
Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3276

ANALYSIS AND DESIGN OF AN INTEGRATED

MODEL FOR INCREASING THE PERFORMANCE

OF MAP REDUCE ON HETEROGENEOUS BIG

DATA PROCESSING

V. Naveen Kumar1, Dr. Ashok Kumar P S2

Article History: Received: 24.02.2023 Revised: 10.04.2023 Accepted: 26.05.2023

Abstract

Heterogeneous big data processing poses significant challenges due to the diverse

nature of data and the varying computational capabilities of processing resources. Map

Reduce is a common programme paradigm for handling massive amounts of data, but

its performance on heterogeneous environments is often suboptimal. This paper

presents an integrated model that aims to enhance the performance of Map Reduce on

heterogeneous big data processing. The model incorporates several techniques and

optimizations to efficiently utilize the available resources and minimize the impact of

resource heterogeneity. Experimental evaluations determine the efficiency and

advantage of the suggested model in terms of performance improvement, resource

utilization, and scalability. The results specify that the integrated model can

significantly enhance the performance of Map Reduce on heterogeneous big data

processing scenarios. In proposed system, designed a new scheduling algorithm,

Speculating Prioritize Tasks (SPT) algorithm that is very resistant to diversity. In

clustering of 200 virtual machines on Elastic Compute Cloud (EC2), SPT may

enhance Hadoop speed of response through a factor of two.

Keywords: Map Reduce, Heterogeneous Environment, Speculating Prioritize Tasks,

Big Data, Elastic Compute Cloud.

1Research Scholar, Don Bosco Institute of Technology, Affiliated to Visvesvaraya

Technological University,

 Email: naveenvipparla@gmail.com
2Professor & HOD, Dept. of CSE, HKBK College of Engineering,

Email: ashokdbit2017@gmail.com

DOI: 10.31838/ecb/2023.12.s3.393

mailto:naveenvipparla@gmail.com
mailto:ashokdbit2017@gmail.com

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3276

1. INTRODUCTION

MapReduce is a software development

concept along with its execution that is

used to development and produce huge

data assortments. It is intended for

scaling from an individual computer to

several thousand computers, each of

which may have different hardware

capabilities. Heterogeneous

environments are those that consist of a

mix of different types of hardware,

such as different types of CPUs,

different amounts of memory, and

different network speeds [1].

Optimizing MapReduce performance in

heterogeneous environments can be

challenging, but there are a number of

strategies for improving performance

[2].

One technique is to use a technique

called task scheduling. Task scheduling

is the process of assigning tasks to

machines in a cluster. The purpose of

task scheduling is to reduce the total

time required to complete a work.

There is several work scheduling

methods available. and the best

algorithm to use will depend on the

specific characteristics of the

heterogeneous environment [3].

Another technique for improving

MapReduce concert in heterogeneous

atmospheres is to use data locality.

Data locality is the principle that data

should be stored on the same machine

as the code that is processing it. This

can be achieved by using a technique

called data partitioning as shown in fig

1.

Figure 1. MapReducing Process (source: https://www.ntt-review.jp/)

Data partitioning is the process of

dividing a large data set into smaller

pieces, and then storing each piece on a

different machine [4]. Finally, it is

important to use the right tools for the

job. There are a number of different

MapReduce frameworks available, and

each framework has its own strengths

and weaknesses [5,6]. The best

framework to use will depend on the

specific characteristics of the

heterogeneous environment.

https://www.ntt-review.jp/

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3278

Prioritize Tasks is a technique used to

improve the act of MapReduce jobs.

Scheduling works by speculatively

throwing additional tasks for slow-

running. The idea is that one of the

speculative tasks can finish executing

earlier than the original task, it may

assist to minimise total work execution

time [7]. Scheduling is implemented in

the Hadoop MapReduce framework.

When a MapReduce job is submitted,

the Hadoop scheduler will

speculatively launch additional tasks

for any tasks that are predicted to take

longer than a certain threshold [8]. The

scheduler will choose the machines to

run the speculative tasks on based on a

number of factors, such as the

machine's CPU speed, memory, and

network bandwidth [9].

