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ABSTRACT

When  there  is  a  speech stream  with  numerous  speakers  and  background  noise,  the  human 
auditory system can focus on a single speaker of interest and disregard the others. Studies on 
this  scenario  have demonstrated that cortical activity  follows the speech envelope where the 
attended  speech  envelope  was  stronger  than  the  unattended  speech.  By  connecting  speech 
signals and neural activity, it has been shown that electroencephalography (EEG) signals can 
be used to determine which  speaker a  listener  is  listening to. The  human  brain  is inherently 
non-linear where deep  learning techniques  may use to analyze neural  signals (EEG data) to 
decode the changing state of the brain. The non-linear methods proposed in the recent studies 
have  not used any  speech streams or have used only  envelope of the speech stream as  input 
features. The neural networks performance can be increased by providing information about 
the speech stream. To extract auditory attention, we introduce a hybrid convolutional neural 
network  and  a  long  short-term  memory  model  (CNN-LSTM).  The  CNN-LSTM  model  is 
employed  as  an  input  to  decipher  attention  in  a  two-speaker  situation  using  cortical 
recordings  and  the  spectrogram  of  multiple  speech  streams.  The  decoding  accuracy  of  the 
model  in  short  trial  durations  are  measured.   The  model  CNN-LSTM  proposed  for  audio 
source localization can  be  used  for  developing  neuro-steered  hearing  devices  and  brain

computer interface (BCI) applications.

Keywords:

Brain Computer Interface, Audio source localization, Speech processing, Neural sensor data 
processing, Convolutional neural network, Bidirectional long-short term memory.

1. INTRODUCTION

Humans have extremely complicated auditory systems and the research in this field is gaining 
traction in recent times due to the advance in medical equipment. There is a big motivation to 
understand the response of human brain to audio stimuli as it can lead to progress in the fields 
of neuroscience, robotics, and brain-computer interfaces. But, till date, not a lot of work has 
been  done  in  this  field  due  to  the  lack  of  access  to  measuring  devices  and  the  absence  of 
standardized datasets.

Cognition  is  the capability  to  process  information  through  stimuli  that  we  get  from  the 
environment  around  us.  There  are  different  types  of  cognitive  processes  and  attention  is  the 
process that allows us to concentrate on certain activities or stimuli. Attention is used in most 
of  the  daily  tasks  that  are  to  be  performed  and  it  controls  and  regulates  the  other  cognitive 
processes  like  perception,  thought,  language  and  learning.  The  focus  of  this  paper  is  on
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auditory attention, more specifically, selective auditory attention. It involves the auditory 

cortex of the human brain, and it is signified as the action which enables people to pay 

attention to certain sounds or speech stimuli. 

The "cocktail party problem" was coined in the 1950s to describe the situation of a party 

when several sources of sound are heard at once [1], [2]. Figure 1 shows the pictorial 

representation for the same. It claimed that people were adept at restricting all other noises 

and concentrating their attention on a particular source of sound that they were interested in 

listening to. Familiar characteristics of the speaker like their tone of voice and distance from 

the speaker helped in filtering out the other sounds. To completely understand the underlying 

processes in the brain going on, this area has been gaining more recent recognition from 

researchers. 

Every human ear can concentrate on one particular sound even though there exist multiple 

sounds in the environment or surroundings. It happens for all the living beings in the 

environment. Basically, every human voice which are present in noisy environment overlap 

with the frequency and time, which leads to acoustic interference and can impair the clarity of 

speech. It has been submitted that one’s sensory memory subconsciously removes the entire 

unwanted event that evokes a specific functional reaction in an organ and identifies the pieces 

of information which is required and transfers it to the human brain. This is the effect in 

which most of the people able to listen to one particular voice rather in a group of noises. 

 
Figure 1. Cocktail Party Effect 

 

This is a similar phenomenon which occurs when one suddenly detects word which has high 

importance rather than the unwanted event that evokes a specific functional reaction in an 

organ. Along with humans the problems occur in animals also, most of the animals such as 

insect choruses, frog, songbird chorus, colonial and flocking birds also face the similar 

problem. Animals which communicate in groups, the problem of receiving the signal is 

similar to the problems faced by the human cocktail party problem. Where humans face the 

problems of masking and interference but when it comes to animals decrease in the ability to 

recognize, differentiate among various signal variants, and increase in signal detection 

thresholds leads to the problem. Most of the work by the researchers are displaying that the 

cocktail party problem is great to overcome.  

