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An atom efficient synthesis of polysubstituted dihydropyridine derivatives was  accomplished by the one-pot four-component condensation 
of aldehydes, amines, dialkyl acetylene dicarboxylates and active methylene group-containing compounds such as malononitrile or ethyl 
cyanoacetate using morpholine as a  catalyst at ambient temperature. Broad substrate scope, non-chromatographic purification, good yields 
of the products makes it be a useful and valuable methodology for employing the 1,4-dipolar intermediates in synthetic organic chemistry. 
Use of organobase as a single catalyst, room temperature conditions renders the method protocol as a significant addition to the existing 
methods for the synthesis of multifunctionalized dihydropyridines. 
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INTRODUCTION 

Multi-component reactions (MCRs) contribute 
significantly to the sustainable and diversity-oriented 
synthesis of various heterocyclic compounds in 
combinatorial and medicinal chemistry.1 Reduced number of 
steps, high atom economy, energy efficient, time-saving and 
cost-effective nature of the MCRs make them highly 
desirable tools in synthetic organic chemistry. These 
reactions constitute important green tools for the synthesis 
of highly functionalized molecules in organic chemistry. 

Cascade reactions, also known as domino reactions or 
tandem reactions, are chemical processes involving at least 
two consecutive reactions occurring, such that each 
subsequent reaction occurs due to the entity formed in the 
previous step, without the need to isolate the intermediate. 
These reactions thus assist in reducing the number of steps 
involved in the synthesis of biologically potent heterocyclic 
compounds2. Cost effective synthesis of highly 
functionalized and diverse heterocyclic compounds from 
readily available precursors is an enduring task for synthetic 
organic chemists. The formation of C-C, C-N and C-S bonds 
is also one of the significant challenges to the researcher 
community3. 

Dihydropyridines (DHPs) are abundant in various natural 
products as well as pharmaceutically important heterocyclic 
compounds; constituting the skeleton of drugs such as 
amlodipine, clevidipine, aranidipine and nifedipine (Figure 
1). DHP is also a core component of calcium channel 
blockers used in the treatment of cardiovascular diseases, 
including hypertension and spastic smooth muscle 
diseases.4-5 DHP derivatives exhibit a broad spectrum of 
biological activities and well-studied for applications in the 

treatment of Alzheimer’s disease, cardiovascular diseases 
and hypertension.6 Furthermore DHPs are also well known 
for antimicrobial,7 anticancer,8 antioxidant,9 anti-
inflammatory,10 antidiabetic,11 antitubercular12 and 
analgesic13 activities. These derivatives showed therapeutic 
properties including platelet antiaggregatory activities,14 
HIV protease inhibition15 and neuroprotection.16 
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Figure 1. Some biologically active dihydropyridines 

Thus, considering the therapeutic and pharmacological 
activities of DHP derivatives, considerable attention has 
been focused on designing efficient methodologies for the 
synthesis of these heterocyclic compounds. The classical, 
most simple and straightforward synthesis of these 
heterocycles is the Hantzsch’s reaction of an aldehyde, β-
ketoester and ammonia. However, only a few reports are 
available for the synthesis of highly functionalized 1,4-
DHPs involving the use of Meglumine,17 grinding 
technique,18 triethylamine,19 sodium hydroxide,20 PEG-
400,21 ammonium hydrogen phosphate (NH4)2HPO4,

22 
yttrium triflate,23 p-toluenesulfonic acid (p-TSA)24 and L-
proline.25 However, many of these methods require 
prolonged reaction time, use of costly reagents and high 
reaction temperature. 

Morpholine is a colorless, water-soluble organobase 
possessing both amine and ether functionalities. The 
presence of etheral oxygen withdraws electron density from 
the nitrogen, rendering morpholine less nucleophilic and 
less basic than piperidine. It is documented for the catalytic 
applications for the synthesis of various heterocyclic 
compounds such as α, β-unsaturated nitroalkenes26, 
chromene core structured heterocyclic compounds27and 
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Hantzsch’s polyhydroquinoline derivatives28. Thus, in 
continuation of our successful efforts in the development of 
new strategies for the synthesis of bioactive heterocyclic 
compounds29; herein we report the atom efficient synthesis 
of polysubstituted dihydropyridine derivatives by the one-
pot four component condensation of aldehyde (1), amine (2), 
dialkyl acetylene dicarboxylate (3) and active methylene 
compound such as malononitrile or ethyl cyanoacetate (4) 
using morpholine as an organobase at room temperature in 
short reaction time to afford the corresponding products in 
high yields (Scheme 1).  
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Scheme 1. One pot synthesis of DHPs using morpholine 
organobase 