Scheduling has been shown to be an

effective way of MapReduce jobs'

efficiency should be improved. In a

study conducted by researchers at the

University of California, Berkeley,

Scheduling was shown to reduce the

execution time of MapReduce jobs by

up to 50%. Elastic compute Cloud

(EC2) is an Amazon Web Services

(AWS) online service that offers re-

sizable computing power in the cloud.

It enables users to rent virtual servers,

known as instances, to run applications

and perform various computing tasks

[10]. EC2 offers a flexible and scalable

infrastructure for businesses and

developers, allowing them to quickly

provision and manage virtual servers

based on their needs.

RELATED WORKS

Clustering enormous amounts of data is

a relatively new and much discussed

topic that is working in a wide-variety

of uses, such as social networking,

bioinformatics, and a great deal of

other fields. Traditional clustering

techniques need to be refined in order

to accommodate the ever-increasing

amounts of data that need to be

managed [11]. The usefulness of the

suggested HHHO was shown via the

use of numerical comparisons, which

demonstrated the method's

effectiveness in achieving the desired

results.

In addition, the current approaches lack

strong methods for managing

communication overhead as well as

effective techniques for loading parallel

data in parallel [12].

The MapReduce algorithm, which

combines the map and reduces

processes, is now one of the most often

used categorization algorithms for huge

amounts of data. The mapping strategy

is used for the process of filtering and

organising, and the reduction method is

utilised for the purpose of combining

the final classification findings [13].

The suggested method produces values

for accuracy, specificity, and sensitivity

for two different datasets: one

including rotten tomatoes movie

reviews and the other containing

dermatology data.

This study presents a complete

evaluation of connected subjects such

as the idea of big data, modelling

driven and data driven techniques, in

order to completely report Big Data

Amalytics (BDA) for intelligent

manufacturing systems. This review is

provided in addition to fully report Big

Data Amalytics (BDA). The discussion

focuses on the framework [14] of BDA

for intelligent manufacturing systems,

as well as its development, essential

technologies, and application areas.

Both the obstacles and the prospects for

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3279

the direction of future research are

discussed. It is envisaged that new

ideas will be generated as a result of

this study as part of the ongoing

endeavour to realise the BDA for

intelligent manufacturing systems.

The suggested method [15] for

clustering large amounts of data goes

through two stages, which are feature

selection and clustering, both of which

are carried out in the first cluster nodes

of architecture of the sparks.

Because the Application Programming

Interfaces (APIs) for end users need to

be modified in order to have access to

the underlying heterogeneous

hardware, the programmability of the

system suffers as a result of this

integration at the present time. For

instance, modern Big Data frameworks

like Apache Spark provide a new

application programming interface

(API) that integrates GPUs with the

Spark programming paradigm that is

already in use. In order to cluster large

amounts of data, the suggested method

[16] goes through two stages, which are

feature selection and clustering. Both

stages take place in the first cluster

nodes of the spark architecture.

The inconsistent big data computing

model does not take into account two

levels of parallelism among the nodes.

Additionally, communication related

overhead is high, the running time of

the model is lengthy, and the

computational weight is small [17].

The resolution of this study is to

develop [18] a fresh conceptual frame

for BDA in the healthcare industry that

is suitable for implementation in the

European Mediterranean area. The big

data quality (BDQ) module is a new

addition to this framework. Its purpose

is to filter and clean the data that are

delivered from various European data

sources.

Numerous studies have been conducted

on velocity and volume; however there

is still no comprehensive and effective

solution on the market for these

variables. As part of the traditional

solutions offered by DBMS,

multidimensional data types are often

used [19]. Many of today's data

formats, however, are not compatible

with the conventional computer

systems mentioned previously.

However, in spite of the progress made

in this area of study, very few articles

have been discovered that discuss

architectural components. Furthermore,

there is a lack of norms and the

utilisation of position architectures,

both of which are necessary for

appropriate development [20].

PROPOSED MODEL

Hadoop considers that any node that is

noticeably sluggish is broken.

