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Abstract. Deep generative models of 3D shapes have sparked a lot of attention in the 

scientific community. Nonetheless, they almost all produce discrete shape representations 

like voxels, point clouds, and polygon meshes. We provide the first 3D generative model for 

a fundamentally different shape representation: expressing a shape as a series of CAD 

procedures. CAD models, unlike meshes and point clouds, encode the user creation process 

of 3D shapes, which are widely utilised in industrial and engineering design. Existing 3D 

generative models, on the other hand, have considerable hurdles due to the sequential and 

irregular structure of CAD procedures. We propose a CAD generative network built on the 

Transformer, based on an analogy between CAD processes and spoken language. To 

encourage future research on this topic, we have made this dataset freely available. The 2D 

foundation of parametric Computer-Aided Design (CAD), the most common modelling 

paradigm for manufactured items, is engineering sketches. In this study, we look at the 

challenge of learning-based a deep engineering sketch creation as a first step toward 

parametric CAD model synthesis and composition.  

 

1. Introduction 

It is in our nature to create and invent, and to express our creations in three-dimensional 

forms. This is why drawing tools like the parallel bar, the French curve, and the divider were 

invented; and this is why, in today's digital era, computer aided design (CAD) software has 

been used for 3D shape creation in a wide range of industrial sectors, from automotive and 

aerospace to manufacturing and architectural design [1]. Is it possible for the machine to 

create 3D shapes as well? Many recent research efforts have been dedicated toward the 

development of 3D models, using the remarkable advancement in generative models of deep 

learning [2]. 3D point clouds, polygon meshes, and level set fields are examples of existing 

3D generative models that merely construct computer discretization of 3D objects [3]. The 

ability to generate the drawing process, which is at the heart of 3D shape design, is still 

missing. We present a deep generative network that generates a sequence of operations that 

may be utilised to build a 3D shape in CAD software (such as SolidWorks and AutoCAD) 
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[5]. Such an operational sequence, commonly referred to as a CAD model, describes the 

"drawing" process of shape development. CAD models are used in practically all industrial 

3D designs today. They are discretized into polygon meshes or point clouds only, if 

necessary, later in the manufacturing workflow [8]. This is the first approach toward a 

generative model of CAD drawings that we are aware of. The sequential and parametric 

nature of CAD design presents a hurdle [12]. A CAD model is made up of a succession of 

geometric operations (for example, curve sketch, extrusion, fillet, Boolean, and chamfer) that 

are all controlled by parameters. There are discrete alternatives for some of the parameters, 

while others offer continuous values. These abnormalities arise from the user's construction 

of 3D shapes, and they stand in stark contrast to the discrete 3D representations (voxels, point 

clouds, and meshes) employed in existing generative models [6]. As a result, previously 

produced 3D generative models are unsuitable for the creation of CAD models. Contributions 

in terms of technology. To address these issues, we're looking for a representation that 

reconciles CAD model anomalies [7]. We take the most often used CAD operations (or 

commands) and group them into a common structure that encapsulates their command types, 

parameters, and sequence of execution. Following that, we present an autoencoder based on 

the Transformer network [10], which draws parallels between CAD command sequences and 

natural languages. It decodes a latent vector into a CAD command sequence after embedding 

CAD models in a latent space. We also build a new dataset of CAD command sequences to 

train our autoencoder, which is orders of magnitude larger than the existing dataset of the 

same type [11]. This dataset has also been made publicly available in order to encourage 

future research on learning-based CAD designs.  

The most common 3D modelling paradigm is parametric computer-aided design (CAD), 

which is used to design manufactured products ranging from vehicle parts to electronic 

devices to furniture. This approach is supported by all major solid modelling kernels and is 

common to all parametric CAD tools. A variety of CAD workflows can benefit from 

engineering sketch creation. For example, the capacity to autonomously reverse engineer a 

parametric CAD model from noisy 3D scan data has long been a goal [1]. Auto-completion 

of user input can also be done with engineering sketch generating. When creating complex 

engineering designs, the ability to infer repeating commands based on visual or geometric 

input could greatly reduce user effort. Another in-demand feature is the capacity to generate 

engineering sketches using approximate geometry, such as free-hand drawings. A generative 

model for engineering sketches, often known as beautifying, has the potential to improve user 

workflows over existing approaches [9]. Despite recent advancements in data-driven 2D 

vector graphic synthesis [3], there is little study on directly generating engineering sketches. 

This is a difficult topic since engineering designs contain a variety of 2D geometric 

primitives as well as topological information about how they are related.  