Conversing in multiple noise environments and the presence of annoying speakers is a 

specialty. The Cocktail Party Effect refers to the ability of people who have normal hearing to 

direct auditory attention to an audio signal in a complex composition. [3], [4]. However, no 

automated solution has yet been found for cocktail party issues, even after more than half a 

century of intensive research. This type of solution is in great demand for various users and 

applications, for example, a man-machine interface such as Amazon Alexa, audio and video 

automated subtitles recording (YouTube, Netflix, etc.), modern hearing aids, etc., [5]. 



Deep Learning model for Decoding Audio Source Localization through Speech and Neural Sensor 

Data for Hearing-aid and BCI Applications  

    ISSN 2063-5346                                                                                                                              Section A-Research paper 

 

4081 

Eur. Chem. Bull. 2023,12(5), 4079-4096 

People with aural problem suffers from diminished speech accessibility while listening to a 

particular speaker in a setting with several speakers [6]. In such scenarios, public hearing aids 

in the market are often inadequate because they cannot distinguish between attending and 

ignored speakers. Therefore, more details regarding the focus point are most desired. The 

development of visual objects in the eye serves as an illustration of selective attention [7]. In 

constructing visual objects, the observer focuses on objects in a critical visual scene. This 

theory has been extended to the auditory domain, implying occurrences like the Cocktail 

Party Effect. Figure 2 depicts the idea of how estimated source signal can be identified in a 

cocktail party effect. It can be deduced from the auditory object's development. In other 

words, when listening closely, the human brain builds things based on different speakers 

existing in the hearing situation and chooses those items associated with a specific speaker. 

But at the same time, a theory of flexible attention trajectories was proposed. This assumes 

that slow selection occurs with low cerebral load and early selection occurs with high 

cerebral load. This stimulated the investigation of whether brain signals could provide extra 

information, which helps distinguish between current and disturbing speakers. In experiments 

with two speakers, it was observed that the brain signal measured at the embedded electrodes 

traced more pronounced attributes of the current speaker than the neglected speaker. Both 

EEG and MEG produced comparable outcomes. Auditory Attention Decoding (AAD), 

sometimes referred to as EEG analysis, has emerged as the most popular technique for 

studying attention in recent years [8], [9]. 

 

 
Figure 2. Estimated source signal identification in a cocktail party effect [10] 

 

In a competitive scenario with two speakers, neural activity was shown using EEG or EMG 

by continuously recording the dynamic changes in the arriving speech envelope at auditory 

processing. Supervised audio envelopes are usually more pronounced than unsupervised 

audio envelopes—this neural tracking of stimuli issued to regulate auditory attention [11]. 

The most common technique is stimulus reconstruction, which makes use of brain activity to 

interpret and recreate the stimulus envelope after stimulation. The original stimulus envelope 

and the reconstructed envelope are then correlated, and the envelope with the greatest 

correlation is used to represent the current speaker [12]. The other methods of decoding 

attention consist of a forward modelling approach, which is anticipating EEG from auditory 

stimuli, Canonical Correlation Analysis (CCA) -based method, and Bayesian state-space 

modelling. 
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Figure 3. Reproduction of neural signal from speech signal using TRF [13] 

 

Both low-level acoustic characteristics (voice envelope) and high-level characteristics 

(Phonemes and phonetics) were required to research speech tracing of brain signals. The 

acoustic characteristics are linearly connected to the linear system in the AAD algorithm, 

which is based on linear systems theory. This assignment may be completed either forwards 

or backward direction. These algorithms provide a good understanding of the fundamental 

neuroscientific mechanism by which, in multi-speaker situations, the brain suppresses 

ignored speakers. By the speech envelope as an input feature, the linear approach may create 

a system response function that characterizes the forward auditory route. This system 

response function is called the temporal response function (TRF). TRF is a linear stimulus-

response model that provides a linear relationship between the provided input signal, which is 

speech, and the output signals, i.e., cortical response. Figure 3 gives a pictorial understanding 

on how reproduction of neural signal from speech signal using TRF. 

