.4 billion inhabitants of India in rural areas are deprived of reliable and affordable access to electricity (Nijhawan et al. 2021). The southern sector has been doing explicitly well in generating renewable energy followed by the western regions contributing to **88,945 MU** electricity production in 2019. [*Refer to Appendix 1*]

Conclusion

For effective maintenance of green energy and renewable energy production, investment is the need of the hour. Additionally, there must be a special focus on electricity generation in rural areas so that the have-not families can make the full utilisation of the same. In addition, the Co-digestion of crops in biogas production is highly advantageous in terms of pollution control. Karnataka and Gujarat are leading in the production of *clean energy* whereas Bihar and Odisha are lagging behind. In industrial, and residential actors, the electricity demand is soaring day by day. [*Refer* to appendix 2]

10. Limitation

One of the principal limitations of the study is this article has not been successful in suggesting the most suited measure of energy production. Moreover, the article could recommend a few effective technical tools which are required for meeting financial operations. Along with these, governing and monitoring of technologies has not been mentioned which is an important aspect of the generation of energy (Meena et al. 2019). In addition, proper sources of green energy production to get rid of the perils of pollution are missing in this article too. Lastly, only a few states are mentioned in the entire article with their initiatives and a few more pieces of information could be beneficial to analyse the importance of renewable energy (Reddy et al. 2020).

11. Future scope

A huge scope of study relies on the fact of the utilisation of wastes in generating renewable energy. On the other hand, government investment has been discussed in a fruitful manner that affects electricity production (Madurai Elavarasan et al. 2020). In addition, the importance of biogas augurs well for the future development of energy and electricity production across India. The hydroproduction pathways and the hydro-wind system can go far in the path of achievement in India.

References

- Alzahrani, N. M. (2020). Augmented reality: A systematic review of its benefits and challenges in e-learning contexts. Applied Sciences, 10(16), 5660. doi:10.3390/app10165660
- Ansari, M. S. (2022). Feasibility analysis of standalone hybrid renewable energy system for Kiltan Island in India. In Renewable Energy Towards Smart Grid: Select Proceedings of SGESC 2021 (pp. 79-93). Singapore: Springer Nature Singapore. , https://doi.org/10.1007/978-981-16-7472-3_7
- Bhuvaneshwari, S., Hettiarachchi, H., & Meegoda, J. N. (2019). Crop residue burning in India: policy challenges and potential solutions. International journal of environmental research and public health, 16(5), 832. doi:10.3390/ijerph16050832
- Burke, P. J., Widnyana, J., Anjum, Z., Aisbett,
 E., Resosudarmo, B., & Baldwin, K. G. (2019). Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia. *Energy Policy*, *132*, 1216-1228. Retrieved from: https://openresearch-repository.anu.edu.au/bitstream/1885/164 641/3/Combined%20GCP01-19.pdf on 1st March, 2023.
- Diemuodeke, E. O., Addo, A., Oko, C. O. C., Mulugetta, Y., & Ojapah, M. M. (2019).
 Optimal mapping of hybrid renewable energy systems for locations using multicriteria decision-making algorithm. Renewable Energy, 134, 461-477. 10.1016/j.renene.2018.11.055
- Elavarasan, R. M., Shafiullah, G. M., Manoj Kumar, N., & Padmanaban, S. (2019). A state-of-the-art review on the drive of renewables in Gujarat, state of India: present situation, barriers and future initiatives. Energies, 13(1), 40. doi:10.3390/en13010040
- Electricalindia.in, 2023. *Hybrid Renewable Energy Technologies for Rural India.* Electricalindia.in. Retrieved from: https://www.electricalindia.in/hybridrenewable-energy-technologies-for-ruralindia/ on 1st March, 2023.
- Gyamfi, B. A., Ozturk, I., Bein, M. A., & Bekun, F. V. (2021). An investigation into

the anthropogenic effect of biomass energy utilization and economic sustainability on environmental degradation in E7 economies. Biofuels, Bioproducts and Biorefining, 15(3), 840-851. doi:10.3390/su12166596

- Gyamfi, B. A., Ozturk, I., Bein, M. A., & Bekun, F. V. (2021). An investigation into the anthropogenic effect of biomass energy utilization and economic sustainability on environmental degradation in E7 economies. Biofuels, Bioproducts and Biorefining, 15(3), 840-851. DOI: 10.1002/bbb.2206; Biofuels. Bioprod. Bioref. (2021)
- Javed, K., Ashfaq, H., Singh, R., Hussain, S. S., & Ustun, T. S. (2019). Design and performance analysis of a stand-alone PV system with hybrid energy storage for rural India. Electronics, 8(9), 952. doi:10.3390/electronics8090952
- Karuppiah, K., Sankaranarayanan, B., Ali, S. M., Chowdhury, P., & Paul, S. K. (2020). An integrated approach to modeling the barriers in implementing green manufacturing practices in SMEs. Journal of Cleaner Production, 265, 121737. Retrieved from: https://opus.lib.uts.edu.au/bitstream/1045 3/140420/2/Binder1.pdf on 1st March, 2023.
- Kiesecker, J., Baruch-Mordo, S., Heiner, M., Negandhi, D., Oakleaf, J., Kennedy, C., & Chauhan, P. (2019). Renewable energy and land use in India: a vision to facilitate sustainable development. Sustainability, 12(1), 281. doi:10.3390/su12010281
- Krishan, O., & Suhag, S. (2019). Technoeconomic analysis of a hybrid renewable energy system for an energy poor rural community. Journal of Energy Storage, 23, 305-319. https://doi.org/10.1016/j.est.2019.04.002
- Kumar, N. M., Chopra, S. S., Chand, A. A., Elavarasan, R. M., & Shafiullah, G. M. (2020). Hybrid renewable energy microgrid for a residential community: A techno-economic and environmental perspective in the context of the SDG7. Sustainability, 12(10), 3944. doi:10.3390/su12103944

