# AFM-Investigations, Structural Visualization Studies, and Temperature Optimization of Single Metal Cyclotetraphosphates Synthesized at Elevated Temperature 

Khaled M. Elsabawy ${ }^{[a, b]^{*}}$, A. El-Maghraby ${ }^{[b, c]}$

Keywords: Synthesis ; Ceramics ; Visualization; Metal cyclotetraphosphates; Structure;

The precursor metal dihydrogen phosphate dihydrate was synthesized by a rapid and simple precipitation method using phosphoric acid, cobalt nitrate at ambient temperature (cobalt(II) was selected as model for metal in these investigations). The precursor was heated and sintered at different temperatures $\left(600,800,1000\right.$ and $\left.1100{ }^{\circ} \mathrm{C}\right)$ respectively, to optimize the conditions to obtain $\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$ crystal form with high purity. The products were monitored by both of XRD, IR spectra by additional to accurate imaging via scanning electron microscope (SEM) and AFM-microscope to analyze surface topology and microstructural features of the metal cyclotetraphosphate. Structural investigations via XRD proved that the product obtained at $1100^{\circ} \mathrm{C}$ is the best and have fine structure with monoclinic structure phase and $C 12 / \mathrm{c} 1$ space group with lattice parameter $a=11.809(2), b=8.293(1), c=9.923(2) \AA$, respectively. A visualized investigations were performed to confirm structure validity and stability at sintering temperature $\left(1100{ }^{\circ} \mathrm{C}\right)$. Visualization studies indicated that variations in bond distances between $\mathrm{Co} 1, \mathrm{Co} 2, \mathrm{P} 1$ and P 2 and different six oxygen atoms $(\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4, \mathrm{O} 5$ and O 6$)$ inside crystal lattice are responsible for increasing lattice flexibility factor (by controlling in shrinkage and expansion coefficient) and consequently increase its bonds stability to break.

## * Corresponding Authors

E-Mail: ksabawy @ yahoo.com
[a] Materials Science Unit, Chemistry Department ,Faculty of Science, Tanta University-31725-Tanta-Egypt
[b] Department of Chemistry, Faculty of Science, Taif University, 888- Taif, Kingdom of Saudi Arabia
[c] Ceramic Department, Chemistry Unit, National Research Center, Dokki, Tahrir st., Egypt

## Introduction

In the last decade, synthesis and structures of inorganic phosphates at micro-/nanoscale levels is a significant challenge, which attracts increased attention because of their strong influence on the chemical and physical properties of materials. ${ }^{1-3}$

Morphology influences not only the intrinsic chemical, optical, and catalytic properties of micro/nano scale metal phosphates, but also their relevant applications in electronic, biocompartible and biodegradable in tissue. ${ }^{2,4}$

As one of the members of phosphate material family, transition metal cyclotetraphosphate micro-/nanoparticles can be used as potential pigments, selective catalysts, phosphors, materials for corrosion-resistant coatings and biocompartible and biodegradable in tissues. ${ }^{5-8}$ Several bivalent including 3d metals, namely, $\mathrm{Mn}, \mathrm{Co}, \mathrm{Fe}, \mathrm{Zn}, \mathrm{Cu}$, and Ni , are known to form the single metal cyclotetraphosphate $\mathrm{M}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$, where M (II) stands for a bivalent metal. The binary metal cyclotetraphosphates $\mathrm{M}_{2-\mathrm{x}} \mathrm{A}_{\mathrm{x}} \mathrm{P}_{4} \mathrm{O}_{12}(\mathrm{M}$ and $\mathrm{A}=\mathrm{Mg}, \mathrm{Ca}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}$, or Cu ; $x=0-2$ ), isostructural with the single metal cyclotetraphosphates $\mathrm{M}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$, were prepared by Trojan et al. ${ }^{5-8}$ and Boonchom et al. ${ }^{9-11}$ All these compounds have similar X-ray diffraction patterns and close unit cell parameters, which crystallize in monoclinic space group
$C 2 / c(\mathrm{Z}=4) .{ }^{12}$ Various methods have been employed to synthesize binary metal cyclotetraphosphates, including two-step thermal method, ${ }^{5-8}$ hydrothermal synthesis ${ }^{5}$ and the decomposition of binary metal(II) dihydrogenphosphates $\left(\mathrm{M}_{1-\mathrm{y}} \mathrm{A}_{\mathrm{y}}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} . \mathrm{nH}_{2} \mathrm{O}\right.$; where M and $\mathrm{A}=\mathrm{Ca}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Fe}$, $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$ or $\mathrm{Zn} ; y=0-1 ; \mathrm{n}=1-4) .{ }^{9-11}$ This work is of immense interest because it appears economically advantageous to replace partially the divalent metal cations by some cheaper bivalent element which could also improve special properties as above mentioned. ${ }^{1-4}$ However, it is relevant to synthesize binary cyclotetraphosphate and its solid solution because changing the metal ratio influences its useful properties. Consequently, it is a major challenge to synthesize binary metal cyclotetraphosphate micro/nano particles with its intrinsic shape-dependent properties and resulting application. Recently, cobalt iron pyrophosphate $\mathrm{CoFeP}_{2} \mathrm{O}_{7}$ and cobalt iron cyclotetraphosphate $\mathrm{CoFeP}_{4} \mathrm{O}_{12}$ were prepared by mixing of $\mathrm{CoCO}_{3}, \mathrm{Fe}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ in watermethanol and in water- acetone, respectively. ${ }^{13,14}$

The difference of media (solvents) in the precipitation process leads to obtain different phosphates, as revealed by XRD and FTIR data. Due to its solubility in water and its ability to associate with metal ions in media, solvent has been used as a binder cum gel for shaping materials (bulk, porous, micro- or nano particles) and a matrix for entrapment of ions to generate a gelled precursor which resulted in obtaining different material or same material with different size and morphology after heat treatment. The results obtained are also in agreement with other phosphate group reported in literature. ${ }^{15,16}$

The major objective of the present investigations is understanding the role of structural parameters within crystal lattice of $\mathrm{M}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$ that stabilize structure of crystal even at elevated temperatures. Furthermore understanding the structural parameters effects on the morphological and surface nature of metalized cyclotetraphosphates.