TRF is used to predict the cortical response from the speech envelope, which is termed a 

forward model. Similarly, the equations can be altered so that the speech is predicted from 

the available cortical response, which is called the backward model. The backward model 

involves fewer complex calculations to find the TRF coefficients and is relatively easier to 

implement when compared to the forward model. Forward models are also called generative 

or encoding models as they define how the system generates or encodes information. Figure 4 

is a conceptual sketch of envelop extraction and comparison between speech and EEG signal. 
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           P – model input matrix with the channel dimension 'c' and dimension 't' 

          W – linear TRF model parameter 

 

    

           

       

         

   
    

         

 ,    

  

       
  

 ,    

  

       
  

  

 



Deep Learning model for Decoding Audio Source Localization through Speech and Neural Sensor 

Data for Hearing-aid and BCI Applications  

    ISSN 2063-5346                                                                                                                              Section A-Research paper 

 

4083 

Eur. Chem. Bull. 2023,12(5), 4079-4096 

 
Figure 4. A conceptual sketch of envelop extraction and comparison between speech and 

EEG signal 

 

 
Figure 5. Forward TRF model block diagram 

 

 
Figure 6. Backward TRF model block diagram 

 

Figure 5 and 6 shows the block diagram representation of the forward model of TRF and the 

backward model of TRF. Figure 7 shows the forward model of TRF where EEG is predicted 

from the stimulus. The two speech streams are given to the pre-processing units, where the 

raw speech streams are converted to the required format. Pre-processing unit takes care of 

missing and noisy data in the input, if any. It converts the raw data into how the forward 

model of TRF needs the input data. After the pre-processed signals are passed, we may get 

the predicted EEG as output. 

On the other hand, original cortical recordings of the experiment are applied to the pre-

processing unit to process the noisy parts of the data. The output from the pre-processing of 

cortical recordings includes 66 EEG signals. The predicted EEG out of the TRF and pre-

processed cortical signals are applied to the correlation blocks separately. For each speech 

stream, correlation coefficients are produced out of the correlation block. These correlation 

coefficients are the features to decide which speech stream listener has attended to. 

The backward model of TRF is shown in Figure 8, where the envelope of the audio is 

approximated from the EEG. After pre-processing of cortical signals, the result is applied to 

TRF, which produces the predicted audio. From each speech stream, a correlation coefficient 

is produced from each correlation block. The decision block decides the attended speech 

stream by comparing the correlation coefficients, whichever the more significant is the 

attended. 

TRF shape analysis on the human brain has encoded monitored speakers differently than 

ignored speakers. In particular, the TRF adjacent to the current speaker has illustrated peak 

points around 100ms and200ms and weak in TRF corresponding to ignored speakers. A 

nearer attention modulation effect is noticed when the acoustic input was changed to the 

following uses: higher-order functions such as speech spectrogram or phonetics. Similar to 

the inverse model, the EEG signal can be used to reconstruct the input stimuli (stimuli 

reconstruction technique), listener attention is derived by comparing with reconstructed 
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stimuli with the input. Based on these findings, the AAD algorithm supports hearing aids in 

union with a sturdy voice dissociation algorithm, conveniently available to users. 

 

 
Figure 7. Forward model block diagram 

 

 
Figure 8. Backward model block diagram 

 

The nonlinear nature of the human auditory system has been well demonstrated, and AAD 

evaluation has traditionally relied solely on linear structures. Within the pre-processing step, 

the concept lectures the nonlinearity problem to a certain extent. Another disadvantage of 

linear techniques in the duration of speech envelope extraction is the more time needed to 

categorize attention, despite attempts to overcome this limitation. Neural networks' popularity 

has increased in recent years, particularly in automatic vision and natural language 

processing. Due to its capability to model nonlinearity, Electroencephalogram Data has been 

used to replicate the dynamic condition of the brain. using neural networks. 

