
Making Raft Consensus A Little More Fault-Tolerant Section A-Research Paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 3763 –3769 3763

MAKING RAFT CONSENSUS A LITTLE MORE FAULT-

TOLERANT

Kiran Kumar Kondru1, Saranya R2*

Abstract—

Raft algorithm is a strong leader-based distributed consensus mechanism which ensures strong consistency.

However it’s availability aspect suffers in the presence of partial network partitions resulting in repeated leader

elections and reducing the normal operations. We propose adding a new mode called Unavailable to the

existing 3 modes to make the algorithm more robust and resistant to this non-trivial edge case.

Keywords—raft, distributed consensus, availability, fault tolerance

1Department of Computer Science Central University of Tamil Nadu Thiruvarur, India, kirankondru@ieee.org
2*Department of Computer Science Central University of Tamil Nadu Thiruvarur, India,

E-mail:- saranya@cutn.ac.in

*Corresponding Author: - Saranya R
*Department of Computer Science Central University of Tamil Nadu Thiruvarur, India,

E-mail:- saranya@cutn.ac.in

DOI:- 10.48047/ecb/2023.12.si5a.0273

mailto:kirankondru@ieee.org

Making Raft Consensus A Little More Fault-Tolerant Section A-Research Paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 3763 –3769 3764

I. INTRODUCTION

A. Background

Raft algorithm [1] is a leader based strongly-

consistent distributed consensus protocol, which

has been widely adopted in the industry since its

creation. It came as a more easily understood

protocol, unlike its predecessor, the Paxos

consensus algorithm [2]. The sheet number of

citations to Raft shows it’s still widely researched

on. It’s been implemented in many programming

languages [3] and thoroughly tested even with

formal languages like TLA+ [4]. The primary use

of Raft algorithm is in distributed databases or

datastores [5]–[9]

B. Motivation

A Raft implementation called etcd is widely used

by many distributed systems especially by many

cloud service providers. Cloudflare[10] has a

massive outage[11] of some of its services on 2nd

Nov 2020 which impacted many web-based

services including social media and streaming

services in certain geographical areas. After

analysis it’s found that a partial network partition

caused by raft algorithm resulted in repeated

elections and it’s normal operations time has

drastically come down. A faulty network device

caused this which has a cascading effect on second

and third order dependent software and services.

Any unavailable service results in financial losses,

so the cloud service providers always make sure to

minimize the downtime.

The thing about this is the problem is pointed out

by distributed systems researchers[12] but was

ignored partly because it’s considered a rare edge

case and is trivial. Some alternative called

Prevote[1] is suggested but not further explored.

But the Cloudflare incident brought this issue of

raft cluster availability to the forefront and widely

discussed by distributed systems researchers. Here

[13] the author argues, that with increasing

popularity of Raft (due to its ease of understanding)

it’s adoption is growing fast and wide and it’s no

longer contained in the well-known and secure data

center environments. It’s argued that Raft might not

be as available in the edge networks where the

connections between nodes is intermittent. Here

[14] the researchers tried to reproduce as exactly as

possible the Cloudflare outage through emulation.

As such, with changing nature of the Internet from

well connected duplicated hardware to

unpredictable edge networks, we believe, that the

core protocols should change to be more resilient.

C. Contribution

In this paper, we discuss the problem, it’s existing

solution and their limitations and propose our own

idea to solve this problem. Our solution involves

introducing a new state called Unavailable and use

it to stop repeated leader elections and hence solve

the problem.

II. RELATED WORK

A. Overview of Raft Algorithm

Raft consensus algorithm follows Replicated State

Machine to store the clients’ instructions

(commands) in sequence and propagate

accordingly. Raft has a strong leader who accepts

all the clients’ queries and linearizes the commands

and persists them in the form of sequence of entries

called a Log to the secondary storage. It then asks

its followers to do the same. With a majority of the

followers committing the log, the leader makes

those entries permanent and conveys the same to

the specific clients.

When a follower fails or stops, it doesn’t effect the

cluster, as long as the failed nodes are not many.

Given ‘n’ is the size of the cluster, and ‘f’ is the

number of faulty nodes that the cluster can tolerate

and still operate unhinged, the formula is as

follows.

n = (2 * f) + 1

A raft node starts up and becomes a follower first.