## Experimental

## Synthesis of metal cyclotetraphosphates

The cobalt cyclotetraphosphate was synthesized via three step reactions. First reaction is dissolving cobalt carbonate in few drops of concentrated nitric acid forming acidic cobalt nitrate then solution neutralized by condensed ammonia solution. The second step is the reaction with $70 \%$ phosphoric acid forming cobalt dihydrogen phosphate at temperature $230{ }^{\circ} \mathrm{C}$, the third step is heating followed by sintering process at $1100{ }^{\circ} \mathrm{C}$ to form violet powder from pure cobalt cyclotetraphosphate. These steps are in partial agreement with the method of Parada et al. ${ }^{5}$

$$
\begin{align*}
& \mathrm{M}^{\mathrm{II}} \mathrm{CO}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}  \tag{1}\\
& \mathrm{M}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{M}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}  \tag{2}\\
& \mathrm{M}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2} \rightarrow \mathrm{M}_{2} \mathrm{P}_{4} \mathrm{O}_{12} \tag{3}
\end{align*}
$$

where $\mathrm{M}=\mathrm{Co}$. The violet powder from pure cobalt cyclotetraphosphate was grounded in agate mortar for 15 min , then the resulted powder forwarded to perform the different structural measurements .

## Structural measurements

The X-ray diffraction (XRD) measurements were carried out at room temperature on the fine ground samples using $\mathrm{Cu}-\mathrm{K} \alpha$ radiation source, Ni -filter and a computerized STOE diffractometer/Germany with two $\theta$ step scan technique. Rietveld refinement and indexing of structure were made via Fullprof package and Gesas program.

A visualized studies of crystal structure were made by using Diamond Molecular Structure version 3.2 package, Germany and MERCURY-2.3 depending up on single crystal structural data of pure cobalt cyclotetraphosphates including atomic coordinates of monoclinic phase supplied from ICSD-Karlsruhe-Germany. Scannig electron microscopy (SEM) measurements were carried out along abplane using a small pieces of the prepared samples by using a computerized SEM camera with elemental analyzer unit Shimadzu (Japan). Atomic force microscopy (AFM): Highresolution Atomic Force Microscopy (AFM) is used for testing morphological features and topological map (Veecodi Innova Model-2009-AFM-USA). The applied mode was tapping non-contacting mode. For accurate mapping of the surface topology AFM-raw data were forwarded to the Origin-Lab version 6-USA program to visualize more accurate three dimension surface of the sample under investigation. This process is new trend to get high resolution 3D-mapped surface for very small area.

A visualization study made is concerned by matching and comparison of experimental and theoretical data of atomic positions, bond distances, oxidation states and bond torsion on the crystal structure formed. Some of these data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting ICSD-Fiz-Karlsruhe-Germany .

## FT-Infrared Spectroscopy

The infrared spectra of the solid products obtained were recorded from KBr discs using a Shimadzu FT-IR Spectrophotometer in the range from 400 to $4000 \mathrm{~cm}^{-1}$.

## RESULTS AND DISCUSSION

## Structural Identification

Fig. 1 displays different x-ray diffraction patterns of cobalt cyclotetraphosphate at different sintering temperatures (600, 800,1000 and $1100^{\circ} \mathrm{C}$ ) respectively. The accurate analyses of these patterns were performed by using both of Rietveld and indexing via Fullprof package and Gesas program. The analysis is focused on the main intense reflection peaks (fingerprint of structure) and indicated that cobalt cyclotetraphosphate is mainly belong to single monoclinic phase with $C 12 / c_{1}$ space group as symbolized by pink cycles in Fig. 1 and only very few percentage of cobalt oxide as secondary phase in minor. It was observed that the impurity phases are decreasing as sintering temperatures are increasing as shown in Fig. 1 where impurity phases are assigned by blue squares. The comparisons of most intense reflections peaks in all patterns (fingerprint reflections represent monoclinic-phase) indicated that cobalt cyclotetraphosphate, which is sintered at $1100^{\circ} \mathrm{C}$ is the best fit one with high purity than others which sintered at temperatures 600,800 and $1000^{\circ} \mathrm{C}$, respectively .


Figure 1. X-ray diffraction patterns of cobalt cyclotetraphosphate formed at different sintering temperatures $\left(600,800,1000\right.$ and $\left.1100^{\circ} \mathrm{C}\right)$ respectively .
In the hypothesis of isostructural, due to existence of cobalt(II) and cobalt(III) the spectrum peaks for the system of cobalt cyclotetraphosphate (solid solution) which is single metal cyclotetraphosphate $\left(\mathrm{M}_{2} \mathrm{P}_{4} \mathrm{O}_{12}, \mathrm{M}=\mathrm{Co}\right)$ are quite similar because of the equivalent electronic charges and the close radii of cations. Consequently, all the diffraction peaks in the Fig. 1 are found to be in a good agreement with monoclinic $\mathrm{M}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$ and space group $\mathrm{C} 12 / \mathrm{c} 1$ without violation. Only a few characteristic peaks of other impurities
(e.g.Co-Oxide) was clearly observed at lower sintering temperatures $\left(600,800^{\circ} \mathrm{C}\right)$.

From XRD analysis (Fig. 1), grain size evaluated and calculated according to the Scherrer's formula: $D=\mathrm{K} \lambda /(\beta \cos \theta)$, where $D$ is particle diameter, $\mathrm{K}=0.89$ (the Scherrer's constant), $\lambda=1.5406$ (wavelength of the X-ray used), $\beta$ is the width of line at the half-maximum intensity and $\theta$ is the corresponding angle. The average crystallite size of product is estimated from the strongest three diffraction peaks below $40^{\circ}$ for $2 \theta$ and found to be $98 \pm 11 \mathrm{~nm}$. This crystal size of the prepared cobalt cyclotetraphosphate is smaller than those of data estimated from SEM and AFMinvestigations in the present work which confirms that the powder mixture of cobalt cyclotetraphosphate is not unified grain sizes and grain sizes are varied in the bulk than surface's layers. The lattice parameters were calculated from the XRD spectra and found to be $a=11.809(2), b=8.293(1)$, $c=9.923(2) \AA$, which are very close to those of the standard data file (ICSD \#300027) and the literatures also. ${ }^{9-11,14}$

## FT-IR-Spectroscopic Investigations

Fig. 2 displays infrared spectra recorded for $\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$ (126-Phase $=\mathrm{AB}_{2} \mathrm{X}_{6}$ structure type ) after heating process and sintering at $1100{ }^{\circ} \mathrm{C}$. The most intense reflection pear of IR-spectra are assigned by red cycles as clear in Fig. 2. It is well known that the $\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$ structure is mainly characterized by a three- dimensional framework with $\mathrm{MO}_{6}$ $(\mathrm{M}=\mathrm{Co})$ polyhedral linked with $\mathrm{P}_{4} \mathrm{O}_{12}$ rings by $\mathrm{M}-\mathrm{O}-\mathrm{P}$. The basic structure unit is the centrosymmetric cyclotetraphosphate ring $\mathrm{P}_{4} \mathrm{O}_{12}$ and therefore vibrational modes can consider it as made up of the $\left[\mathrm{P}_{4} \mathrm{O}_{12}\right]^{4-}$ anion. The different vibrational modes of $\left[\mathrm{P}_{4} \mathrm{O}_{12}\right]^{4-}$-ion observed in the frequency range of $370-1400 \mathrm{~cm}^{-1}$ are assigned according to the literature. ${ }^{17-19}$


Figure. 2. Infrared spectra recorded for $\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$ (126-Phase $=\mathrm{AB}_{2} \mathrm{X}_{6}$ structure type) after firing process and sintering at $1100^{\circ} \mathrm{C}$.

