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Abstract 

 

Heterogeneous big data processing poses significant challenges due to the diverse 

nature of data and the varying computational capabilities of processing resources. Map 

Reduce is a common programme paradigm for handling massive amounts of data, but 

its performance on heterogeneous environments is often suboptimal. This paper 

presents an integrated model that aims to enhance the performance of Map Reduce on 

heterogeneous big data processing. The model incorporates several techniques and 

optimizations to efficiently utilize the available resources and minimize the impact of 

resource heterogeneity. Experimental evaluations determine the efficiency and 

advantage of the suggested model in terms of performance improvement, resource 

utilization, and scalability. The results specify that the integrated model can 

significantly enhance the performance of Map Reduce on heterogeneous big data 

processing scenarios. In proposed system, designed a new scheduling algorithm, 

Speculating Prioritize Tasks (SPT) algorithm that is very resistant to diversity. In 

clustering of 200 virtual machines on Elastic Compute Cloud (EC2), SPT may 

enhance Hadoop speed of response through a factor of two. 
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1. INTRODUCTION 

 

MapReduce is a software development 

concept along with its execution that is 

used to development and produce huge 

data assortments. It is intended for 

scaling from an individual computer to 

several thousand computers, each of 

which may have different hardware 

capabilities. Heterogeneous 

environments are those that consist of a 

mix of different types of hardware, 

such as different types of CPUs, 

different amounts of memory, and 

different network speeds [1]. 

Optimizing MapReduce performance in 

heterogeneous environments can be 

challenging, but there are a number of 

strategies for improving performance 

[2]. 

One technique is to use a technique 

called task scheduling. Task scheduling 

is the process of assigning tasks to 

machines in a cluster. The purpose of 

task scheduling is to reduce the total 

time required to complete a work. 

There is several work scheduling 

methods available. and the best 

algorithm to use will depend on the 

specific characteristics of the 

heterogeneous environment [3]. 

Another technique for improving 

MapReduce concert in heterogeneous 

atmospheres is to use data locality. 

Data locality is the principle that data 

should be stored on the same machine 

as the code that is processing it. This 

can be achieved by using a technique 

called data partitioning as shown in fig 

1.  

 
Figure 1. MapReducing Process (source: https://www.ntt-review.jp/) 

 

Data partitioning is the process of 

dividing a large data set into smaller 

pieces, and then storing each piece on a 

different machine [4]. Finally, it is 

important to use the right tools for the 

job. There are a number of different 

MapReduce frameworks available, and 

each framework has its own strengths 

and weaknesses [5,6]. The best 

framework to use will depend on the 

specific characteristics of the 

heterogeneous environment. 

https://www.ntt-review.jp/
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Prioritize Tasks is a technique used to 

improve the act of MapReduce jobs. 

Scheduling works by speculatively 

throwing additional tasks for slow-

running. The idea is that one of the 

speculative tasks can finish executing 

earlier than the original task, it may 

assist to minimise total work execution 

time [7]. Scheduling is implemented in 

the Hadoop MapReduce framework. 

When a MapReduce job is submitted, 

the Hadoop scheduler will 

speculatively launch additional tasks 

for any tasks that are predicted to take 

longer than a certain threshold [8]. The 

scheduler will choose the machines to 

run the speculative tasks on based on a 

number of factors, such as the 

machine's CPU speed, memory, and 

network bandwidth [9]. 

Scheduling has been shown to be an 

effective way of MapReduce jobs' 

efficiency should be improved. In a 

study conducted by researchers at the 

University of California, Berkeley, 

Scheduling was shown to reduce the 

execution time of MapReduce jobs by 

up to 50%. Elastic compute Cloud 

(EC2) is an Amazon Web Services 

(AWS) online service that offers re-

sizable computing power in the cloud. 

It enables users to rent virtual servers, 

known as instances, to run applications 

and perform various computing tasks 

[10]. EC2 offers a flexible and scalable 

infrastructure for businesses and 

developers, allowing them to quickly 

provision and manage virtual servers 

based on their needs. 

 

RELATED WORKS 

Clustering enormous amounts of data is 

a relatively new and much discussed 

topic that is working in a wide-variety 

of uses, such as social networking, 

bioinformatics, and a great deal of 

other fields. Traditional clustering 

techniques need to be refined in order 

to accommodate the ever-increasing 

amounts of data that need to be 

managed [11]. The usefulness of the 

suggested HHHO was shown via the 

use of numerical comparisons, which 

demonstrated the method's 

effectiveness in achieving the desired 

results. 