Similarly, to comprehend the AAD, a convolutional neural network (CNN)-based model has 

been developed. The stimulus reconstruction set of rules uses the CNN version to derive 

focus. A direct type of attention bypasses the stimulus reconstruction regression process and 

instead categorizes whether the focus is on the first or second speaker. Categorizing interest 

as a hit vs. flop or fit vs. unfit was also addressed in a non-competing speaker experiment. 

In addition to deciphering which audio it is also possible to determine the spatial location of 

the particular attention by comparing the envelope to the present speaker. That means it 

doesn't decode which speakers are in attendance but wherein the room. The advantage of this 

approach to neurally controlled artificial hearing is that it does not require access to pure 
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speech stimuli. This was investigated based on differences in EEG entropy characteristics, 

but the performance was less for practical benefits (less than 70% in a 60-second window). 

Recent studies indicate that path of auditory attention is neuron-encoded, and it is viable to 

decipher the location or orbit of the accompanying sound from the EEG. Some studies by 

MEG propose that The place of choosing auditory attention may be found by tracing the 

alpha power band. 

In addition to adopting a stimulus reconstruction strategy akin to that of linear approaches, 

the attended speaker can also be identified by nonlinear systems derived from (deep) neural 

networks using only the audio and EEG. (Aka direct classification). However, given the short 

dataset sizes that are commonly used in AAD research, these nonlinear approaches are more 

susceptible to overfitting. There are various tactics and network topologies of the offered 

nonlinear methods in order to understand the distinctions between the many neural network 

based AAD systems now in use. 

The neural network prototypes shown above either don't employ audio functions or the audio 

envelope curve as an input characteristic. Because neural networks are data-driven 

approaches, adding more data or speech stimuli might help them perform better. The input 

function to segregate several speakers from one audio composition using a voice separation 

algorithm in neural networks is spectrogram. We introduce a new neural network 

architecture, which uses a few voice spectrograms of speakers and EEG data as inputs for 

classifying auditory attention, which a standard audio-visual speech separation model 

inspires. 
 

2. EXPERIMENT AND DATA 

The efficacy of neural networks was assessed using three different EEG datasets. These are 

publicly available and accessible. The FAU dataset has the EEG data of 27 testers, all native 

German speakers, is included. Two speech stimuli were presented simultaneously over a 

speaker to simulate the cocktail party effect, and participants were instructed to pay particular 

attention to a single speaker of those stimuli. Audio stimuli were collected from two male 

speakers reading from the German news site www.dw.de's slowly spoken news section. Six 

different presentations, each lasting around 5.30 minutes, make up the experiment. EEG was 

recorded in a 10-20 EEG style with 21 SilverChloride electrodes positioned on the scalp. On 

the right side, the reference electrode is inserted in the mastoid. The EEG signal was obtained 

at 2500Hz using the ground electrode on the left earlobe. In DTU dataset the sample 

comprises 18 testers who chose two simultaneous speakers to listen to. The speech stimulus 

comes from a male and female speaker reading an excerpt from a Danish audiobook. The 

experiment is divided into 60 segments, each lasting 50 seconds, for 50 minutes. The EEG 

was recorded using 64 electrodes, at a frequency sample of 512 Hz. After visual inspection, 

the reference electrode is taken as either left or right mastoid. The KUL dataset contains 16 

testers who took part in a selective attention experiment. A male speaker delivered four 

Dutch stories as the speech stimulus. Each story spanned 12 minutes and was broken into two 

6-minute halves. EEG (electroencephalography) is captured on 64 electrodes and sampled at 

8196Hz. After visual examination of the standard of the EEG signal obtained at TP7 or these 

sites, the reference electrode was employed as a TP8 electrode. Three separate conditions 

were used in the experiment: HRTFs, binaural separation, and repetitive stimulation. This 

only looked at the dichotic state persisted for 24 minutes. 34.9 hours' worth of EEG data were 

evaluated in this procedure. However, the speech stimuli used in each dataset, which 

includes two speaker data of 104 minutes, are the same for all subjects. Two speakers read 

the 3 datasets that were analyzed and a variety of stimuli. To prevent the stimulus learning 

effect, the stimulus was only presented to the participant once. Data from training and testing 

for each participant were split into 75% and 25% of each, respectively. The test data present 
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in the training data do not employ any of the speech or EEG components. then half test data 

is divided, with one half serving as an authentication or validation parameter during the 

training record of proceedings. 