The peaks splitting in these regions is due to the different strength of the bond between cations ( $\mathrm{M}=\mathrm{Co}^{2+}$ or $\mathrm{Co}^{3+}$ ) and anion $\left[\mathrm{P}_{4} \mathrm{O}_{12}\right]^{4-}$, which confirms the inserting different cations in the skeletal as well as the formation of multivalence cobalt(II,III) cyclotetraphosphate also as confirmed in the visualization studies part. The anion contains the
$\left[\mathrm{PO}_{2}\right]^{2-}$ radical and the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridge which differs in their bond strength and as a result multi-splitting processes are occurred as shown in Fig. 2. As the $\mathrm{P}-\mathrm{O}$ bond strength in the $\left[\mathrm{PO}_{2}\right]^{2-}$ radical is stronger than in the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridge, the stretching frequencies of the $\left[\mathrm{PO}_{2}\right]^{2-}$ radical are expected to be higher than those in the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridge. The $\mathrm{P}-\mathrm{O}$ bonds in the $\left[\mathrm{PO}_{2}\right]^{2-}$ radical show its asymmetric and symmetric stretching frequencies around 1327-1237 and 1150-1000 $\mathrm{cm}^{-1}$, respectively.

The asymmetric and symmetric stretching frequencies of the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridge are observed in the regions of $1000-900$ and $800-700 \mathrm{~cm}^{-1}$, respectively. The symmetric $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridge stretching modes occur at 736 and $714 \mathrm{~cm}^{-1}$. These observed bands are known to be the most striking feature of cyclotetraphosphate spectra, along with the presence of the $v_{\mathrm{as}}(\mathrm{OPO})$ band. From X-ray diffraction data, ${ }^{12}$ it was shown that the crystal structure is monoclinic (space group $C 2 / c 1$ ) with a cyclic structure of the $\left[\mathrm{P}_{4} \mathrm{O}_{12}\right]^{4-}$ anion. This has been confirmed by the IR measurements. The bending modes are expected in the area $600-400 \mathrm{~cm}^{-1}\left[\mathrm{PO}_{2}\right]^{2-}$ radical) and $400-$ $370 \mathrm{~cm}^{-1}$ ( $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridge). The metal-O stretching usually appears in the bending mode region as the bending modes of the $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bridge and absorption bands associated with these vibrations are usually very weak. The weak IR band at $400 \mathrm{~cm}^{-1}$ is probably due to metal-oxygen (Co-O) stretching mode.

## Scanning Electron Microscopy (SEM) and EDX-Elemental Analysis (EDX)

Fig. 3a shows scanning electron micrograph recorded for cobalt cyclotetraphosphate synthesized at $1100{ }^{\circ} \mathrm{C}$, it is so difficult to observe inhomogeneity within the micrograph due to that the powders used are very fine and the grain size estimated is too small.


Figure 3. Scanning electron micrograph recorded for cobalt cyclotetraphosphate synthesized at $1100^{\circ} \mathrm{C}$ with average grain size ranged in between 3.2-3.78 $\mu \mathrm{m}$.

The average grain size was estimated from SE-micrograph and found to be ranged in between 3.2-3.78 $\mu \mathrm{m}$ which is relatively high in contrast with data estimated from XRD through Scherrer's equation ( $D=0.98 \mu \mathrm{~m}$ ). This indicates that the actual grain size in the material bulk could be smaller than that detected on the surface morphology.

Furthermore, in our EDX (energy disperse X-ray) analysis as shown in Fig. 3b and Table 1a, the molar ratios of cobalt cyclotetraphosphate was detected qualitatively with very good fitting to the actual molar ratio(1:2:6) as shown in Table 1a (Supplementary material).

The EDX examinations were performed on random spots within the same sample to confirm accuracy of calculations molar ratios of cobalt cyclotetraphosphate as possible .

## Atomic Force Investigations ( AFM) :

Fig. 4 shows 3D-AFM-micrograph tapping mode image trapped for scanned area $0.1 \mu \mathrm{~m}^{2}$ of cobalt cyclotetraphosphate $\left(\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}\right)$.The image was constructed by application tapping mode with slow scan rate and high resolution imaging with 1024 line per 0.1 nm .The tapping amplitude current was monitored as a function of line drawing heights. For more accurate surface analysis AFMraw data was forwarded to Origin Lab program version 7 and the data are converted into matrix then 3D-contour surface mapping is constructed as shown in Fig.5a.


Figure 4. 3D-AFM-micrograph tapping mode image recorded for scanned area $0.1 \mu \mathrm{~m}^{2}$ of cobalt cyclotetraphosphate ( $\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$ ).

Fig.5a displays 3D-visualized-contour plot of AFMmicrograph surface image trapped for scanned area $0.2 \mu \mathrm{~m}^{2}$ of cobalt cyclotetraphosphate $\left(\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}\right)$. To increase the accuracy of analysis of this image the data were forwarded to plot Fig. 5 b which is 2D-visualized-contour plot of the same image of cobalt cyclotetraphosphate $\left(\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}\right)$. The analysis of the surface nature and morphology enrich us to understand application of such these materials metal cyclotetraphosphate $\left(\mathrm{M}_{2} \mathrm{P}_{4} \mathrm{O}_{12}\right)$ as colorant materials in coating and ceramic industry .

The AFM-tapping mode trapped image can be divided into three zones $1^{\text {st }}$ zone include (yellow, orange and red color) this zone represents $\sim 21 \%$ of the whole scanned area which is equal $\sim 0.042 \mu \mathrm{~m}^{2}$, the surface heights in this zone ranged in between $6.072-6.14 \mu \mathrm{~m}$ as clear in the keyimage .The red zone represents $2 \%=0.004 \mu^{2}$ which processes the highest height on the scanned area with height $_{\max }=6.14 \mu \mathrm{~m}$. The second zone represents $\sim$ [dark green zone ( $23 \%$ ) + pale green zone (18\%)] which represents $\sim 41 \%\left(0.082 \mu \mathrm{~m}^{2}\right)$ from the whole scanned area with heights gradient ranged in between 6.027-6.06 $\mu \mathrm{m}$.