However, nodes might be inactive for a

variety of reasons. As a result of co-

location of VMs on one observable

host, heterogeneity may occur in a

virtualized data centre. The

performance of CPUs and memories is

separated by virtualization, but the

capacity of discs and networks is also

shared between the virtual machines.

When there is no conflict, co-located

VMs consume the entire bandwidth of

the host and split bandwidth equitably

when there is disputation. VMs

belonging to other users may compete

with one another temporarily, or VMs

belonging to a user may compete with

one another permanently, as in Hadoop.

It is not fundamentally harmful to have

EC2 bandwidth shared. However, this

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3280

policy does present challenges for

Hadoop.

Although the scheduler utilises a set

threshold to choose speculative jobs, an

excessive number of speculative tasks

may be started, diverting resources

away from beneficial tasks.

Furthermore, since the scheduler

prioritises candidates based on their

location, the incorrect jobs may be

assigned first for guessing. For

instance, if the average performance

was 80% and the work was two times

slower at 30% advancement and a 10

times slow task at 6% improvement,

the 2 times slow than the task may be

hypothesised first.

Figure 2. Architecture of Proposed Framework

The proposed SPT algorithm is

depends on three principles: Prioritise

tasks for speculation, choose fast nodes

for execution, and limit speculating

tasks to avoid thrashing. The SPT

algorithm employs the following

variables to realise these principles:

Slow_Node Threshold (SNT) - This

data is the limit to prevent scheduling

on sluggish nodes. This number is used

A
p

p
li

ca
ti

o
n

Task 1 Task 2 Task n Track 1 Track 2 Track n

Master Slave

Task
Queue

Scheduling
Task

SPT Model

Task
Tracker

Distributed_File

Local_File

Local_Communication Remote_Communication

P
ro

p
o

se
d

F

ra
m

ew
o

rk

F
il

e
Sy

st
em

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3281

for comparing the scores of all

completed and on-going jobs on the

node.

Speculative_Cap (SC) - It is the

maximum number of speculative jobs

that may execute concurrently.

Slow_Task Threshold (STT) - It is a

progress rate criterion used to assess if

an activity is sluggish enough to

warrant speculation. When only quick

processes are running, this eliminates

unnecessary conjecture.

The task's progress rate is indicated by

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒
(1)

The time remaining element for the

work is calculated using Hadoop's

Progress Score.
(1 – 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒)

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑅𝑎𝑡𝑒
 (2)

When a node's task slot is empty,

Hadoop selects a task from one of three

types. First and foremost, any

unsuccessful tasks are given top

importance. This is done to identify and

halt the job when a task fails frequently

due to a problem. Second, non-running

jobs are taken into account.

To identify speculative tasks, Hadoop

calculates a progress score between 0

and 1. As a result of reading input data,

the progress score for a map is

calculated. In a reduction task, one

third of the score is accounted for by

each of its three components:

 Copy Phase – The job retrieves

map results.

 Sort Phase - The outputs of the

map are ordered by key.

 Reduce Phase – The user-

defined method is assigned to

each key in the set of map

outputs.

While a metric’s like development

rate, makes greater than definitive

progress for determining, a threshold in

Hadoop works effectively in

homogeneous circumstances due to

tasks tend to begin and conclude in

"waves". In conclusion, while

executing many jobs, Hadoop employs

a FIFO correction in which the first

proposed job is requested for a task to

execute, followed by the next, and so

on. There is also an ordering

mechanism in place to place work in

higher-priority lanes.

Algorithm 1 SPT Algorithm

Step 1. A new task is requested by node

N.

Step 2. If there are more than one

running speculative_tasks < SC then

Step 3. If nodes are making progress

<SNT then

Step 4. Delete the request

Step 5. else

Step 6. By estimated time left, rank tasks

currently running without speculation

Step 7. repeat

Step 8. From the ranked list, select task

T

Step 9. Assume T is progressing at a

certain rate <STT then

Step 10. Activate node N by launching

T

Step 11. exit

Step 12. end if

Step 13. While there are tasks on the

ranked list

Step 14. end if

Step 15. end if

Let's assume we have a list of numbers

and we want to analyse the sum of

squares using MapReduce. The input

dataset is divided into portions, and a

mapper is used to process each section.