 

 

Table. 1 How experiment is conducted for the first eight trails. 

Sl. No Input to the left ear Input to the right ear Direction of the ear attended 

1 1.1 2.1 Left 

2 2.2 1.2 Right 

3 3.1 4.1 Left 

4 4.2 3.2 Right 

5 2.1 1.1 Left 

6 1.2 2.2 Right 

7 4.1 3.1 Left 

8 3.2 4.2 Right 

X.Y = Story. Part of the story 

 

The analyzed brain signals (EEG) are recorded at different sampling frequencies, a low pass 

filter was used to filter each of them. 32 Hz serves as the cut-off frequency, down sampling to 

a sampling rate of 64Hz. Further measured signals at only ten electrode positions are 

considered in the analysis; these are F3, F4, F7, F8, T7, C3, C4, Cz, T8, Pz. This study 

examined 4 test periods: 2, 3, 4, and 5 seconds respectively. A one-second overlap is applied 

to the 2-second attempt; that's why a total of 118922 studies for analysis. To keep the total 

trials constant, 2 seconds overlap was used for 3-second trials, and the 3-second overlap is 

used for 4-second trials; for a 5-second trial, a 4-second overlap was used.  

The EEG signal in each experiment was even filtered with high pass The filtered signal is 

normalized to zero average and unity mean at each electrode location using a 1 Hz cut-off 

frequency. First, low pass filters were used to down sample audio stimuli at an 8 kHz cut-off 

frequency. The sampling rate is up to 16kHz. It was then divided into experiments that lasted 

for 2, 3, 4, and 5 seconds and overlap is of 1, 2, 3, and 4 seconds respectively. Each 

experiment's audio spectrogram was obtained by using the STFT's absolute value (short-time 

Fourier transform). A Han window is used to calculate the STFT with a duration of 32ms 

with 12ms overlap. Most of the detailed analysis was done in 3 seconds trial and other trials; 

the run time was used only for comparison purposes. 

  

Table 2. Elements and attributes of the data sets considered for the experiment. 

 

Name Number 

of 

subjects 

Duration per 

subject in minutes 

Total 

duration in 

hours 

Experiment type 

Data set 1 16 24 6.4 Male & Male 

Data set 2  27 30 13.5 Male & Male 

Data set 3 18 50 15 Male & Female 

 

   

 

3. METHODOLOGY 

Artificial Intelligence techniques now-a-days are trying to build potential systems that bridge 

gap between the humans and machines [14], [15]. Computer vision is one such area where 
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there is a monumental growth in enabling machines to perceive the world for performing 

multitude of jobs [15]-[19].  

Several convolutional layers with a non-linear activation function make up a convolutional 

neural network (CNN), which is subsequently followed by a pool layer [20]-[24]. The local 

data features were extracted using one or more convolutional filters which are applied to the 

input. The pooling layer comes next, which combines the output after computing mean and 

other metrics. Like the other types of neural networks, the CNNs are enhanced by lowering 

the loss function and the enhancing characteristics are calculated using optimization 

algorithms such as stochastic gradient descent [25]-[30]. 

Convolutional-Neural-Networks is used for decoding the orientation of auditory attention 

where the 64XT matrix is the input. Here, the variable 'T' stands in for a sample decision 

window, while In the dataset, there are 64 total EEG channels, which is represented by the 

number 64. The initial step of the model is convolutional layer. Five autonomous 

spatiotemporal filters are moved across the input matrix it is the initial dimension which is 

same as the total number of channels. Every output is a time series of 1xT. Here ‘17’ is 

130ms at 128Hz, and 130ms are the optimal filter widths which is longer or shorter decision 

window. The length resulted in higher losses in the validation set. After the convolution 

process, the rectified linear unit's activation function is utilized. 

The data is averaged throughout the temporal dimension during the mean pooling procedure 

by periodically decreasing series to a single digit value. Here After the pooling process, there 

are two completely connected layers. The 1st layer consists of 5 neurons (1 per time series), 

followed by the sigmoidal activation function, and 2nd layer consists of 2 output neurons. 