Figure 5a. 3D-visualized-contour plot of AFM-micrograph surface image recorded for scanned area $0.2 \mu \mathrm{~m}^{2}$ of cobalt cyclotetraphosphate $\left(\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}\right)$.


Figure 5b. 2D-visualized-contour plot of AFM-micrograph tapping mode image recorded for scanned area $0.2 \mu \mathrm{~m}^{2}$ of cobalt cyclotetraphosphate ( $\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$ ).

The $3^{\text {rd }}$ zone occupies $\sim 38 \%=0.076 \mu \mathrm{~m}^{2}$ from the whole scanned area with heights gradient lies in between 4.88-6.06 $\mu \mathrm{m}$. The average grain size was estimated from AFManalysis and found in between $56-80 \mathrm{~nm}$ which is nearly matched with that calculated from XRD by applying Scherrer's formula ( $\sim 98 \mathrm{~nm}$ ). The differences in the values of average grain sizes calculated via SEM, AFM and Scherrer's formula are good evidence for existence gradient in the grain sizes in the bulk which are completely different than those on the surface layers.

## Structural Visualization Studies

Fig. 6 displays the unit cell of cobalt cyclotetraphosphate which built up via DIAMOND IMPACT CRYSTAL PROGRAM version 3.2 depending up on the single crystal data and atomic coordinates locations of pure cobalt cyclotetraphsphate. The unit cell was visualized and built up with minimum 138 atoms ( $\mathrm{Co}=16, \mathrm{P}=38$ and $\mathrm{O}=94$ atoms) and four edges. A visualization study made is concerned by matching and comparison of experimental and theoretical data of atomic positions, bond distances, oxidation states and bond torsion on the crystal structure formed .

Table.1. Selected bond lengths and angles inside crystal lattice of $\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$


Table.2. Selected bond lengths and angles inside crystal lattice of $\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$

| Atom1 | Atom2 | $\mathbf{d}_{1-2} \AA$ | Atom3 | $\mathrm{d}_{1-3} \AA$ | Angle $\mathbf{3 1 2}^{\wedge}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P1 | O5 | 1.2222 | O6 | 1.3354 | 112.012 |
| P2 | O5 | 1.2222 | O3 | 1.8394 | 111.327 |
|  | O5 | 1.2222 | O4 | 1.9623 | 98.852 |
|  | O5 | 1.2222 | Co1 | 3.0353 | 52.425 |
|  | O6 | 1.3354 | O1 | 3.8450 | 71.883 |
|  | O6 | 1.3354 | O6 | 3.9043 | 47.653 |
|  | O1 | 3.4635 | O1 | 3.9266 | 106.380 |
|  | O1 | 3.4635 | O2 | 3.9527 | 25.309 |
|  | O1 | 3.4635 | P1 | 3.9812 | 156.181 |
|  | O3 | 1.8394 | Col | 3.0353 | 65.455 |
|  | O3 | 1.8394 | Co2 | 3.1577 | 148.445 |
|  | O4 | 1.9623 | O1 | 3.9266 | 47.041 |
|  | O4 | 1.9623 | O2 | 3.9527 | 87.564 |
|  | O4 | 1.9623 | P1 | 3.9812 | 64.088 |
|  | Co1 | 3.0353 | Co2 | 3.1577 | 83.872 |
|  | Col | 3.0353 | O3 | 3.3910 | 107.797 |
|  | Co1 | 3.0353 | Co 2 | 3.4087 | 90.253 |
|  | Co2 | 3.1577 | P2 | 3.4815 | 133.588 |
|  | Co2 | 3.1577 | O1 | 3.5216 | 76.412 |
|  | O3 | 3.3910 | O1 | 3.8450 | 90.375 |
|  | Co2 | 3.4087 | O1 | 3.9266 | 108.957 |
|  | Co2 | 3.4087 | O2 | 3.9527 | 40.078 |
|  | O2 | 3.5532 | O2 | 3.9527 | 62.931 |
|  | O2 | 3.5532 | P1 | 3.9812 | 152.445 |
|  | O3 | 3.4278 | P2 | 3.4815 | 82.722 |
|  | P2 | 3.4815 | O1 | 3.5216 | 59.248 |
|  | P2 | 3.5485 | O2 | 3.5982 | 110.496 |
|  | O4 | 3.5878 | O2 | 3.5982 | 95.547 |
|  | O4 | 3.5878 | O1 | 3.8450 | 84.205 |
|  | O4 | 3.5878 | O6 | 3.9043 | 96.550 |
|  | O4 | 3.5878 | O1 | 3.9266 | 72.730 |
|  | O2 | 1.3584 | O1 | 1.6346 | 90.263 |
|  | O2 | 1.3584 | O4 | 1.7500 | 122.795 |
|  | O1 | 1.6346 | O5 | 3.8101 | 159.446 |
|  | O1 | 1.6346 | O4 | 3.8181 | 47.186 |
|  | O1 | 1.6346 | O5 | 3.8547 | 102.964 |
|  | O4 | 1.7500 | O3 | 1.7746 | 85.307 |
|  | O4 | 1.7500 | Co1 | 2.9164 | 94.901 |
|  | O3 | 1.7746 | O5 | 3.8101 | 34.432 |
|  | O3 | 1.7746 | O5 | 3.8547 | 105.956 |
|  | Co1 | 2.9164 | O5 | 3.4562 | 164.249 |
|  | Co1 | 2.9164 | O1 | 3.4618 | 37.075 |
|  | O5 | 3.4562 | O4 | 3.8181 | 61.446 |
|  | O5 | 3.4562 | O5 | 3.8547 | 151.691 |
|  | O1 | 3.4618 | P1 | 3.4815 | 60.953 |
|  | O1 | 3.4618 | P1 | 3.5485 | 68.115 |
|  | P1 | 3.5485 | O5 | 3.8101 | 69.465 |
|  | P1 | 3.5485 | O4 | 3.8181 | 128.505 |
|  | P1 | 3.5485 | O5 | 3.8547 | 127.918 |
|  | O6 | 3.5725 | O3 | 3.5777 | 169.950 |
|  | O6 | 3.5725 | Co1 | 3.6583 | 84.063 |
|  | O3 | 3.5777 | O4 | 3.8181 | 51.319 |
|  | O3 | 3.5777 | O5 | 3.8547 | 130.744 |
|  | Col | 3.6583 | O2 | 3.7104 | 36.966 |
|  | Co1 | 3.6583 | O1 | 3.7128 | 122.659 |

Table 2 (cont.)