In addition, the current approaches lack 

strong methods for managing 

communication overhead as well as 

effective techniques for loading parallel 

data in parallel [12]. 

The MapReduce algorithm, which 

combines the map and reduces 

processes, is now one of the most often 

used categorization algorithms for huge 

amounts of data. The mapping strategy 

is used for the process of filtering and 

organising, and the reduction method is 

utilised for the purpose of combining 

the final classification findings [13]. 

The suggested method produces values 

for accuracy, specificity, and sensitivity 

for two different datasets: one 

including rotten tomatoes movie 

reviews and the other containing 

dermatology data. 

This study presents a complete 

evaluation of connected subjects such 

as the idea of big data, modelling 

driven and data driven techniques, in 

order to completely report Big Data 

Amalytics (BDA) for intelligent 

manufacturing systems. This review is 

provided in addition to fully report Big 

Data Amalytics (BDA). The discussion 

focuses on the framework [14] of BDA 

for intelligent manufacturing systems, 

as well as its development, essential 

technologies, and application areas. 

Both the obstacles and the prospects for 
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the direction of future research are 

discussed. It is envisaged that new 

ideas will be generated as a result of 

this study as part of the ongoing 

endeavour to realise the BDA for 

intelligent manufacturing systems. 

The suggested method [15] for 

clustering large amounts of data goes 

through two stages, which are feature 

selection and clustering, both of which 

are carried out in the first cluster nodes 

of architecture of the sparks. 

Because the Application Programming 

Interfaces (APIs) for end users need to 

be modified in order to have access to 

the underlying heterogeneous 

hardware, the programmability of the 

system suffers as a result of this 

integration at the present time. For 

instance, modern Big Data frameworks 

like Apache Spark provide a new 

application programming interface 

(API) that integrates GPUs with the 

Spark programming paradigm that is 

already in use. In order to cluster large 

amounts of data, the suggested method 

[16] goes through two stages, which are 

feature selection and clustering. Both 

stages take place in the first cluster 

nodes of the spark architecture. 

The inconsistent big data computing 

model does not take into account two 

levels of parallelism among the nodes. 

Additionally, communication related 

overhead is high, the running time of 

the model is lengthy, and the 

computational weight is small [17]. 

The resolution of this study is to 

develop [18] a fresh conceptual frame 

for BDA in the healthcare industry that 

is suitable for implementation in the 

European Mediterranean area. The big 

data quality (BDQ) module is a new 

addition to this framework. Its purpose 

is to filter and clean the data that are 

delivered from various European data 

sources. 

Numerous studies have been conducted 

on velocity and volume; however there 

is still no comprehensive and effective 

solution on the market for these 

variables. As part of the traditional 

solutions offered by DBMS, 

multidimensional data types are often 

used [19]. Many of today's data 

formats, however, are not compatible 

with the conventional computer 

systems mentioned previously. 

However, in spite of the progress made 

in this area of study, very few articles 

have been discovered that discuss 

architectural components. Furthermore, 

there is a lack of norms and the 

utilisation of position architectures, 

both of which are necessary for 

appropriate development [20]. 

 

PROPOSED MODEL 

Hadoop considers that any node that is 

noticeably sluggish is broken. 

However, nodes might be inactive for a 

variety of reasons. As a result of co-

location of VMs on one observable 

host, heterogeneity may occur in a 

virtualized data centre. The 

performance of CPUs and memories is 

separated by virtualization, but the 

capacity of discs and networks is also 

shared between the virtual machines. 

When there is no conflict, co-located 

VMs consume the entire bandwidth of 

the host and split bandwidth equitably 

when there is disputation. VMs 

belonging to other users may compete 

with one another temporarily, or VMs 

belonging to a user may compete with 

one another permanently, as in Hadoop. 

It is not fundamentally harmful to have 

EC2 bandwidth shared. However, this 
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policy does present challenges for 

Hadoop.  

Although the scheduler utilises a set 

threshold to choose speculative jobs, an 

excessive number of speculative tasks 

may be started, diverting resources 

away from beneficial tasks. 