EXPERIMENTAL 

Chemicals used were SD fine or Sigma Aldrich made and 
used without further purification. The progress of the 

reaction was monitored on silica-gel coated aluminum TLC 
plates (Merck). 1H and 13C NMR spectra were recorded on a 
Bruker ACF 200 spectrophotometer and chemical shifts 
were expressed in δ ppm in CDCl3 with reference to TMS as 
the standard. IR spectra were recorded on Shimadzu FTIR 
(Prestige 21) spectrophotometer, mass spectra on a 
Shimadzu MS-Q spectrometer and melting points of the 
products were recorded on a digital melting point apparatus 
(Optics technology) using capillaries open at one end and 
were uncorrected. 

General procedure for the one pot four component synthesis of 
highly functionalized DHPs 

A mixture of aldehyde (2 mmol), malononitrile (3 mmol) 
and morpholine (20 mol%) in ethanol (3 mL) was stirred at 
room temperature for 10 minutes; followed by dropwise 
addition of arylamine (2 mmol) and then dialkyl acetylene 
dicarboxylate (2 mmol). The contents were stirred at room 
temperature for an appropriate time as specified in Table 1. 
The progress of the reaction was monitored by thin layer 
chromatography (40 % ethyl acetate:n-hexane). After 
completion of the reaction, the reaction mass was 
concentrated, poured into ice-cold water and filtered off 
residue as the crude multifunctionalized dihydropyridine 
which was further purified by crystallization in ethanol.   

 

Table 1. Yields, reaction time and physical constants of DHPs using morpholine organobase 
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(*For aldehyde: 2 mmol, active methylene compound: 3 mmol, DMAD or DEAD: 2 mmol, amine: 2 mmol, in ethanol in the presence of 
20 mol % morpholine) 
 

 

The spectral data of the synthesized compounds  is 
mentioned below: 

Dimethyl-6-amino-4-(4-bromophenyl)-1-(3-chloro-4-fluorophe-
nyl)-5-cyano-1,4-dihydropyridine-2,3-dicarboxylate (Table 1, 
Entry 1):  

Off white solid; M.P.=108-109 oC; 1H NMR (CDCl3, 400 
MHz) δ ppm  3.1 (s, 3H), 3.18 (s, 3H), 3.89 (s, 2H), 4.7 (s, 1 
H), 7.48 (d, 4H), 8.02 (d, 3H); IR (neat) cm-1 3332, 2959, 
2172, 1741, 1696, 1641, 1562, 1372, 1210, 1032; Mass: 
520.1(M+1)+. 

Diethyl-6-amino-4-(4-chlorophenyl)-5-cyano-1,4-dihydro-1-
(naphthalen-1-yl)pyridine-2,3-dicarboxylate (Table 1, Entry 2): 

Off white solid; M.P.=137-138 oC; 1H NMR (CDCl3, 400 
MHz) δ ppm  0.9 (t, 3H), 1.12 (t, 3H), 4.0 (s, 2H), 4.2 (q, 4 
H), 4.8 (s, 1H), 7.3 (m, 7H), 7.5 (d, 4H); IR (neat) cm-1   
3461,3336, 2966, 2177, 1746, 1695, 1646, 1566, 1371, 1239, 
1032; Mass:  502 (M+1)+. 