- Madurai Elavarasan, R., Selvamanohar, L., Raju, K., Rajan Vijayaraghavan, R., Subburaj, R., Nurunnabi, M., ... & Das, N. (2020). A holistic review of the present and future drivers of the renewable energy mix in Maharashtra, state of India. Sustainability, 12(16), 6596. doi:10.3390/su12166596
- Meena, N. K., Kumar, A., Singh, A. R., Swarnkar, A., Gupta, N., Niazi, K. R., ... & Bansal, R. C. (2019). Optimal planning of hybrid energy conversion systems for annual energy cost minimization in Indian residential buildings. Energy Procedia, 158, 2979-2985. Retrieved from: https://www.sciencedirect.com/science/art icle/pii/S1876610219310173/pdf?md5=bf eed4259de23db1b52659d823dbff23&pid =1-s2.0-S1876610219310173-main.pdf on 1st March, 2023.
- Mohideen, M. M., Ramakrishna, S., Prabu, S., & Liu, Y. (2021). Advancing green energy solution with the impetus of COVID-19 pandemic. Journal of Energy Chemistry, 59, 688-705. https://doi.org/10.1016/j.jechem.2020.12. 005
- Nijhawan, P., Singla, M. K., & Gupta, J. (2021). A proposed hybrid model for electric power generation: a case study of Rajasthan, India. IETE Journal of Research, 1-11. DOI: 10.1080/03772063.2021.1878940
- Reddy, P., Gupta, M. S., Nundy, S., Karthick, A., & Ghosh, A. (2020). Status of BIPV

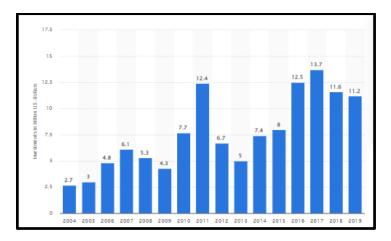
and BAPV system for less energy-hungry building in India—A review. Applied Sciences, 10(7), 2337. doi:10.3390/app10072337

- Satpathy, P. and Pradhan, C., 2023. Biogas as an alternative to stubble burning in India. Biomass Conversion and Biorefinery, 13(1), pp.31-42. Retrieved from: https://www.researchgate.net/profile/Pres eelaSatpathy/publication/346007898_Biogas_ as_an_alternative_to_stubble_burning_in _India/links/5fb566c2299bf1a57a45491c/
 Biogas-as-an-alternative-to-stubbleburning-in-India.pdf on 1st march, 2023.
- Singh, S., Chauhan, P., Aftab, M. A., Ali, I., Hussain, S. S., & Ustun, T. S. (2020). Cost optimization of a stand-alone hybrid energy system with fuel cell and PV. Energies, 13(5), 1295. doi:10.3390/en13051295
- Statista, 2023. New investment in renewable energy in India from 2004 to 2019. Retrieved from: https://www.statista.com/statistics/56772 4/new-investments-worldwide-insustainable-energy-in-india/ on 1st March, 2023.
- Statista, 2023. *Renewable energy capacity in India from 2009 to 2021*. Retrieved from: https://www.statista.com/statistics/86571 6/india-total-renewable-energy-capacity/ on 1st March, 2023.

Appendices

Appendix 1: Region-wise electricity generation in India

Cumulative generation achieved during the year up to the reporting month (MU)	2018–2019 (April–November 2018)	2017–2018 (April– March)	2016–2017 (April– March)	2015–2016 (April– March)
Northern	16,055.27	21,388.22	18,184.54	15,917.51
Western	26,124.98	31,564.48	27,603.54	22,958.91
Southern	44,768.78	46,077.26	33,137.87	24,162.83
Eastern	1779.46	2516.78	2611.19	2425.30
North-Eastern	216.85	292.75	331.55	316.30
Grand Total	88,945.34	101,839.48	81,868.69	65,780.85


(Source: https://energsustainsoc.biomedcentral.com/articles/10.1186/s13705-019-0232-1/tables/14)

Appendix 2: Sector-wise electricity demand

TWh	2012	2022	2030	2047
Industry	336	494	703	1366
Residential	175	480	842	1840
Commercial	86	142	238	771
Agriculture	136	245	336	501
Others	29	71	121	233
Total	762	1433	2239	4712

(Source: https://energsustainsoc.biomedcentral.com/articles/10.1186/s13705-019-0232-1/tables/5)

Appendix 3: Renewable installed capacity in India

(Source: https://www.statista.com/statistics/567724/new-investments-worldwide-in-sustainableenergy-in-india/)