| Atom1 | Atom2 | $\mathbf{d}_{\mathbf{1}-\mathbf{2}} \mathbf{\AA}$ | Atom3 | $\mathbf{d}_{\mathbf{1} \mathbf{- 3}} \mathbf{\AA}$ | Angle 312 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| P2 | O5 | 3.6692 | O5 | 3.8547 | 147.193 |
|  | O2 | 3.7104 | O1 | 3.7128 | 156.019 |
|  | Co2 | 3.7464 | O5 | 3.8547 | 35.519 |
|  | O5 | 3.8101 | O4 | 3.8181 | 112.308 |

Table.3. Selected bond lengths and angles inside crystal lattice of $\mathrm{Co}_{2} \mathrm{P}_{4} \mathrm{O}_{12}$.

| Atom1 | Atom2 | $\mathrm{d}_{1-2} \AA$ | Atom3 | d1-3 $\AA$ | Angle 312 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O1 | P2 | 1.6346 | Co1 | 2.0927 | 157.754 |
| O2 | P2 | 1.6346 | O2 | 2.1302 | 39.621 |
|  | P2 | 1.6346 | P1 | 3.9266 | 82.859 |
|  | Co1 | 2.0927 | O2 | 2.1302 | 151.780 |
|  | Col | 2.0927 | O5 | 2.6771 | 61.400 |
|  | O2 | 2.1302 | O6 | 3.6570 | 81.232 |
|  | O2 | 2.1302 | P2 | 3.7128 | 114.101 |
|  | O2 | 2.9186 | O4 | 2.9451 | 75.146 |
|  | O 2 | 2.9186 | O4 | 2.9609 | 129.658 |
|  | O4 | 2.9451 | O5 | 3.7359 | 138.844 |
|  | O4 | 2.9451 | O6 | 3.7769 | 69.906 |
|  | O3 | 3.0569 | O 2 | 3.3406 | 135.391 |
|  | O3 | 3.0569 | P2 | 3.4618 | 113.44 |
|  | O2 | 3.3406 | P1 | 3.9266 | 79.250 |
|  | P2 | 3.4618 | O3 | 3.5075 | 29.494 |
|  | O3 | 3.5174 | O3 | 3.8471 | 157.065 |
|  | O3 | 3.5174 | P1 | 3.9266 | 159.635 |
|  | P1 | 3.5216 | Co2 | 3.5271 | 163.460 |
|  | P1 | 3.5216 | O6 | 3.6570 | 129.656 |
|  | Co2 | 3.5271 | P1 | 3.9266 | 118.457 |
|  | O6 | 3.6570 | P2 | 3.7128 | 70.152 |
|  | P2 | 3.7128 | P1 | 3.9266 | 148.032 |
|  | O5 | 3.7359 | O6 | 3.7769 | 79.868 |
|  | O5 | 3.7359 | P1 | 3.8450 | 18.483 |
|  | O5 | 3.7359 | O3 | 3.8471 | 140.930 |
|  | O5 | 3.7359 | P1 | 3.9266 | 120.490 |
|  | O6 | 3.7769 | O3 | 3.8471 | 138.211 |
|  | O6 | 3.7769 | P1 | 3.9266 | 141.255 |
|  | P1 | 3.8450 | O3 | 3.8471 | 159.386 |
|  | O3 | 3.8471 | P1 | 3.9266 | 27.350 |
|  | P2 | 1.3584 | O1 | 2.1302 | 50.116 |
|  | P2 | 1.3584 | Co1 | 2.3366 | 100.899 |
|  | O1 | 2.1302 | O6 | 3.8732 | 144.603 |
|  | O1 | 2.1302 | O6 | 3.9416 | 66.484 |
|  | O1 | 2.1302 | P1 | 3.9527 | 94.733 |
|  | Co1 | 2.3366 | O5 | 2.5475 | 61.027 |
|  | O5 | 2.5475 | O6 | 3.8732 | 30.571 |
|  | O5 | 2.5475 | O6 | 3.9416 | 84.546 |
|  | Co2 | 2.5737 | O6 | 3.9416 | 30.654 |
|  | Co 2 | 2.5737 | P1 | 3.9527 | 58.507 |
|  | O3 | 2.6359 | O4 | 2.7355 | 52.758 |
|  | O3 | 2.6359 | O6 | 2.8042 | 141.814 |
|  | O4 | 2.7355 | O6 | 3.9416 | 116.394 |
|  | O4 | 2.7355 | P1 | 3.9527 | 78.086 |
|  | O6 | 2.8042 | O1 | 2.9186 | 126.931 |
|  | O6 | 2.8042 | O1 | 3.3406 | 83.218 |

Table 3 (cont.)

| Atom1 | Atom2 | $\mathrm{d}_{1-2} \AA$ | Atom3 | $\mathrm{d}_{1-3} \AA$ | Angle 312 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| O2 | O6 | 2.8042 | O4 | 3.5756 | 115.388 |
|  | O6 | 2.8042 | P1 | 3.5982 | 63.049 |
|  | O6 | 2.8042 | P2 | 3.7104 | 126.522 |
|  | O6 | 2.8042 | O6 | 3.9416 | 52.695 |
|  | O6 | 2.8042 | P1 | 3.9527 | 11.746 |
|  | O1 | 2.9186 | O1 | 3.3406 | 83.639 |
|  | O1 | 2.9186 | O4 | 3.5756 | 52.764 |
|  | O1 | 2.9186 | P1 | 3.5982 | 64.434 |
|  | O4 | 3.5756 | O6 | 3.9416 | 73.486 |
|  | P1 | 3.5982 | P2 | 3.7104 | 73.993 |
|  | P1 | 3.5982 | O6 | 3.8732 | 20.160 |

Many researchers in the past did their best to understand the crystallographic structure of phosphates (open phosphates or cyclic poly phosphates). ${ }^{20-28}$

The initial analysis of structural parameters inside visualized crystal lattice of cobalt cyclotetraphosphate indicated that there are two different types of cobalt, namely (Co1 and Co2). Two types of phosphorous atoms (P1 and P2) and finally six different types of oxygen atoms namely (O1, O2, O3, O4, O5 and O6).

The comparison between visualized XRD-profile (Supplementary material) and the experimental XRD-pattern sintered at $1100{ }^{\circ} \mathrm{C}$ Fig. 1, indicated that there is type of fitting coupled with high figure of merit between both patterns specially on the point of view positions of most intense reflection peaks on both patterns. The shifts on some intense reflection peak position within limits of two theta values $\sim 2$ degree could due to impurity phases interactions with the main monoclinic structure of cobalt cyclotetraphosphate on the experimental pattern. Fig. 7 displays the regular distribution of $\mathrm{PO}_{3}$-polyhera throughout the unit cell of cobalt cyclotetraphosphate .The analysis of these polyhedron indicated that the phosphorous atom as central ion was surrounding by oxygen atoms, three oxygen atoms represents the triangle base lie at nearly the same distance from phosphorous (central metal ion) while the forth one at distance longer than the others three oxygen of triangle base .