Diethyl-6-amino-4-(4-chlorophenyl)-5-cyano-1,4-dihydro-1-
phenylpyridine-2,3-dicarboxylate (Table 1, Entry 3): 

Yellow solid; M.P.=176-177 oC; 1H NMR (CDCl3, 400 
MHz) δ ppm 0.9 (t, 3H), 1.1 (q, 3H), 3.9 (m, 2H), 4.1 (q, 
4H), 4.7 (s, 1H), 7.39 (m, 6H), 7.5 (d, 3H); 13C NMR 
(CDCl3, 100.6 MHz) δ ppm 13.42, 13.91, 38.27, 60.96, 
62.19, 104.94, 120.44, 128.61, 128.88, 129.94, 130.48, 
130.62, 132.85, 135.09, 141.76, 143.59, 149.81, 162.81, 
162.88, 164.98; IR (neat) cm-1 3382.9 (-NH2), 2972.2 (C-H 
in -CH3), 2187.9 (-CN), 1722.58 (-C=O), 1649.22; Mass: 
452 (M+1)+. 

Dimethyl-6-amino-4-(3,4-dichlorophenyl)-5-cyano-1,4-dihydro-
1-(naphthalen-1-yl)pyridine-2,3-dicarboxylate (Table 1, Entry 
4): 

Yellow solid; M.P.=101-102oC; 1H NMR (CDCl3, 400 
MHz) δ ppm  3.12 (s, 3H), 3.22 (s, 3H), 4.01 (s, 2H), 4.88 (s, 
1H), 7.49 (d, 3H), 7.22 (m, 7 H); IR (neat) cm-1 3336,  2964, 
2172, 1746, 1695, 1644, 1566, 1372, 1217, 1032; Mass:   
508. (M+1)+. 

Diethyl-6-amino-1-(4-chlorophenyl)-5-cyano-4-(4-fluorophe-
nyl)-1,4-dihydropyridine-2,3-dicarboxylate (Table 1, Entry 5) 

Yellow solid; M.P.=183-184 oC; 1H NMR (CDCl3, 400 
MHz) δ ppm 1.05 (t, 3H), 1.1 (t, 3H), 3.9 (m, 2H), 4.05 (q, 
4H), 4.7 (s, 1H), 7.1 (d, 2H), 7.3 (m, 4H), 7.5 (d, 2H); 13C 
NMR (CDCl3, 100.6 MHz) δ ppm 13.04, 13.57, 39.38, 
60.27, 61.36, 104.61, 115.15, 120.54, 128.58, 129.37, 
132.04, 133.88, 135.14, 141.35, 141.38, 150.34, 159.93, 
162.36, 164.29;  IR (neat) cm-1 3338.7 (-NH2), 2982.3 (C-H 
str. -CH3), 2184.8 (-CN), 1744.41 (-C=O); Mass: 470 
(M+1)+. 

Dimethyl-6-amino-1-(3-chloro-4-fluorophenyl)-4-(2,4-dichloro-
phenyl)-5-cyano-1,4-dihydropyridine-2,3-dicarboxylate (Table 
1, Entry 6):  

White solid; M.P.=117-118oC; 1H NMR (CDCl3, 400 
MHz) δ ppm  3.1 (s, 3H), 3.15 (s, 3H), 4.01 (s, 2H), 4.78 (s, 
1H), 7.4 (d, 4H), 7.62 (d, 2H); IR (neat) cm-1 3334, 2970, 
2179, 1749, 1698, 1631, 1572, 1370, 1203, 1044; Mass: 
510.72 (M+1)+. 
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Dimethyl 6-amino-1-(3-chloro-4-fluorophenyl)-5-cyano-1,4-
dihydro-4-(3-nitrophenyl)pyridine-2,3-dicarboxylate (Table 1, 
Entry 7): 

Off white solid; M.P.=120-121 oC; 1H NMR (CDCl3, 400 
MHz) δ ppm 3.21 (s, 3H), 3.28 (s, 3H), 4.12 (s, 2H), 4.73 (s, 
1H), 7.81 (d, 3H), 8.07 (d, 4H); IR (neat) cm-1 3340, 2969, 
2273, 1749, 1648, 1568, 1372, 1219, 1033; Mass: 486.91      
(M+1)+. 