After some random timer sets off, one of the nodes

increments its term number (from initial ‘1’) and

starts asking votes from fellow followers. This

node is said to be in candidate mode.

 If this candidate receives enough votes, he

becomes a leader.

 If he receives another leaders heartbeat with

higher term number, it then becomes a follower

 If he doesn’t get enough votes and still no

heartbeat from the leader, then it restarts the

election process again by incrementing the term

number again.

The following diagram illustrates this state change

mechanism that is core to the raft protocol.

Making Raft Consensus A Little More Fault-Tolerant Section A-Research Paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 3763 –3769 3765

Figure 1: Modes of Raft nodes [1]

B. Scenario of a Partial Network Partition

The problem of repeated elections and

unavailability of the whole cluster from servicing

the clients has been explained here [14]. This article

gives us a very good understanding of scenarios

that give raise to repeated elections where partial

network partitions happen. The following example

illustrates this better. In the left part of Figure 2,

node A is completely isolated from the rest of the 3

node network. A can be thought of as node failure

in this scenario as there is no way for it to send or

receive messages from any of the nodes in the

cluster. But the right-side figure points to a partial

network partition and this produces some

interesting results.

Figure 2: Full and Partial network partition [14]

Consider 3 raft nodes A, B and C and let B be the

leader. The following is a scenario that happens in

the case of a partial network partition. We illustrate

this example in the following steps with the help of

figure 3.

 B sends heartbeat messages to both A and C in

the form of AppendEntries RPC.

 Both A and C respond via Append Entries

Response to B. All is well here.

 Between A and B a partial network partition is

formed (as indicated in the right-side of Figure 2),

while A and C are still connected.

 B sends heartbeat again to both A and C. A

couldn’t receive message.

 After a while, since A didn’t receive any RPC, it

times out, increments the term and starts an

election on its own.

 A sends RequestVote to both B and C. B couldn’t

get the message due to partition, but C receives it.

 C updates the term number to the new term sent

by the node A but sees that its log index is not up

to date. Hence it replies No to A’s RequestVote.

Figure 3: Scenario of Partial network partition [14]

Making Raft Consensus A Little More Fault-Tolerant Section A-Research Paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 3763 –3769 3766

 But since, B is still sending AppendEntries RPC

as usual, C receives it but in its Append Entries

Response, it notifies the leader B of the higher

term.

 With this response, B sees there is a higher term

that itself and immediately vacates the leadership

position and becomes a follower.

 A can try to become leader but only C can receive

it’s message and always sends No as it’s log index

is not up to date. So, in this scenario, A can never

become leader as it can’t get majority votes.

 Either C or B can become a candidate and start an

election. But if B becomes the leader again, the

whole cycle will start again, beginning an ever-

repeating leader election.

C. Existing Solutions

The original Raft paper proposed the concept of

Prevote[15] to stop such repeated leader election

from happening, but it’s not delved into further.

Prevote suggests to have an extra round of election

to verify whether a node is eligible to be elected as

a leader. If that specific node is isolated like it’s

been completely cut-offs from the cluster network,

then a Prevote round would not return any votes

and hence that node refrains from contesting an

election. However, this is not as simple as it

sounds. The blogpost[16] by distributed systems

researchers found that PreVote itself won’t solve

this problem and it will further introduce more

bugs.

III.PROPOSED SOLUTION

To the problem of partial network failure, where in

the there is a scenario in which there is repeated

leader election, we propose to increase the number

of modes from three to four. We will add a new

state called Unavailable. The following figure

shows the new state transition diagram with the

new mode Unavailable and the details of when the

raft server will enter this mode and come out it.

Fig 4: New State Transition Diagram

In the previous section, change of state is described

with how and when there will be a change in Raft

modes. If Raft algorithm is to have a wider adoption

outside the context of data centers where there is a

significant duplication of network hardware,

preventing almost any kind of link failure, it has to

address the so called non-trivial availability issues

already discussed above. One way of ensuring this

is to make Raft more available by incorporating

some minimal changes like introducing a new state

and defining when and how the node goes into and

comes out this state.