The accurate analysis of bond lengths, torsion on angles inside the crystal lattice of cobalt cyclotetraphosphate (Tables 1-3) may enrich us understand that what are the structural factors responsible for lattice stability .

The analysis of data in Tables 1, 2 and 3, one can conclude the following observations; cobalt type one symbolized as (Co1) was linked with all types of oxygen atoms recording the following bond lengths (2.0927, 2.3366, $2.8210,3.5270,2.4865$ and $3.5756 \AA$ ) corresponding to Co1-O1, Co1-O2, Co1-O3, Co1-O4, Co1-O5 and Co1-O6 bond lengths respectively. From these observations one can conclude that $\mathrm{O} 1, \mathrm{O} 2$ and O 3 could be located as triangle base of $\mathrm{PO}_{3}$ - while $\mathrm{O} 4, \mathrm{O} 5$ and O 6 can be oriented as axial oxygen to complete the vacant site of tetrahedron forming $\mathrm{PO}_{4}^{-}$-anion .The cobalt type one (Co1) is also linked with two different types of phosphorous namely (P1 and P2) with bond

Table.3. (cont.)

| Atom1 | Atom2 | d1-2 $\AA$ | Atom3 | d1-3 $\AA$ | Angle 312^ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O3 | P2 | 1.7746 | P1 | 1.8394 | 148.861 |
|  | P2 | 1.7746 | O4 | 2.3882 | 46.911 |
|  | P1 | 1.8394 | O4 | 3.2099 | 33.597 |
|  | P1 | 1.8394 | O6 | 3.3713 | 92.284 |
|  | P1 | 1.8394 | P1 | 3.3910 | 108.337 |
|  | O4 | 2.3882 | P2 | 3.5777 | 102.290 |
|  | O4 | 2.3882 | O3 | 3.7969 | 57.227 |
|  | O4 | 2.3882 | O1 | 3.8471 | 88.198 |
|  | O3 | 2.5389 | O5 | 2.5520 | 126.753 |
|  | O3 | 2.5389 | O6 | 2.5691 | 82.598 |
|  | O3 | 2.5389 | O2 | 2.6359 | 123.991 |
|  | O5 | 2.5520 | Co1 | 2.8210 | 54.856 |
|  | O5 | 2.5520 | O1 | 3.0569 | 146.390 |
|  | O6 | 2.5691 | O4 | 3.2099 | 55.840 |
|  | O2 | 2.6359 | O6 | 3.3713 | 98.001 |
|  | O 2 | 2.6359 | P1 | 3.3910 | 99.094 |
|  | O2 | 2.6359 | P1 | 3.4278 | 99.516 |
|  | O2 | 2.6359 | O5 | 3.4479 | 108.342 |
|  | Col | 2.8210 | O4 | 3.2099 | 103.234 |
|  | Col | 2.8210 | O6 | 3.3713 | 102.506 |
|  | O1 | 3.0569 | P1 | 3.4278 | 89.823 |
|  | O4 | 3.2099 | P1 | 3.3910 | 112.702 |
|  | O4 | 3.2099 | P1 | 3.4278 | 65.342 |
|  | O4 | 3.2099 | O5 | 3.4479 | 68.024 |
|  | O4 | 3.2099 | O1 | 3.5075 | 83.165 |
|  | O4 | 3.2099 | O1 | 3.5174 | 119.071 |
|  | O6 | 3.3713 | O1 | 3.8471 | 97.213 |
|  | P1 | 3.3910 | P1 | 3.4278 | 131.958 |
|  | P1 | 3.3910 | O5 | 3.4479 | 111.574 |
|  | O5 | 3.4479 | O1 | 3.8471 | 42.620 |
|  | O5 | 3.4479 | Co2 | 3.9043 | 143.431 |
|  | O1 | 3.5075 | O1 | 3.5174 | 73.138 |
|  | O1 | 3.5075 | P2 | 3.5777 | 142.989 |
|  | O3 | 3.7969 | O1 | 3.8471 | 54.622 |
|  | O3 | 3.7969 | Co2 | 3.9043 | 123.375 |
|  | O1 | 3.8471 | Co2 | 3.9043 | 100.918 |
| O4 | P2 | 1.7500 | P1 | 1.9623 | 145.774 |
|  | P2 | 1.7500 | O3 | 2.3882 | 47.781 |
|  | P1 | 1.9623 | O5 | 3.7632 | 92.572 |
|  | P1 | 1.9623 | P2 | 3.8181 | 82.582 |
|  | P1 | 1.9623 | O6 | 3.9110 | 148.016 |
|  | O3 | 2.3882 | O5 | 2.4663 | 90.497 |
|  | O3 | 2.3882 | O2 | 2.7355 | 61.479 |
|  | O3 | 2.3882 | O6 | 3.9110 | 106.905 |
|  | O5 | 2.4663 | O6 | 2.7645 | 47.431 |
|  | O5 | 2.4663 | O6 | 3.9110 | 156.105 |
|  | O2 | 2.7355 | O6 | 2.7645 | 167.476 |
|  | O 2 | 2.7355 | O1 | 2.9451 | 43.854 |
|  | O2 | 2.7355 | O6 | 3.9110 | 45.808 |
|  | O6 | 2.7645 | O1 | 2.9451 | 139.841 |
|  | O6 | 2.7645 | O1 | 2.9609 | 103.240 |
|  | O1 | 2.9451 | O1 | 2.9609 | 115.526 |
|  | O1 | 2.9451 | O3 | 3.2099 | 146.973 |
|  | O1 | 2.9609 | O5 | 3.7294 | 45.394 |
|  | O3 | 3.2099 | O5 | 3.7632 | 112.476 |
|  | O3 | 3.2099 | P2 | 3.8181 | 60.469 |

Table 3. (cont.)