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3282

The mappers calculate the square of

each number and emit key-value

sequences with the key squares and the

value 1. The reducer receives the key-

value pairs, aggregates them by

summing the values, and calculates the

final sum of squares.

The mathematical model for

MapReduce task job process in a

heterogeneous cluster can be

formulated as follows:

Let J be a MapReduce job, consisting

of m tasks, and let there be n compute

nodes in the cluster. Let each node be

identified by a unique index 𝑖 (𝑖 =
1, 2, … , 𝑛). Let 𝑇𝑖 , 𝑗 be the execution

time for task j on node i.

Then, the average and maximum task durations for a job J can be estimated as:

𝑀(𝑎𝑣𝑔 𝑡𝑜 𝑚𝑎𝑥) = (1/𝑚) ∗ 𝑠𝑢𝑚(𝑖 = 1 𝑡𝑜 𝑛)𝑠𝑢𝑚 (𝑗 = 1 𝑡𝑜 𝑚) 𝑇𝑖 , 𝑗 (3)

𝑀(max 𝑡𝑜 𝐽) = max[𝑠𝑢𝑚 (𝑖 = 1 𝑡𝑜 𝑛)𝑇𝑖 , 𝑗] (4)

Figure 3. Map Reduce on Heterogeneous Big Data Processing

Pseudocode for Proposed Model

Map function:

function Map(key, value):

 // key: input chunk identifier

Input

File Master
Intermediate

Data

Map Task

Storage File

Reduce Task

Result File

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3283

 // value: input chunk of numbers

 for each number in value:

 square = number * number

 emit(square, 1)

Reduce function:

function Reduce(key, values):

 // key: square of a number

 // values: list of 1s

 sum = 0

 for each value in values:

 sum = sum + value

 emit(key, sum)

Driver function:

function MapReduce(input):

 // input: list of numbers

 // Split input into chunks

 chunks = splitInput(input)

 // Map phase

 mappedData = []

 for each chunk in chunks:

mappedData.append(Map(chunk.identi

fier, chunk.data))

 // Shuffle and sort phase

 shuffledData =

shuffleAndSort(mappedData)

 // Reduce phase

 reducedData = []

 for each key-value pair in

shuffledData:

 reducedData.append(Reduce(key,

pair.values))

 // Final output

 output = []

 for each key-value pair in

reducedData:

 output.append(pair)

 return output

In this example, the Map function

processes each number in the input

chunk, calculates the square, and emits

a key-value pair with the square as the

key and 1 as the value. The Reduce

function receives the key-value pairs

and sums up the values to calculate the

final sum of squares. The driver

function orchestrates the overall

MapReduce process, splitting the input,

mapping, shuffling, reducing, and

producing the final output.

2. RESULTS AND

DISCUSSIONS

We started our analysis by assessing

heterogeneity in the EC2 production

system. When we did our scheduling

tests, however, Amazon allocated us to

a different test cluster. Amazon

transferred this to cluster while our

research revealed a fault in the network

programme that caused connections

among our VMs to fail periodically in

production. Our EC2 experimentations

competed on "small"-size EC2 VMs

through the memory of 1.7 GB, 1

simulated core with "the equivalent of a

1.0-1.2 GHz 2007 Opteron or Xeon

processor," and 160 GB of HDD on

hypothetically collective hard drive.

We ran extensive tests on the SPT

algorithm on an EC2 heterogeneous

cluster. According to one testing, SPT

completed tasks 27% quicker than It is

31% faster than Hadoop's native

scheduler in a cluster with non-faulty

nodes. Even in the absence of

problematic nodes, SPT yields

advantages in diverse settings. SPT

performed Sort with stragglers tasks

58% quicker than this scheduler

performs 200% quicker than Hadoop

with speculative implementation

disabled and 220% faster than

Hadoop's native scheduler. The

comparison of SPT's worst-case, best-

case, and average-case performance

versus the Hadoops scheduler, with no

guesswork for runs without and with

stragglers as shown in fig 4-8.