Here the two output neurons are concatenated to the cross-entropy loss function. EEG subnet 

includes four different layers of convolution. Size of kernel of the first layer was chosen to be 

24, which accommodated a delay of 375ms in the time domain. Previous studies have shown 

that there is a difference from 100ms to 200ms in TRFs adjacent to attended and ignored 

speakers. Therefore, In a situation with two speakers, a 375ms delay aids in bringing out 

elements that control attention to various speakers. The shorter core was used to initialize 

each of the subsequent layers. Figure 9 shows the visionary sketch of finding subjects 

attention when there are two competing speakers. 

Up until the point where the max pooling was utilized to reduce the dimensionality, all 

convolutions were carried out in 1x1 stages. To avoid and improve over-adaptation of 

training data and generalization respectively, Batch normalization and dropout were used. 

The output is then sent via a rectified linear unit (ReLU), a nonlinear activation function.  

The trial length determines the input dimensions for EEG_CNN, and output dimensions are 

set to 48x32.  Maximum pooling parameters has changed slightly over various test periods to 

maintain a fixed performance dimension. The temporal axis is one dimensional (48), whereas 

the number of convolutional kernels is two dimensional (32). Output dimensions representing 

EEG signals noted in various electrodes are lowered to unity by applying Max Pooling 

continuously down the electrode axis. 
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Figure 9. A visionary sketch of finding subjects attention when there are two competing 

speakers. 

 

The audio sub network that analyses the audio spectrogram has five layers of convolution, 

and the convolutional output has been subjected to all conventional approaches such as 

activation of ReLU, batch normalisation, max pooling, and dropout. The duration of the 

experiment had an impact on both the input dimensions and the audio CNN of EEG-CNN, 

while the dimensions of output feature map were set as 48x16 always. Because the dataset 

used in this work came from a two-speaker experiment, the audio CNN was run two tomes, 

yielding two sets of output. 

The characteristic maps produced by EEG-CNN and Audio CNN was connected down the 

time axis. The size of the attribute map after chaining was 48x64. Then half of it is provided 

by EEG data, and other half is by audio data. This even issues the feasibility to extend to 

more than one speaker. Connected feature maps have been slide a bidirectional long-short 

term memory (BLSTM) layer followed by 4 fully connected (FC) layers. ReLU activated for 

the initial 3 FC layers and soft max activation was applied to the end FC layer to help 

categorize the attention of speaker one or speaker two. There are 1,18,922 total EEG and 

audio trials available, 75% of the total available samples, which are 89192, were required to 

train the network and the remaining samples are 29730, were equally split between test data 

and validation data. The network was trained in a mini batch of 80 epochs with a 32-sample 

size, the learning rate is 5∗    . The dropout probability was adjusted to 0.25 for EEG-CNN 

and AEConcat subnets but incremented to 0.4 on audio CNN subnets.  

Since the voice stimuli were the same everywhere, the audio CNN was more likely to drop 

out. Therefore, when training with data from multiple subjects, audio data maintain identity, 

the network can store the speech spectrum of training data. The network was optimized using 

the Adam Optimizer with binary cross entropy as the loss function. Neural network training 

causes random variation from epoch to epoch, so the accuracy of the test is measured as the 

average accuracy of the last 5 epochs. The network is trained using Nvidia GeForce 

RTX2060 (6 GB) graphics card, which lasted about 36 hours training and the figure 10 shows 

the block diagram of deep learning-based source localization technique from speech and EEG 

mixture. 

Neural-network study is an advanced and complex algorithm, which is not yet widely utilized 

in embedded systems gadgets because of great memory and computational power 

requirements. By applying these models in embedded system devices, sparse neural networks 

have been briefly shown to solve these issues. Most model parameters in sparse networks are 

zero and zero-valued multiplication, which reduces computational effort. Similarly, it is not 

equal to zero weights must be preserved on the device, and only their position should be 

specified for all zero-valued weights. It is well-known to reduce memory requirements. 

Factual evidence shows that neural networks allow high sparsity degree. 
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Sparse neural networks are made utilizing a process called network pruning. It includes three 

steps mainly. Firstly, vast networks with over parameters are trained to achieve a high level 

of test accuracy as excessive parameterization has more powerful display capabilities. 