| Atom1 | Atom2 | $\mathbf{d}_{1-2} \AA$ | Atom3 | $\mathrm{d}_{1-3} \AA$ | Angle $\mathbf{3 1 2}^{\wedge}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O4 | O3 | 3.2099 | O6 | 3.9110 | 144.539 |
|  | O4 | 3.3886 | Col | 3.5270 | 99.147 |
|  | O4 | 3.3886 | O2 | 3.5756 | 72.211 |
|  | Co1 | 3.5270 | P2 | 3.8181 | 59.587 |
|  | Col | 3.5270 | O6 | 3.9110 | 67.403 |
|  | Co2 | 3.5398 | O2 | 3.5756 | 42.407 |
|  | Co2 | 3.5398 | P1 | 3.5878 | 116.699 |
|  | Co2 | 3.5398 | O5 | 3.7294 | 133.664 |
|  | O2 | 3.5756 | P2 | 3.8181 | 146.783 |
|  | P1 | 3.5878 | O5 | 3.7294 | 19.104 |
|  | O5 | 3.7632 | P2 | 3.8181 | 171.945 |
| O5 | P1 | 1.2222 | O6 | 2.1215 | 35.704 |
|  | P1 | 1.2222 | Co 2 | 2.3208 | 123.015 |
|  | O6 | 2.1215 | O4 | 3.7632 | 163.350 |
|  | O6 | 2.1215 | P2 | 3.8101 | 86.174 |
|  | O6 | 2.1215 | P2 | 3.8547 | 108.843 |
|  | Co2 | 2.3208 | O4 | 2.4663 | 95.320 |
|  | Co2 | 2.3208 | Col | 2.4865 | 118.852 |
|  | O4 | 2.4663 | O4 | 3.7632 | 102.737 |
|  | O4 | 2.4663 | P2 | 3.8101 | 95.876 |
|  | Col | 2.4865 | P2 | 3.8101 | 49.940 |
|  | Co1 | 2.4865 | P2 | 3.8547 | 49.159 |
|  | O2 | 2.5475 | O3 | 2.5520 | 121.976 |
|  | O2 | 2.5475 | O1 | 2.6771 | 67.870 |
|  | O3 | 2.5520 | O1 | 3.7359 | 64.870 |
|  | O3 | 2.5520 | O4 | 3.7632 | 130.063 |
|  | O3 | 2.5520 | P2 | 3.8101 | 23.154 |
|  | O1 | 2.6771 | P2 | 3.8101 | 61.610 |
|  | O1 | 2.6771 | P2 | 3.8547 | 66.467 |
|  | O6 | 3.0309 | O3 | 3.4479 | 148.096 |
|  | O6 | 3.0309 | P2 | 3.4562 | 127.948 |
|  | O3 | 3.4479 | O4 | 3.7632 | 72.449 |
|  | O3 | 3.4479 | P2 | 3.8101 | 77.786 |
|  | O3 | 3.4479 | P2 | 3.8547 | 138.847 |
|  | P2 | 3.4562 | O5 | 3.4814 | 63.859 |
|  | P2 | 3.4562 | O4 | 3.7294 | 64.063 |
|  | O5 | 3.4814 | P2 | 3.8101 | 142.125 |
|  | O5 | 3.4814 | P2 | 3.8547 | 90.676 |
|  | P2 | 3.6692 | O4 | 3.7294 | 79.797 |
|  | P2 | 3.6692 | O1 | 3.7359 | 157.355 |
|  | P2 | 3.6692 | O4 | 3.7632 | 78.546 |
|  | P2 | 3.6692 | P2 | 3.8101 | 101.543 |
|  | O4 | 3.7294 | O1 | 3.7359 | 83.831 |
|  | O4 | 3.7294 | O4 | 3.7632 | 90.906 |
|  | O4 | 3.7294 | P2 | 3.8101 | 26.815 |
|  | O1 | 3.7359 | P2 | 3.8547 | 54.240 |
|  | O4 | 3.7632 | P2 | 3.8101 | 110.453 |
|  | O4 | 3.7632 | P2 | 3.8547 | 70.438 |
|  | P2 | 3.8101 | P2 | 3.8547 | 99.099 |
| O6 | P1 | 1.3354 | O5 | 2.1215 | 32.284 |
|  | P1 | 1.3354 | Co2 | 2.1694 | 152.293 |
|  | O5 | 2.1215 | O4 | 3.9110 | 111.873 |
|  | O5 | 2.1215 | O2 | 3.9416 | 107.377 |
|  | Co2 | 2.1694 | O3 | 2.5691 | 110.682 |
|  | Co 2 | 2.1694 | O4 | 2.7645 | 159.226 |
|  | O3 | 2.5691 | P1 | 3.9043 | 58.958 |

Table 3. (cont.)

| Atom 1 | Atom2 | $\mathbf{d}_{1-2} \AA$ | Atom3 | $\mathrm{d}_{1-3} \AA$ | Angle $312$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| O6 | O3 | 2.5691 | O4 | 3.9110 | 116.590 |
|  | O3 | 2.5691 | O2 | 3.9416 | 83.895 |
|  | O4 | 2.7645 | O2 | 2.8042 | 102.323 |
|  | O6 | 2.7825 | P1 | 3.9043 | 141.347 |
|  | O6 | 2.7825 | O4 | 3.9110 | 103.379 |
|  | O6 | 2.7825 | O2 | 3.9416 | 82.241 |
|  | O2 | 2.8042 | O5 | 3.0309 | 51.593 |
|  | O2 | 2.8042 | O6 | 3.1627 | 82.453 |
|  | O5 | 3.0309 | O4 | 3.9110 | 87.229 |
|  | O6 | 3.1627 | Co2 | 3.3434 | 158.567 |
|  | O6 | 3.1627 | O3 | 3.3713 | 46.169 |
|  | Co 2 | 3.3434 | O4 | 3.9110 | 92.220 |
|  | Co 2 | 3.3434 | O2 | 3.9416 | 113.851 |
|  | O3 | 3.3713 | P1 | 3.4154 | 150.720 |
|  | O3 | 3.3713 | P2 | 3.5725 | 80.983 |
|  | P1 | 3.4154 | O 2 | 3.9416 | 73.130 |
|  | O1 | 3.7769 | O2 | 3.9416 | 98.395 |
|  | O2 | 3.8732 | P1 | 3.9043 | 126.294 |
|  | O2 | 3.8732 | O2 | 3.9416 | 78.676 |
|  | P1 | 3.9043 | O4 | 3.9110 | 99.754 |
|  | P1 | 3.9043 | O2 | 3.9416 | 60.500 |
|  | O4 | 3.9110 | O2 | 3.9416 | 140.485 |

distances 3.0353 and $2.9164 \AA$ respectively, which confirms that cobalt has more than one oxidation state over the original common oxidation ( CoII and CoIII) inside crystal lattice of cobalt cyclotetraphosphates. This could lead us to informative scientific knowledge that oxidation state of cobalt takes values between $\mathrm{Co}^{2+}, \mathrm{Co}^{\mathrm{m+}}, \mathrm{Co}^{3+}$ (where m fractions between 2,3 and $2 \leq \mathrm{m} \leq 3$ ). This result may interpret that why the bond lengths of cobalt with six oxygen atoms are different . Plus effect of coupling of charges due to environmental neighboring groups .