Furthermore, since the scheduler 

prioritises candidates based on their 

location, the incorrect jobs may be 

assigned first for guessing. For 

instance, if the average performance 

was 80% and the work was two times 

slower at 30% advancement and a 10 

times slow task at 6% improvement, 

the 2 times slow than the task may be 

hypothesised first. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture of Proposed Framework 

 

The proposed SPT algorithm is 

depends on three principles: Prioritise 

tasks for speculation, choose fast nodes 

for execution, and limit speculating 

tasks to avoid thrashing. The SPT 

algorithm employs the following 

variables to realise these principles: 

Slow_Node Threshold (SNT) - This 

data is the limit to prevent scheduling 

on sluggish nodes. This number is used 
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for comparing the scores of all 

completed and on-going jobs on the 

node.  

Speculative_Cap (SC) - It is the 

maximum number of speculative jobs 

that may execute concurrently.  

Slow_Task Threshold (STT) - It is a 

progress rate criterion used to assess if 

an activity is sluggish enough to 

warrant speculation. When only quick 

processes are running, this eliminates 

unnecessary conjecture.  

The task's progress rate is indicated by  

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒 = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒   
(1) 

The time remaining element for the 

work is calculated using Hadoop's 

Progress Score. 
(1 – 𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑆𝑐𝑜𝑟𝑒)

𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑅𝑎𝑡𝑒
                (2) 

When a node's task slot is empty, 

Hadoop selects a task from one of three 

types. First and foremost, any 

unsuccessful tasks are given top 

importance. This is done to identify and 

halt the job when a task fails frequently 

due to a problem. Second, non-running 

jobs are taken into account.  

To identify speculative tasks, Hadoop 

calculates a progress score between 0 

and 1. As a result of reading input data, 

the progress score for a map is 

calculated. In a reduction task, one 

third of the score is accounted for by 

each of its three components: 

 Copy Phase – The job retrieves 

map results. 

 Sort Phase - The outputs of the 

map are ordered by key. 

 Reduce Phase – The user-

defined method is assigned to 

each key in the set of map 

outputs. 

While a metric’s like development 

rate, makes greater than definitive 

progress for determining, a threshold in 

Hadoop works effectively in 

homogeneous circumstances due to 

tasks tend to begin and conclude in 

"waves". In conclusion, while 

executing many jobs, Hadoop employs 

a FIFO correction in which the first 

proposed job is requested for a task to 

execute, followed by the next, and so 

on. There is also an ordering 

mechanism in place to place work in 

higher-priority lanes. 

Algorithm 1 SPT Algorithm 

Step 1. A new task is requested by node 

N. 

Step 2. If there are more than one 

running speculative_tasks < SC then 

Step 3. If nodes are making progress 

<SNT then 

Step 4. Delete the request 

Step 5. else 

Step 6. By estimated time left, rank tasks 

currently running without speculation 

Step 7. repeat 

Step 8. From the ranked list, select task 

T 

Step 9.  Assume T is progressing at a 

certain rate <STT then 

Step 10. Activate node N by launching 

T 

Step 11. exit  

Step 12. end if 

Step 13. While there are tasks on the 

ranked list 

Step 14.  end if 

Step 15. end if 

Let's assume we have a list of numbers 

and we want to analyse the sum of 

squares using MapReduce. The input 

dataset is divided into portions, and a 

mapper is used to process each section. 
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The mappers calculate the square of 

each number and emit key-value 

sequences with the key squares and the 

value 1. The reducer receives the key-

value pairs, aggregates them by 

summing the values, and calculates the 

final sum of squares. 

The mathematical model for 

MapReduce task job process in a 

heterogeneous cluster can be 

formulated as follows: 

Let J be a MapReduce job, consisting 

of m tasks, and let there be n compute 

nodes in the cluster. Let each node be 

identified by a unique index 𝑖 (𝑖 =
1, 2, … , 𝑛). Let 𝑇𝑖 , 𝑗 be the execution 

time for task j on node i. 

 

Then, the average and maximum task durations for a job J can be estimated as: 

𝑀(𝑎𝑣𝑔 𝑡𝑜 𝑚𝑎𝑥) =  (1/𝑚) ∗ 𝑠𝑢𝑚(𝑖 = 1 𝑡𝑜 𝑛)𝑠𝑢𝑚 (𝑗 = 1 𝑡𝑜 𝑚) 𝑇𝑖 , 𝑗 (3) 

𝑀(max 𝑡𝑜 𝐽) = max[𝑠𝑢𝑚 (𝑖 = 1 𝑡𝑜 𝑛)𝑇𝑖 , 𝑗 ]      (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Map Reduce on Heterogeneous Big Data Processing 
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    // value: input chunk of numbers 

    for each number in value: 

        square = number * number 

        emit(square, 1) 