The problem of repeated election is caused when

there is a failure in the link or network connection,

whether partial or full severance. When a node is

unable to receive any RPC from the leader, it

becomes a candidate and starts to seek votes from

other followers. But that specific node is unable to

receive any messages especially periodic

heartbeats. Even after becoming a candidate, it

neither gets a heartbeat from the current leader nor

gets the requisite majority votes from available

peers. Given this specific knowledge, it can be

inferred that when repeated elections are initiated

by a specific node, after a certain threshold, we

make it stop the election and go into an Unavailable

mode, preventing repeating elections. This

threshold value can be 3 or 5 depending on the

requirements.

Making Raft Consensus A Little More Fault-Tolerant Section A-Research Paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 3763 –3769 3767

A. A. Implementation

Algorithm: Proposed changes to the Candidate

Routine

All Servers:
prevCandTerm: = 0 and electionCount: = 0.

If commitIndex > lastApplied: increment lastApplied,

apply log[lastApplied] to state machine.

If RPC request or response contains term T >

currentTerm: set currentTerm = T, convert to follower

Candidates:

If (currentTerm – prevCandTerm) => 1 then

electionCount: = electionCount + 1

else

electionCount: = 0

If electionCount >= ‘n’ repeated attempts, then

Stop resetting election timer.

Set currentRole as ‘UNAVAILABLE’.

Set prevCandTerm to currentTerm.

Return

On conversion to candidate, start election:

Increment currentTerm

Vote for self

Reset election timer.

Send RequestVote RPCs to all other servers.

If votes are received from the majority of servers:

become leader.

If AppendEntries RPC received from new leader:

convert to follower.

If election timeout elapses: start new election.

Unavailable:

If RPC received from the Leader, become a

CANDIDATE.

And Follow the Candidate routine for RPC.

In the “Rules for Server” section of the original Raft

paper, we have made the following changes as

illustrated in the above algorithm. We introduced

two new variables “prevCandTerm” and

“electionCount” to keep track of how many

repeated elections are happening in a single raft

server. Also as discussed in the previous section,

we introduce a threshold variable ‘n’ and set the

value to our comfort level like 3/5/7 etc.

We keep this threshold value so as not to introduce

more bugs in the system. It’s normal for an election

process to result in a stalemate and have no elected

leader for that particular term. The only prevention

mechanism in the leader election algorithm is the

random timeout of the election timer which forces

raft servers to not start the election process at the

same time. But random timeout does not guarantee

two servers waking up at the same time in the

absence of a leader and starting the election

process. This in turn results in split votes with two

servers receiving minority votes and no definite

leader. When this happens, the random timeout

occurs again in the candidate phase of the servers,

and another election is randomly started with a new

term number. So the possibility of repeated election

is there and more than one repeated election can

happen.

In the above-described algorithm, if we set the

threshold ‘n’ to 5, then this particular server keeps

on the process of repeating the election for 5 times,

and then it stops. This self- identifying nature of the

changed algorithm is what is unique. After this

threshold is reached, the election timer is stopped,

the current role is set to “UNAVAILABLE” the

control is returned. This makes the server inert and

since election timer is disabled, there is no chance

of starting an election by itself. As there is no

chance of starting an election, the problem of

repeated election is solved.

Making Raft Consensus A Little More Fault-Tolerant Section A-Research Paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 3763 –3769 3768

IV. RESULTS AND DISCCUSSION

Figure 5: Repeated Leader Election and Normal Operations

We developed a small Discrete Event Simulator in

Java, to test out our proposed solution. But to

actually show that our solution works, we first

designed a raft cluster with partial network partition

as shown in the right-side diagram of figure 2. And

then ran a simulation. The above graph is the result

of the simulation run. The X-axis is the term

number, and the Y-axis is the simulated time. We

can equate the simulated time to nanoseconds. The

blue area of the graph shows normal operations for

a particular term whereas the green area represents

the election process. During the election process,

client requests are not entertained.

As can be inferred from figure 5, though there is

normal operations happening for some simulated

time, a new election with a new term number is

happening. And this is repeating indefinitely (we

only ran the simulation for a certain time). With the

partial partition intact, this never stops, and this

makes the whole cluster unavailable for an

extended period of time and normal operations time

is restricted. This not a desirable situation.