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3283

Figure 4. SPT Running Time

Figure 5. Energy Consumption

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Worst Best Average

R
u

n
n

in
g_

Ti
m

e

No Speculation

Hadoop Native

SPT Scheduler

0

0.1

0.2

0.3

0.4

0.5

0.6

No Speculation Hadoop Native SPT Model

En
e

rg
y

C
o

n
su

m
p

ti
o

n

Task Scheduling

Average

Worst

Best

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3284

Figure 6. Performance of SC time

Figure 7. Performance of STT time

0

50

100

150

200

250

300

1 2 3 4 5 6

TI
M

E
(S

/N
O

D
E)

SC

Response Time Wasted Time

0

50

100

150

200

250

300

1 2 3 4 5 6

TI
M

E
(S

/N
O

D
E)

STT (%)

Response Time Wasted Time

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3285

Figure 8. Performance of SNT time

In the test setting, sensitivity analysis to

Speculative Cap revealed that reaction

time declines substantially at

Speculative Cap = 20%, after which it

remains low. The greater threshold

value is also undesirable since it causes

SPT to spend more time on excessive

speculation. Experiments with

Sensitivity to Slow Task Threshold

reveal that low threshold values restrict

the amount of speculative tasks, whilst

values over 30% function. Sensitivity

study to Slow Node Threshold

demonstrates that SPT functions

effectively as long as Slow Node

Threshold is greater than the proportion

of nodes that are very slow or

malfunctioning.

3. CONCLUSION

Big data processing is a critical

component in extracting valuable

insights from large-scale datasets.

Various frameworks and tools have

been developed to handle the

challenges posed by big data. As data

continues to grow exponentially, it is

essential for organizations to adopt

scalable, fault-tolerant, and efficient big

data processing techniques to unlock

the full potential of their data assets. In

this paper, we have evaluated the

performance of our approach SPT

scheduling algorithm which improves

the performance of hadoop. It

outperforms conventional map reduce

scheduling. However, SPT can also

increase the overall resource usage of a

MapReduce job. This is because the

scheduler will be launching additional

tasks, even for tasks that are not

actually slow. As a result, it is

important to carefully consider the

trade-offs between performance and

resource usage when using SPT.

165

170

175

180

185

190

195

1 2 3 4 5 6

TI
M

E
(S

/N
O

D
E)

SNT(%)

Response Time Wasted Time

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3287

4. REFERENCES

[1] Aarthee, S., & Prabakaran, R.

(2023). Energy-Aware Heuristic

Scheduling Using Bin Packing

MapReduce Scheduler for

Heterogeneous Workloads

Performance in Big Data. Arabian

Journal for Science and

Engineering, 48(2), 1891-1905.

[2] Yang, S., Jin, W., Yu, Y., &

Hashim, K. F. (2023). Optimized

hadoop map reduce system for

strong analytics of cloud big

product data on amazon web

service. Information Processing &

Management, 60(3), 103271.

[3] Bawankule, K. L., Dewang, R. K.,

& Singh, A. K. (2023). Early

straggler tasks detection by

recurrent neural network in a

heterogeneous

environment. Applied

Intelligence, 53(7), 7369-7389.

[4] Kalia, K., & Gupta, N. (2021).

Analysis of hadoop MapReduce

scheduling in heterogeneous

environment. Ain Shams

Engineering Journal, 12(1), 1101-

1110.

[5] Luo, C., Cao, Q., Li, T., Chen, H.,

& Wang, S. (2023). MapReduce

accelerated attribute reduction

based on neighborhood entropy

with Apache Spark. Expert

Systems with Applications, 211,

118554.

[6] Pandey, R., & Silakari, S. (2023).

Investigations on optimizing

performance of the distributed

computing in heterogeneous

environment using machine

learning technique for large scale

data set. Materials Today:

Proceedings, 80, 2976-2982.

[7] Jagadish Kumar, N., &

Balasubramanian, C. (2023).

Hybrid Gradient Descent Golden

Eagle Optimization (HGDGEO)

Algorithm-Based Efficient

Heterogeneous Resource

Scheduling for Big Data

Processing on Clouds. Wireless

Personal

Communications, 129(2), 1175-

1195.