Second, only important weights based on criteria are kept in an over parameterized trained 

network, while other weights are considered verbose and are reset to ‘0’. Lastly, the pruned 

network is refined by continuing training with only retained weights to upgrade performance. 

Simple methods, such as magnitude thinning, or more complicated algorithms, such as 

variation dropouts and L0 regularization, can be used to identify inessential weights. 

However, it has been shown that the introduction of sparsity can be achieved using 

magnitude pruning and performance will equal to or better than sophisticated techniques such 

as variability dropouts and L0 arrangement. 

 

 
Figure 10. Block diagram of deep learning-based source localization technique from speech 

and EEG mixture 

 

4. TRAINING AND EVALUATION: 

The data from every subject was used to train the model. It creates a subject-specific 

decoder that can use dxata from other subjects as a data extension strategy to avoid 

overfitting the data under test to a given amount of training. To keep the model from over-

fitting to a single story, we ran it through four cross-validations. In other words, one story 

was held out and trained over the other three. Overfitting isn't an issue with a basic linear 

model, but it can be with the proposed CNN. Even if only EEG responds to a specific 

segment of a tale, It can result in the model picking up certain characteristics unique to the 

story-specific, which in turn might lead to reliable results. when the approach is introduced in 

an EEG response to other parts of the same story, the result is too optimistic. The figure 11 

shows a visionary sketch of a continuous input reformation decoder. 
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Similarly, because every speaker has unique story-telling characteristics (such as speech pace 

and intonation) as well as distinct voice tones, EEG reacts to different things as speakers may 

vary. Therefore, we only maintained the folds that did not contain the same speaker in both 

the test set and the training set since the model benefits from having an EEG response to a 

specific speaker. Only two instances were left in the end. 

An approach that combines cross-validation is called Leave-on-story + speaker-out. In further 

experiments, we scrutinized the dependence of subject of the model. In additional to the 

story-speaker cross-validation, we also performed topic cross-validation. That is, instead of 

using 'N' subjects, 'N-1' subjects were used for training and testing, and a subject that was 

held out was used for testing. 

 

 

 
Figure 11. A visionary sketch of a continuous input reformation decoder 

 

One benefit of this methodology is that new subjects won't have to undergo the potentially 

expensive and time-consuming retraining procedure. This makes it more practical for real-

world use. The performance disparities between the two paradigms determine if it is a finer 

alternative than the subject specific re-training. Subject-specific re-training can be a 

considerable cost if the variation is large enough. Figure 12 shows the attention decoding 

performance when one specific frequency band is removed. 

 
Figure 12. Attention decoding performance when one specific frequency band is removed. 
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By lowering the cross-entropy betwixt the outputs of network and the appropriate label, we 

were able to train the network (supervised ear). With momentum of 0.9 and initial learning 

rate of 0.09, a mini-batch stochastic gradient descent was used to ensure convergence, we 

used a step collapse(decay) learning plan and lowered the learning rates after epochs 10 and 

35 to 0.045 and 0.0225, respectively. Because of the memory limit, the batched size was 

limited to 20, and there was no substantial improvement with bigger batched sizes. 

 

 
Figure 13. Attention decoding performance when exclusive band is used. 

 

Figure 13. Attention decoding performance when exclusive band is used. Early experiments 

have examined that the optimal decoder was normal, the best decoder was found between 

epoch 70 and epoch 95 of the training set, which lasted 100 epochs. Regularization includes 

decay of load with a value of 5x10
-4

. After training, a decoder with iterations is chosen that 

have minimal validation losses. Note that adding data from other subjects could also be 

considered as a regularized method which further lowers the risk of over fitting. A grid search 

on a reasonable set of values was used to determine all the above hyper-parameters. A 

validation set was used to assess performance during these grid searches. Decoding accuracy 

is properly categorized as a percentage test set decision window in this task, averaged over 

the two folds mentioned above. 

 

5. RESULTS 

There are significant differences observed in event-related potentials (ERP) at various time 

instances in frontal and parietal channels. The contour pattern of the difference of ERP was 

almost similar with a slight difference in the positivity lateralization in 1900 ms and 2200 ms. 