The following are the contributions made by this paper: • Without the use of a sketch 

constraint solver, we discuss two generative models that address the challenge of deep 

engineering sketch generation networks. • With our CurveGen model, we use a unique sketch 

representation that implicitly encodes the sketch primitive type based on hyperedge 
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cardinality. • We present quantitative and qualitative engineering sketch generation results, as 

well as the findings of a perceptual research that compared our generative models to a state-

of-the-art baseline. 

2. Related work  

Inference of a parametric shape. Deep learning advances have made it possible to create 

neural network models that analyse geometric data and infer parametric shapes. A 3D point 

cloud is decomposed into a series of parametric surface patches using ParSeNet. PIE-NET 

uses 3D point clouds to extract parametric boundary curves. UV-Net and BrepNet focus on 

encoding the boundary curves and surfaces of a parametric model. Used synthetic data to 

train a neural network to transform 2D user doodles into CAD processes. Recently used 

neural-guided search to deduce CAD modelling sequence from parametric solid shapes. 3D 

form generation models. In recent years, there has been a surge in research towards deep 

generative models for 3D shapes. Most known approaches, such as voxelized shapes, point 

clouds, polygon meshes, and implicit signed distance fields [12], generate 3D objects in 

discrete forms. The generated shapes may have noise, lack precise geometric characteristics, 

and aren't directly changeable by the user. As a result, more recent research has aimed to 

develop neural network models that construct 3D shape through a sequence of geometric 

operations. CSGNet infers a sequence of Constructive Solid Geometry (CSG) operations 

using voxelized shape input, and UCSG-Net pushes the inference forward without the help of 

ground truth CSG trees. Other than CSG procedures, some research offers domain specific 

languages (DSLs) to synthesise 3D shapes. Shape Assembly, a DSL that generates 3D 

structures by hierarchically and symmetrically constructing cuboid proxies, and this structure 

can be created using a variational autoencoder. In contrast to all of these previous studies, our 

autoencoder network produces CAD models that are specified as a series of CAD operations. 

In practically every field of industrial production, CAD models have become the standard 

shape representation. As a result, our network's output may be easily imported into any CAD 

software for user editing. Other shape formats, such as point clouds and polygon meshes, can 

be directly translated. This is the first generative model that produces CAD designs directly, 

as far as we know. Models based on transformers. The Transformer network, which was 

introduced as an attention-based building block for several natural language processing 

applications, is a technical relation of our work. The Trans former network's success has led 

to its application in image processing and other types of data. Transformer network is also 

used in concurrent works on limited CAD sketch generation. DeepSVG, a Transformer-based 

network for the creation of Scalable Vector Graphic (SVG) pictures, is also connected to our 

work. A set of parametric primitives is used to describe SVG images (such as lines and 

curves). Aside from being restricted to 2D, those primitives are organised in no particular 

sequence or reliance. CAD commands, on the other hand, are expressed in 3D, can be 

interdependent (e.g., via CSG boolean operations), and must be executed in a specific order. 

As a result, we're looking for a novel technique to encode CAD commands and their order in 

a Transformer-based autoencoder. 



For Computer- Aided Design, a Deep Engineering Sketch Generative Network 

 

Section: Research Paper 

 

1706 
Eur. Chem. Bull. 2023, 12(Special Issue 1), 1703-1712 
 

Graphics in Vector Format In commercial software, vector graphics are widely utilised to 

allow for the resolution-independent design of fonts, logos, animations, and images. 

Generative adversarial network to create smooth curves and applies it to 2D airfoil profiles. 

Vector graphic generating system that uses differentiable rendering and is trained only on 

raster pictures. The usage of Bézier curves has been common in previous research. 

Engineering sketches prefer line, arc, and circle primitives over NURBS surfaces Layout and 

technical drawings technical drawings are two-dimensional projections of three-dimensional 

computer-aided design (CAD) models, with key information denoted by dimensions, notes, 

or section views. The dataset is primarily intended for challenges involving spatial thinking. 

Their approach enables designers to create freehand sketches that resemble engineering 

sketches used in the creation of a 3D model. They use a Trans former-based network to 

anticipate the parameters of lines and Bézier curves, then refine them via optimization. Our 

technology, on the other hand, concentrates on the creation of new sketch geometry that may 

be used with 3D CAD modelling procedures.  

3. Generative Models  

We build and analyse two different neural networks for engineering sketch generation: Curve 

Gen and TurtleGen. 