[8] Slagter, K., Hsu, C. H., Chung, Y.

C., & Zhang, D. (2013). An

improved partitioning mechanism

for optimizing massive data

analysis using MapReduce. The

Journal of Supercomputing, 66,

539-555.

[9] Che, D., Safran, M., & Peng, Z.

(2013). From big data to big data

mining: challenges, issues, and

opportunities. In Database

Systems for Advanced

Applications: 18th International

Conference, DASFAA 2013,

International Workshops: BDMA,

SNSM, SeCoP, Wuhan, China,

April 22-25, 2013. Proceedings

18 (pp. 1-15). Springer Berlin

Heidelberg.

[10] Uma Maheswara Rao, S., &

Lakshmanan, L. (2023). Security

and scalability issues in big data

analytics in heterogeneous

networks. Soft Computing, 1-7.

[11] Bashabsheh, M. Q., Abualigah, L.,

& Alshinwan, M. (2022). Big data

analysis using hybrid meta-

heuristic optimization algorithm

and MapReduce framework.

In Integrating meta-heuristics and

machine learning for real-world

optimization problems (pp. 181-

Section A-Research paper Analysis And Design Of An Integrated Model For

Increasing The Performance Of Map Reduce On

Heterogeneous Big Data Processing

Eur. Chem. Bull. 2023, 12 (S3), 3276 – 3288 3288

223). Cham: Springer

International Publishing.

[12] Babar, M., Jan, M. A., He, X.,

Tariq, M. U., Mastorakis, S., &

Alturki, R. (2022). An optimized

IoT-enabled big data analytics

architecture for edge-cloud

computing. IEEE Internet of

Things Journal.

[13] Chidambaram, S., & Gowthul

Alam, M. M. (2022). An

integration of archerfish hunter

spotted hyena optimization and

improved ELM classifier for

multicollinear big data

classification tasks. Neural

Processing Letters, 54(3), 2049-

2077.

[14] Wang, J., Xu, C., Zhang, J., &

Zhong, R. (2022). Big data

analytics for intelligent

manufacturing systems: A

review. Journal of Manufacturing

Systems, 62, 738-752.

[15] Ravuri, V., & Vasundra, S.

(2020). Moth-flame optimization-

bat optimization: Map-reduce

framework for big data clustering

using the Moth-flame bat

optimization and sparse Fuzzy C-

means. Big Data, 8(3), 203-217.

[16] Xekalaki, M., Fumero, J.,

Stratikopoulos, A., Doka, K.,

Katsakioris, C., Bitsakos, C., ... &

Kotselidis, C. (2022). Enabling

Transparent Acceleration of Big

Data Frameworks Using

Heterogeneous

Hardware. Proceedings of the

VLDB Endowment, 15(13), 3869-

3882.

[17] Yin, F., & Shi, F. (2022).

Heterogeneous Big Data Parallel

Computing Optimization Model

using MPI/OpenMP Hybrid and

Sensor Networks. ACM

Transactions on Sensor Networks.

[18] El Samad, M., El Nemar, S.,

Sakka, G., & El-Chaarani, H.

(2022). An innovative big data

framework for exploring the

impact on decision-making in the

European Mediterranean

healthcare sector. EuroMed

Journal of Business.

[19] Naeem, M., Jamal, T., Diaz-

Martinez, J., Butt, S. A.,

Montesano, N., Tariq, M. I., ... &

De-La-Hoz-Valdiris, E. (2022).

Trends and future perspective

challenges in big data.

In Advances in Intelligent Data

Analysis and Applications:

Proceeding of the Sixth Euro-

China Conference on Intelligent

Data Analysis and Applications,

15–18 October 2019, Arad,

Romania (pp. 309-325). Springer

Singapore.

[20] Cravero, A., Bustamante, A.,

Negrier, M., & Galeas, P. (2022).

Agricultural Big Data

Architectures in the Context of

Climate Change: A Systematic

Literature

Review. Sustainability, 14(13),

7855.