Cobalt type two (Co2) has similar behavior to cobalt type one but the oxygen atoms that represent triangle base are recommended to be O 2 , O 5 and O 6 with bond lengths 2.5737, 2.3208 and $2.1694 \AA$, respectively, while axial oxygen atoms could be occupied by $\mathrm{O} 1, \mathrm{O} 3$ and O 4 with bond distances $3.5271,3.9043$ and $3.5398 \AA$ respectively


Fig. 6 : Unit cell of monoclinic cobalt cyclotetraphosphate .

The cobalt type two ( Co 2 ) is also linked with the two different types of phosphorous atoms namely ( P1 and P2) with bond distances 3.1577 and $3.7464 \AA$ which confirm that cobalt has more than one oxidation state within the crystal lattice . Similar behavior of existence of multi oxidation states was reported in references [20,21] in which the conditions of synthesis at elevated temperatures in air or oxygen were responsible .


Figure 7 Distribution of $\mathrm{PO}_{3}$-polyhedra in the unit cell of cobalt cyclotetraphosphate.

With respect to phosphorous atoms (P1 and P2) it was observed that phosphorous type one (P1) was linked inside crystal lattice with all oxygen atoms recording bond lengths $1.2222,1.3334$ and $1.9623 \AA$ correspond to P1-O5 ,P1-O6 and P1-O4 respectively. These bond distances are suitable to be the base triangle of $\mathrm{PO}_{3}$ - while the rest three oxygen atoms $\mathrm{O} 1, \mathrm{O} 2$ and O 3 recorded bond distances $3.4635,3.5532$ and 3.3910 which are suited to be axial atoms .

## Conclusion

The variations of bond distances between $\mathrm{Co} 1, \mathrm{Co} 2, \mathrm{P} 1$ and P 2 and six different oxygen atoms ( $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4, \mathrm{O} 5$ and O6) inside crystal lattice are responsible for increasing lattice flexibility factor (by controlling in shrinkage and expansion coefficient) and consequently increase its bonds stability to break. These facts can be attributed to three main factors inside lattice.
1.Oxidation state of cobalt takes values between $\mathrm{Co}^{2+}$, $\mathrm{Co}^{\mathrm{m}+}, \mathrm{Co}^{3+}$ (where m fractions between 2,3 and $2 \leq \mathrm{m} \leq 3$ ).
2.Effect of coupling of charges due to environmental neighboring groups effects.
3.The six oxygen atoms are liable to replace each other throughout the lattice to compensate any lattice defects could break bonds (evidence is exchanging positions of triangle base with axial positions).

## References

${ }^{1}$ Jouini, A., Gacon, J. C., Ferid, M., Trabelsi-Ayadi, M. Opt. Mater. 2003, 24, 175.
${ }^{2}$ Kitsugi, T., Yamamuro, T., Nakamura, T., Oka, M., Biomaterials 1995, 16, 1101.
${ }^{3}$ Jian-Jiang, B., Dong-Wan, K., Kug Sun, H., J. Eur. Ceram. Soc. 2003, 23, 2589.
${ }^{4}$ Martinelli, J. R., Sene, F. F., Gomes, L., J. Non-Cryst. Solids, 2000, 263, 299.
${ }^{5}$ Parada, C., Perles, J., Saez-Puche, R., Ruiz-Valero, C., Snejko, N. Chem. Mater. 2003, 15, 3347.
${ }^{6}$ Antraptseva, N. M., Shchegrov, L. N., Ponomareva, I. G., Russ. J. Inorg. Chem., 2006, 51, 1493.
${ }^{7}$ Trojan, M., Brandova,' D., J. Therm. Anal. Calorim., 1985, 30, 159.
${ }^{8}$ Trojan, M. Dyes Pigm., 1990, 12, 35.
${ }^{9}$ Trojan, M. Dyes Pigm., 1990, 13, 1.
${ }^{10}$ Trojan, M., Sÿulcova, P., Mosner, P., Dyes Pigm., 2000, 44, 161.
${ }^{11}$ Trojan, M. Thermochim. Acta, 1990, 160, 361.
${ }^{12}$ Trojan, M., Brandova', D., Thermochim. Acta, 1990, 160, 349.
${ }^{13}$ Trojan, M., Sÿulcova, P., Dyes Pigm., 2000, 47, 291.
${ }^{14}$ Trojan, M., Brandova, D.; Paulik, F.; Arnold, M., J. Therm. Anal. Calorim., 1990, 36, 929.
${ }^{15}$ Trojan, M., Brandova, D., Thermochim. Acta, 1990, 159, 1.
${ }^{16}$ Brandova, D., Trojan, M., Arnold, M., Paulik, F., J. Therm. Anal. Calorim., 1990, 36, 677.
${ }^{17}$ Ramakrishnan, V., Aruldhas, G., Infrared Phys., 1985, 25, 665.
${ }^{18}$ Baran, E.J. Mercader, R. C. Massaferro, A. Kremer, E., Spectrochim.Acta., 2004, 60, 1001.
${ }^{19}$ Soumhi, E. H. Saadoune, I., Driss, A., J. Solid State Chem., 2001, 156, 364.
${ }^{20}$ Averbuch-Pouchot, M. T., Durif, A., Acta Cryst., 1987, C43, 631.
${ }^{21}$ Chudinova, N. N., Lavrov, A. V., Tananaev, L. V., Izv. Akad. Nauk SSSR, Neorg. Mater., 1972, 8, 1971.
${ }^{22}$ Durif, A., Averbuch-Pouchot, M. T., Guitel, J. C, Acta Cryst. 1976, B32, 2957.
${ }^{23}$ Enraf-Nonius: Structure Determination Package. RSX 11M version. Enraf-Nonius, Delft, 1977.
${ }^{24}$ Hilmer, N., Chudinova, N. N., Jost, K. H., Izv. Akad. Nauk SSSR, Neorg. Mat. 1978, 14, 1507.
${ }^{25}$ International Tables for X-ray Crystallography (Present distributor D. Reidel, Dordrecht), Vol. IV, Birmingham: Kynoch Press, 1974.
${ }^{26}$ Palkina, K., Jost, K. H.,Crystallogr., 1975, 831, 2285.
${ }^{27}$ Schulz, L., Z. Anorg. Allg. Chem. 1956, 287, 106.
${ }^{28}$ Tezikova, L. A., Chudinova, N. N., Fedorov, P. M., Lavrov, A. V., Izv. Akad. Nauk SSSR, Neorg. Mat. 1974, 10, 2057.
${ }^{29}$ Elsabawy, K. M., Elbagoury, N. H., Adv. Appl. Science. Res., 2011, 2(2), 38.
${ }^{30}$ Elsabawy, K. M., Cryogenics, 2011, 51, 452.