3.1.CurveGen  

CurveGen is an engineering sketch generating application of the PolyGen architecture. 

CurveGen automatically generates the sketch hypergraph representation. We separate the 

creation of G into two parts based on the chain rule, as we did with the original PolyGen 

implementation: 1) create the sketch vertices V, and 2) create the sketch hy peredges E based 

on the vertices. 

 

 

Figure 1. The structure of our network. The input CAD model, which is represented as a 

command sequence, is projected to an embedding space before being fed to the encoder E, 

resulting in a latent vector z. The decoder D receives as input learned constant embeddings as 

well as the latent vector z. The projected command sequence is then output. 
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p(.) stands for probability distributions. Figure 1 depicts the two-step generation process, 

which begins with the vertex model (left) and ends with the curve model (right). With 2D 

vertex coordinates, we use the PolyGen vertex model directly. Negative log likelihood loss is 

used to train both the vertex and curve models against the ground truth data.  

3.2.TurtleGen  

A sequence generator is a neural network that generates a programme in the Turtle 

representation. We randomise the turtle sequence creation for each given sketch in the 

hypergraph format by selecting the loop order, loop beginning vertex, and loop drawing 

direction at random. Long sequences of more than 100 turtle instructions are discarded. The 

network comprises seven input and output linear branches, with the corresponding command 

other corresponding coordinates. Zeros are used in commands that are less than three. At the 

previous sequence phase, the output branches are coupled to the Transformer encoding. The 

sketch hypergraph representation is then recovered, as well as the geometry and topology, for 

each sampled sequence. 

4. Network-friendly Representation  

Our CAD model M specification is written in natural language. Individual CAD commands 

are expressed sequentially to build phrases in the language. The sketch profile is the subject 

of a sentence, and the extrusion is the predicate. This parallel suggests that we could use 

network structures that have been successful in natural language processing, such as the 

Transformer network, to achieve our goal. CAD commands, on the other hand, differ from 

normal language in various ways. The number of parameters for each command varies. The 

parameters in some commands (e.g., extrusion) are a combination of continuous and discrete 

values, and the parameter values span distinct ranges. These characteristics make the 

command sequences unsuitable for use in neural networks. The dimensions of command 

sequences are regularised to overcome this problem. First, the parameters of each command 

are piled into a 161 vector, the elements of which correspond to the collective parameters. 

Each command's unused parameters are simply set to 1. The total number of commands Nc in 

each CAD model M is then fixed. This is accomplished by padding the command sequence of 

the CAD model with the empty command hEOSi until the length of the sequence approaches 

Nc. In fact, we use Nc = 60 because that is the longest command sequence length we found in 

our training dataset. We also quantize the continuous parameters to unify continuous and 

discrete parameters. Every CAD model is normalised within a cube, and every sketch profile 

is normalised within its bounding box, with a scale factor s (in the extrusion command) to 

restore the normalised profile to its original size. The normalisation limits the ranges of 

continuous parameters, allowing us to quantize them into 256 levels and express them with 8-

bit integers. As a result, only discrete sets of values exist for all command parameters. The 

parameter quantization is not just a continuation of the standard technique for training 

Transformer-based networks. It is critical, especially for CAD models, to improve the 

generating quality. Certain geometric relationships, such as parallel and perpendicular sketch 

lines, must be respected in CAD drawings. However, if a generative model generates 
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continuous parameters directly, the values obtained by parameter regression are prone to 

errors, which might cause these stringent relationships to be broken. Parameter quantization, 

on the other hand, allows the network to "classify" parameters into specified levels, allowing 

it to better respect learnt geometric relationships. We'll show ablation studies that empirically 

support our CAD command representation choices. 

5. Autoencoder for CAD Models  

We'll now talk about an autoencoder network that uses our CAD command representation. 

The decoder element of the network will naturally act as a CAD generative model once it has 

been trained. The Transformer network is the basis for our autoencoder, which was inspired 

by its performance in processing sequential data. Our autoencoder takes as input a CAD 

command sequence                   
 , where    is a fixed number. First, each command    

is projected separately onto a continuous embedding space of dimension dE = 243.  

5.1.Encoder.  

Each of the four layers of Transformer blocks in our encoder E has eight attention heads and 

a feed-forward dimension of 500. The encoder accepts the embedding sequence as input and 

produces vectors with the same dE = 256 dimension. Finally, the output vectors are averaged 

to get a single dE dimensional latent vector z. 

5.2.Decoder.  