Triethyl-6-amino-1-(4-chlorophenyl)-1,4-dihydro-4-(3,4-di-
methoxyphenyl)pyridine-2,3,5-tricarboxylate (Table 1, Entry 
8): 

White solid; M.P.=142-143 oC; 1H NMR (CDCl3, 400 
MHz) δ ppm 0.9 (t, 3H), 1.03 (t, 3H), 1.12 (t, 3H), 3.02 (s, 
3H), 3.08 (s, 3H), 3.96 (s, 2H), 4.12 (q, 4H), 4.19 (q, 2H),  
4.7 (s, 1H), 7.53 (d, 3H), 7.90 (d, 4H); IR (neat) cm-1 3335, 
2957, 2176, 1744, 1694, 1638, 1560, 1372, 1215, 1033; 
Mass: 559.03 (M+1)+. 

Triethyl-6-amino-1-(4-chlorophenyl)-4-(4-(dimethylamino)-
phenyl)-1,4-dihydropyridine-2,3,5-tricarboxylate  (Table 1, 
Entry 9): 

Yellow solid; M.P.=115-116 oC; 1H NMR (CDCl3, 400 
MHz) δ ppm  0.89 (d, 3H), 1.1 (t, 3H), 1.21 (t, 3H), 2.56 (s, 
6H), 3.93 (s, 2H), 4.02 (q, 4H), 4.13 (q, 2H), 4.82 (s, 1H), 
7.8 (d, 4H), 8.05 (d, 4H); IR (neat) cm-1 3338, 2970, 2181, 
1747, 1696, 1652, 1570, 1381, 1313, 1132; Mass: 541.9 
(M+1)+. 

Triethyl-6-amino-1,4-dihydro-4-(4-hydroxy-3-methoxyphenyl)-
1-phenylpyridine-2,3,5-tricarboxylate   (Table 1, Entry 10): 

Faint solid; M.P.=109-110 oC; 1H NMR (CDCl3, 400 
MHz) δ ppm 0.99 (t, 3H), 1.1 (t, 3H), 1.2 (t, 3H), 3.2 (s, 3H), 
3.92 (s, 2H), 4.03 (q, 2H), 4.14 (q, 2H),  4.19 (q, 2H), 4.78 
(s, 1H), 5.9 (s, 1H, -OH), 7.27 (m, 5H), 7.43 (d, 3H); IR 
(neat) cm-1 3328, 2803, 2184, 1748, 1690, 1643, 1562, 1370, 
1213, 1032; Mass: 510.38  (M+1)+. 

Dimethyl-6-amino-1-(3-chloro-4-fluorophenyl)-4-(4-chloro-
phenyl)-5-cyano-1,4-dihydropyridine-2,3-dicarboxylate (Table 
1, Entry 11): 

Faint yellow solid; M.P.=112-113 oC; 1H NMR (CDCl3, 
400 MHz) δ ppm 3.28 (s, 3H), 3.41 (s, 3H), 4.02 (s, 2H), 
4.67 (s, 1H), 7.82 (d, 4H), 7.95 (d, 3H); IR (neat) cm-1 3336, 
2956, 2183, 1846, 1695, 1640, 1558, 1372, 1213, 1029; 
Mass: 476.01 (M+1)+. 

RESULTS AND DISCUSSION 

Initially to optimize reaction conditions, the reaction of 4-
chlorobenzaldehyde (1 mmol), malononitrile (1.5 mmol), 
diethyl acetylene dicarboxylate (1 mmol) and aniline (1 
mmol) mixture was probed as a model condensation 
reaction using various bases and solvents at room 
temperature for the synthesis of diethyl-6-amino-4-(4-

chlorophenyl)-5-cyano-1,4-dihydro-1-phenylpyridine-2,3-
dicarboxylate (DHP-3)  (Scheme 2, Table 2). 

 

 

 

 

 

Scheme 2. Model reaction for optimization of reaction conditions 

Table 2. Optimization of reaction conditions for the model reaction 

No. Conditions Time,h Yield,%@ 

1 N,N-DIPEA (10 mol %), EtOH, r.t. 5 36 
2 Pyrrolidine (10 mol %), EtOH, r.t. 5 70 
3 Imidazole (10 mol %), EtOH, r.t. 5 45 
4 Cs2CO3 (10 mol %), EtOH: H2O, r.t. 8 64 
5 DABCO (10 mol %), EtOH, r.t. 8 53 
6 Morpholine (10 mol %), EtOH, r.t. 3 84 
7 Morpholine (20 mol %), r.t., EtOH 3 89 
8 Morpholine (20 mol %), r.t., 

MeOH 
3 81 

@Reactions carried on 4-chlorobenzaldehyde (1 mmol), 
malononitrile (1.5 mmol), diethyl acetylenedicarboxylate (1 mmol) 
and aniline (1 mmol). 