Figure 6: Stopping of repeated election and return of normal operations.

After we introduced the proposed solution, we do

have repeated elections, but only up to a limited

threshold value we set. The above figure 6, shows

the result of a simulation run with the proposed

changes to the raft algorithm. The X-axis shows the

term number, and the threshold ‘n’ is set to 9. This

configuration tolerates the flip-flop of the leader up

to 9*2 = 18 terms. After that the repeated elections

stop and we can see the normal operations time has

increased significantly in term 19. This indicates

the return to a stable normal operations state of the

whole raft cluster. Even with other faults like

ordinary leader failure, this change won’t affect the

normal election process. We made sure, there is

only limited changes to the algorithm, so as not to

introduce any more bugs, as designing any

distributed systems normally leads to.

A. Secondary Advantage

Another advantage of having a node in the

unavailable state is that the client might know

about it from interacting with that specific node.

Making Raft Consensus A Little More Fault-Tolerant Section A-Research Paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 3763 –3769 3769

With this knowledge and the clients already having

all the IPs of the cluster members, they can simply

redirect their query to any of the other members.

V. CONCLUSION

We have proposed adding a new mode to the Raft’s

existing 3 called Unavailable to prevent non-trivial

scenario of repeated elections in the presence of

partial network partitions. We have explained the

scenarios in which repeated elections happen and

how we could prevent it with the introduction of

this new mode/role. We made sure there are no

subsequent bugs introduced because of our change

to the algorithm.

We also simulated the original problem with a

Discrete Event Simulator and showed the resultant

repeated election. We have also shown the result of

changes to the raft algorithm and how it stops the

whole cluster from going into an indefinite election

phase disrupting normal operations.

Since a distributed consensus algorithm like Raft is

works in the core part of a distribud system, the

effects of even a small improvement, will have

second or third order effects in the software that

use this. The above mentioned Cloudflare incident

is the prime example of this cacading effect.

REFERENCES

1. D. Ongaro and J. Ousterhout, “In Search of an

Understandable Consensus Algorithm,” p. 18.

2. Digital Equipment Corporation and L. Lamport,

“The part-time parliament,” in Concurrency:

the Works of Leslie Lamport, D. Malkhi, Ed.,

Association for Computing Machinery, 2019.

doi: 10.1145/3335772.3335939.

3. “Raft Implementations. ”https://raft.github.

io/#implementations

4. “TLA+.”

https://lamport.azurewebsites.net/tla/tla.html

5. “etcd,” etcd. https://etcd.io

6. “CoackroachDB.”

https://www.cockroachlabs.com

7. “Hazelcast.”

https://github.com/hazelcast/hazelcast

8. “Rethink DB.” https://rethinkdb.com

9. “Atomix.” https://atomix.io

10. “Cloudflare.” https://www.cloudflare.com/

11. “Cloudflare etcd raft outage,” Cloudflare etcd

raft outage. https://blog.cloudflare.com/a-

byzantine-failure-in-the-real-world/

12. “Twitter - Raft partial network failure.”

13. H. Howard and J. Crowcroft, “Coracle:

Evaluating Consensus at the Internet Edge,” in

Proceedings of the 2015 ACM Conference on

Special Interest Group on Data Communi-

cation, London United Kingdom: ACM, Aug.

2015, pp. 85–86. doi: 10.1145/2785956. 27900

10.

14. C. Jensen, H. Howard, and R. Mortier,

“Examining Raft’s behaviour during partial

network failures,” in Proceedings of the 1st

Workshop on High Availability and

Observability of Cloud Systems, Online United

Kingdom: ACM, Apr. 2021, pp. 11–17. doi:

10.1145/3447851.3458739.

15. “In Search of an Understandable Consensus

Algorithm (Extended Version)”, [Online].

Available:

https://pages.cs.wisc.edu/~remzi/Classes/739/S

pring2004/Papers/raft.pdf

16. I. A. Heidi Howard, “Raft Does not guarentee

Liveness in the face of Network Faults,” Raft

does not Guarantee Liveness in the face of

Network Faults, Dec. 12, 2020.

https://decentralizedthoughts.github.io/2020-

12-12-raft-liveness-full-omission/