Our decoder D, which is also made of Transformer blocks, has the same hyper-parameter 

values as the encoder. It uses learnt constant embeddings as input while also taking into 

account the latent vector z—a similar input structure was utilised. The output from the final 

Transformer block is input into a linear layer, which predicts a CAD command sequence 

                  
 , which includes both the command type ti and the command parameters 

pi for each command. We apply the feed-forward method instead of the autoregressive 

strategy typically used in natural language processing. 

6. Results 

 To provide quantitative and qualitative findings on the job of engineering sketch 

development, we compare the CurveGen and TurtleGen generating models to the 

SketchGraphs generative model.  

6.1.Quantitative Results 

We conducted a perceptual evaluation utilising human volunteers to see how deep 

engineering sketches generated by each model compare to human-designed sketches. Each 

participant is shown with one human-designed and one computer-generated deep engineering 

sketch and asked, "Which sketch is more realistic?" in our two-alternative forced choice 

study.  
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Table 1. The findings of quantitative sketch generation. The negative log-likelihood over the 

test set is calculated as bits per sketch. Over 1000 created sketches, Unique, Valid, and Novel 

are calculated. 

Model Bits per sketch Unique % Valid % Novel % 

Curve Gen 31.09 98 82 92 

Turtle Gen 55.06 85 44 84 

Sketch Graphs 98.87 77 67 73 

Sketch Graphs 

(Duplicate) 

95.06 61 72 50 

 

Brief instructions are included, as well as an illustration of a deep engineering sketch in 

context. The above table 1 shows the outcomes of quantitative sketch generation. The 

negative log-likelihood determined across the test set is referred to as Bits per Sketch. Over 

1000 created sketches, the terms "unique," "valid," and "novel" are calculated. We record the 

responses of three human volunteers for each pair of sketches and utilise the majority answer. 

    

Figure 2: The results of our perceptual study with human subjects to determine which 

engineering sketch is the most realistic. Left: The percentage of generated sketches that are 

considered more realistic than sketches created by humans. Right: The inter-rater agreement 

percentage.  

The research was carried out with the help of Amazon Mechanical Turk workers. The 

percentage of generated sketches classified as more realistic than human-designed sketches is 

shown in Figure 2 on the left; greater numbers are better. A 50% rating suggests that the 

generated sketches are indistinguishable from human-designed designs. The inter-rater 

agreement between each of the three human subjects is shown in Figure 4 to the right as a 

percentage. A lower score suggests that the produced and human-designed sketches are more 

confused. CurveGen output is the most realistic of the generated engineering designs, 

according to the study's findings. 
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6.2.Qualitative Results 

Curve Gen, in instance, is able to make sketches with closed loops, symmetrical features, 

perpendicular lines, and parallel lines on a constant basis, we present further qualitative 

results. CAD Models from Sketch to Solid The current study is motivated by the desire to 

enable the synthesis and composition of solid CAD models. 

  

 

Figure 3. The restoration of a CAD model from point clouds. input point clouds (top). CAD 

models that have been recreated (bottom) 

The above figure 3 shows how engineering sketches created by CurveGen with closed loop 

profiles can be procedurally hoisted into 3D using the extrude modelling process. Constraints 

Diagram Our generative network models' geometric output can be post-processed to apply 

sketch constraints and create a constraint graph.  

7. Conclusion and Discussion  

There are various limitations in our approach to the CAD generative model. We've looked at 

the three most common forms of curve instructions so far (line, arc, and circle), but other 

curve commands can easily be added. A cubic Bézier curve, for example, can be defined by 

three control points plus the starting point from the previous curve's ending position. These 

variables can also be organised in the same way. Other operations, such spinning a sketch, 

can be represented in the same way as the extrusion instruction. Certain CAD operations, 

such as fillet, work on areas of the form boundary, necessitating a reference to the model's B-

rep rather than just other instructions. It will be left to future study to include those directives 

into the generative model. Not every CAD command sequence will result in a topologically 

correct shape. Our generative network can't ensure that the output CAD sequences are 

topologically sound. The produced CAD command sequence seldom fails in practise. As the 

command sequence grows longer, the chances of failure increase. Also analyse certain failure 

scenarios, providing some material for future research. In conclusion, DeepCAD, a deep 

generative model for CAD designs, has been demonstrated. Almost all prior 3D generative 

models generated distinct 3D shapes like voxels, point clouds, and meshes. This is the first 

generative model for CAD drawings that we are aware of. We also present a large dataset of 

CAD models, each of which is represented as a CAD command sequence. 
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