The syllable played at spatialized locations is affected at the above moments.  

We can decode source localization or attention of the subject with a better average accuracy. 

In a binary classification, the average accuracy in all combination of trails is between 74.95% 

to 76.83%. The decoding accuracy is correlated with each participant’s behavioral 

performance. There is a strong correlation detected between behavior accuracy and decoding 

accuracy. The following figure 14 shows the histogram for decoding accuracy between 

number of subjects. The following figure 14 shows the histogram for decoding accuracy 

between number of subjects. 
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Figure 14. Histogram for decoding accuracy between number of subjects 

 

From the literature, it is evident that 60 to 5s is the approximate window range to test the 

decision whether the subject is attended to right or left. For the decision windows 1 and 10s 

though there is a large variability in inter-subject the median decoding accuracy is higher. 

From 57.1 to 81.2%, the median accuracy increased. when CNN model is applied at 1s 

decision window. Similarly, highest median accuracy of 86.1% is achieved by the CNN 

model at a decision window size of 10s. The CNN model outperforms the linear model at 

both the window sizes with a huge margin. The CNN model performed unsatisfactorily for 

the stories with a below 50% accuracy where the accuracy for the stories 3 and 4 stands 

above 80% which is higher. The longer window lengths contain more information than 

shorter window lengths and hence is the reason for substandard performance. The following 

figure 15 shows the scatter plots for behavioral performance and decoding accuracy. 

 

 

 

 
Figure 15. Scatter plots for behavioral performance and decoding accuracy 

 

The frequency ranges of cortical recordings are defined as delta (1 to 4Hz); theta (4 to 8Hz); 

alpha (8 to 14Hz); and beta (14 to 32Hz). The beta band has more information that network 

can model. In the convolution layer the filter weights are finding which channel is important. 

The results show that frontal, temporal and occipital regions have good activations. While 

working with neural networks, it is difficult to understand which parameter played important 

role in achieving better accuracy. The approach followed during evaluation of the system is 

leave one story + speaker out. The findings show that the adopted strategy and the 

conventional approach both produce same decoding accuracy. 
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When the input applied to the system are only speech features the median decoding accuracy 

is observed to be low. While on the other hand when the model is exercised with EEG 

features the better median decoding accuracy is observed. However, the statistical analysis's 

findings are at odds with our assumptions, showing that applying the model using speech 

characteristics as opposed to EEG features does not significantly alter the median decoding 

accuracy. A bidirectional long short-term memory (BLSTM) is effective in handling the 

recorded delay between EEG and the speech. In real time scenario the speech available is 

mixture of huge noise which is difficult to sperate and plot the spectrogram. But in the 

experiment considered we have data recorded in a clean environment which is easy to process 

and plot a spectrogram. For training the neural network, to make up for the lack of EEG 

labelled data needed to train the network, data augmentation techniques are frequently 

employed. There is a need to generate synthetic EEG to apply linear convolution to the 

corresponding speech cues and the TRFs.  

 

6. CONCLUSION AND FUTURE SCOPE 

Many current algorithms need supervised training and are improved over time. To adjust to 

the EEG's time-varying data without necessitating onerous a training session in advance for 

each user individually, Adaptive AAD algorithms that don't require training are essential. 

Even if that field has made some progress, The results of this investigation show that a 

practical solution is still a long way off. To create closed-loop systems for hearing devices 

with neuro-steered, these online adaptive AAD algorithms are essential. This let the user 

engage with the speech-enhancement system and AAD algorithm. Interaction between the 

hearing aid's computer algorithms and the individual who wears it may produce 

neurofeedback effects that considerably enhance the hearing aid's functionality. Finally, real-

world testing of these AAD algorithms is required, considering a variety of realistic listening 

conditions and possible hearing device users. To create the individual parts of a neuro-steered 

hearing device, In addition to a miniaturized EEG sensor system, a reliable and low-latency 

speaker separation method, and an intelligent gain control system are required for ADD 

algorithm. Future generations of hearing devices might work and be accepted by users much 

more effectively if neuro-steered hearing devices are used as a neuro rehabilitative assistive 

technology. However, there are still numerous obstacles to overcome. 
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