Reduce function: 

function Reduce(key, values): 

    // key: square of a number 

    // values: list of 1s 

    sum = 0 

    for each value in values: 

        sum = sum + value 

    emit(key, sum) 

Driver function: 

function MapReduce(input): 

    // input: list of numbers 

    // Split input into chunks 

    chunks = splitInput(input) 

    // Map phase 

    mappedData = [] 

    for each chunk in chunks: 

        

mappedData.append(Map(chunk.identi

fier, chunk.data)) 

    // Shuffle and sort phase 

    shuffledData = 

shuffleAndSort(mappedData) 

    // Reduce phase 

    reducedData = [] 

    for each key-value pair in 

shuffledData: 

        reducedData.append(Reduce(key, 

pair.values)) 

    // Final output 

    output = [] 

    for each key-value pair in 

reducedData: 

        output.append(pair) 

    return output 

In this example, the Map function 

processes each number in the input 

chunk, calculates the square, and emits 

a key-value pair with the square as the 

key and 1 as the value. The Reduce 

function receives the key-value pairs 

and sums up the values to calculate the 

final sum of squares. The driver 

function orchestrates the overall 

MapReduce process, splitting the input, 

mapping, shuffling, reducing, and 

producing the final output. 

 

2. RESULTS AND 

DISCUSSIONS 

 

We started our analysis by assessing 

heterogeneity in the EC2 production 

system. When we did our scheduling 

tests, however, Amazon allocated us to 

a different test cluster. Amazon 

transferred this to cluster while our 

research revealed a fault in the network 

programme that caused connections 

among our VMs to fail periodically in 

production. Our EC2 experimentations 

competed on "small"-size EC2 VMs 

through the memory of 1.7 GB, 1 

simulated core with "the equivalent of a 

1.0-1.2 GHz 2007 Opteron or Xeon 

processor," and 160 GB of HDD on 

hypothetically collective hard drive. 

We ran extensive tests on the SPT 

algorithm on an EC2 heterogeneous 

cluster. According to one testing, SPT 

completed tasks 27% quicker than It is 

31% faster than Hadoop's native 

scheduler in a cluster with non-faulty 

nodes. Even in the absence of 

problematic nodes, SPT yields 

advantages in diverse settings. SPT 

performed Sort with stragglers tasks 

58% quicker than this scheduler 

performs 200% quicker than Hadoop 

with speculative implementation 

disabled and 220% faster than 

Hadoop's native scheduler. The 

comparison of SPT's worst-case, best-

case, and average-case performance 

versus the Hadoops scheduler, with no 

guesswork for runs without and with 

stragglers as shown in fig 4-8. 
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Figure 4. SPT Running Time 

 

 
Figure 5. Energy Consumption 
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Figure 6. Performance of SC time 

 

 
Figure 7. Performance of STT time 
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Figure 8. Performance of SNT time 

 

In the test setting, sensitivity analysis to 

Speculative Cap revealed that reaction 

time declines substantially at 

Speculative Cap = 20%, after which it 

remains low. The greater threshold 

value is also undesirable since it causes 

SPT to spend more time on excessive 

speculation. Experiments with 

Sensitivity to Slow Task Threshold 

reveal that low threshold values restrict 

the amount of speculative tasks, whilst 

values over 30% function. Sensitivity 

study to Slow Node Threshold 

demonstrates that SPT functions 

effectively as long as Slow Node 

Threshold is greater than the proportion 

of nodes that are very slow or 

malfunctioning. 

 

3. CONCLUSION 

 

Big data processing is a critical 

component in extracting valuable 

insights from large-scale datasets. 

Various frameworks and tools have 

been developed to handle the 

challenges posed by big data. As data 

continues to grow exponentially, it is 

essential for organizations to adopt 

scalable, fault-tolerant, and efficient big 

data processing techniques to unlock 

the full potential of their data assets. In 

this paper, we have evaluated the 

performance of our approach SPT 

scheduling algorithm which improves 

the performance of hadoop. It 

outperforms conventional map reduce 

scheduling. However, SPT can also 

increase the overall resource usage of a 

MapReduce job. This is because the 

scheduler will be launching additional 

tasks, even for tasks that are not 

actually slow. As a result, it is 

important to carefully consider the 

trade-offs between performance and 

resource usage when using SPT. 
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