From Table 2, bases like N,N-diisopropyl(ethyl)amine 
(N,N-DIPEA), pyrrolidine, imidazole, DABCO or cesium 
carbonate (Cs2CO3) were not suitable to catalyze the 
transformation at room temperature after 5-8 h of reaction 
time. Among the several bases tried for the probe model 
reaction; use of morpholine (20 mol %) was found to be 
sufficient enough to carry out the transformation via one-pot 
synthesis of highly substituted 1,4-DHPs at ambient 
temperature. If no base was added, the reaction did not yield 
the desired product even after stirring for overnight (12 h). 
Morpholine was required in higher concentration (20 
mol %) which could be most probably due to its decreased 
basicity and presence of an electron withdrawing oxygen 
atom in the ring. The reactions were found to be better in 
ethanol rather than methanol in terms of the yield of desired 
products.  

Encouraged with these results, scope and generality of the 
catalytic efficiency of morpholine were extended by using 
diversely substituted aldehydes and amines (Table 1).  

Furthermore, the use of dimethyl acetylene dicarboxylate 
instead of diethyl acetylene dicarboxylate and ethyl 
cyanoacetate in place of malononitrile also accomplished 
satisfactory results. Diethyl acetylenedicarboxylate showed 
slightly high reactivity as compared to dimethyl acetylene 
dicarboxylate. Aldehydes possessing electron donating as 
well as electron withdrawing substituents afforded the 
desired products without significant variation in yields. Thus, 
the domino one-pot reaction was successful with different 
active methylene compounds, dialkyl acetylene-
dicarboxylate, aromatic aldehydes and amines (Table 1) 
revealing that the reaction works well and tolerates both 
electron-withdrawing and electron-donating substituents in 
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aromatic ring generating the target molecules in high yields 
with negligible variations in the product. It indicates that the 
present protocol has a broad substrate scope. After 
completion of the reaction as monitored by TLC, the 
reaction mass was concentrated on a rotary evaporator, 
poured onto crushed ice, stirred for 10 minutes and filtered 
off the resulting precipitated solid as a crude product which 
was further purified by crystallization with ethanol. Thus the 
work-up procedure for the morpholine catalyzed synthesis 
of DHPs was found to be convenient and straightforward. 
The products were confirmed by comparison of their 
physical constants with the literature values and analysis of 
spectroscopic data viz 1H, 13C NMR, IR and MS spectra.  

A plausible mechanism for morpholine base catalyzed the 
synthesis of 1, 4-DHPs is outlined in Figure 2: 

Step-1: The base abstracts proton from the acidic 
compound - malononitrile or ethyl cyanoacetate affording 
benzylidene intermediate (I) involving the Knoevenagel 
condensation.  

Step-2: Treatment of DMAD or DEAD with the ethanolic 
solution of aromatic amine generates the 1,3-dipole 
intermediate (II). 

Step-3: Michael addition of intermediate (I) with the 
dipolar intermediate (II), followed by migration of hydrogen, 
cyclization and tautomerization of the imino group (C=NH) 
to the amino (-C-NH2) group results in the formation of the 
desired product.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A plausible mechanism for the morpholine base catalyzed the synthesis of polysubstituted pyridines 

 

CONCLUSION 

In summary, an atom efficient, practical strategy and easy 
access to highly functionalized 1,4-DHP derivatives using 
morpholine as an organobase has been developed by one-pot 
four-component reaction of an aldehyde, acidic active 
methylene compound, DEAD or DMAD and various amines 
via tandem Knoevenagel, Michael and intramolecular 
nucleophilic additions at ambient temperature. Ease of work 
up, room temperature conditions, broad substrate scope, no 
need of column chromatographic purification and good 
yields make the present protocol attractive for the 
construction of DHPs.  

It also provides a practical methodology for employing the 
1,4-dipolar intermediate to design new multicomponent 
reactions in synthetic organic chemistry.  
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