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interacting material points, which is a complex characteristic of important atomic values. Wave properties of P-parameter are found, its wave 

equation having a formal analogy with the equation of Ψ-function is given.  In the systems in which the interactions proceed along the 

potential gradient (positive performance) the resulting potential energy is found based on the principle of adding reciprocals of the 

corresponding energies of subsystems. Some correlations of P-parameter values with Lagrangian and Hamiltonian functions are obtained. 
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Introduction 

To obtain the dependence between energy parameters of 
free atoms and degree of structural interactions in simple and 
complex systems is one of strategic tasks in physical 
chemistry.  Classical physics and quantum mechanics widely 
use Coulomb interactions and their varieties for this.      

Thus in Van der Waals theory,1 orientation and charge-
dipole interactions are referred to electron-conformation 
interactions in bio-systems, and as a particular case in 
exchange-resonance transfer of energy. But biological and 
many cluster systems are electroneutral in structural basis. 
And non-Coulomb equilibrium-exchange spatial-energy 
interactions, i.e. non-charge electrostatic processes, are 
mainly important for them.  

The structural interactions of summed electron densities of 
valence orbitals of corresponding conformation centers, 
processes of equilibrium flow of electron densities, take place 
due to overlapping of their wave functions.  

Heisenberg and Dirac2 proposed the exchange Hamiltonian 
derived assumption on direct overlapping of wave functions 
of interacting centers as 𝐻 = −𝐼0𝑆1𝑆2 . where Н̅   is spin 
operator of isotropic exchange interaction for pair of atoms, 
𝐼0  is the  exchange constant, 𝑆1and 𝑆2  are the overlapping 
integrals of wave functions.   

In this model electrostatic interactions are modelled by 
effective exchange Hamiltonian acting in the space of spin 
functions.  

In particular, such approach is applied to the analysis of 
structural interactions in cluster systems. It is demonstrated in 
Anderson’s works3 that in compounds of transition elements 
when the distance between paramagnetic ions considerably 

exceeds the total of their covalent radii, “superexchange” 
processes of overlapping cation orbitals take place through 
the anion between them. 

In this work similar equilibrium-exchange processes are 
evaluated through the notion of spatial-energy parameter, Р-
parameter. 

Results and discussion 

On two principles of adding energy characteristics of 

interactions 

The analysis of kinetics of various physical and chemical 
processes shows that in many cases the reciprocals of 
velocities, kinetic or energy characteristics of the 
corresponding interactions are added.  

Some examples: ambipolar diffusion, resulting velocity of 
topochemical reaction, change in the light velocity during the 
transition from vacuum into the given medium, effective 
permeability of bio-membranes.  

In particular, such supposition is confirmed by the formula 
of electron transport possibility (W) due to the overlapping 
of wave functions 1 and 2 (in steady state) during electron-
conformation interactions:  

 

   𝑊∞ =
1

2

𝑊1𝑊2

𝑊1+𝑊2
    (1) 

Eqn. (1) is used when evaluating the characteristics of 
diffusion processes followed by non-radiating transport of 
electrons in proteins.1  

From classical mechanics it is known that the relative 
motion of two particles with the interaction energy U(r) takes 
place as the motion of material point with the reduced mass  
in the field of central force U(r), and general translational 
motion as a free motion of material point with the mass (Eqns. 
2 and 3). Such things take place in quantum mechanics as 
well.4 
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1

𝜇
=

1

𝑚1
+

1

𝑚2
     (2) 

 

   m = m1 + m2     (3) 

 

The task of two-particle interactions taking place along the 
bond line was solved in the times of Newton and Lagrange 
(Eqn. 4). 

 

𝐸 =
𝑚11

2

2
+

𝑚22
2

2
+ 𝑈(𝑟̅2 − 𝑟̅1)  (4) 

 

where Е is the  total energy of the system, first and second 
elements are the  kinetic energies of the particles, third 
element is the potential energy between particles 1 and 2, 
vectors 2r   and  1r  characterize the distance between the 
particles in final and initial states. 

For dynamic thermodynamic systems the first 
commencement of thermodynamics is as follows. 

 

δ𝐸 = 𝑑 (𝑈 +
𝑚2

2
) ± δ𝐴m   (5) 

 

where E is amount of energy transferred to the system, 
element d[U + (mv2/2)] characterizes the changes in internal 
and kinetic energies of the system, +A is the work performed 
by the system and -A is worked performed with the system.

 
As the work value numerically equals the change in the 

potential energy, it is apparent that 

 

𝛿𝐴 = −∆𝑈      (6) 
 
and       

 

−𝛿𝐴 = +∆𝑈      (7)  
 

It is probable that not only in thermodynamic but in many 
other processes in the dynamics of moving particles 
interaction not only the value of potential energy is critical, 
but changes in it are as well. Therefore, similar to the equation 
(4), the following equations should be applicable to two-
particle interactions.  

 

𝛿𝐸 = 𝑑 (
𝑚11

2

2
+

𝑚22
2

2
) ± ∆𝑈   

        (8) 

where  

 

U = U2 – U1     (9) 

 

where U1  and U2 are the potential energies of the system in 
final and initial states.  

At the same time, the total energy (Е) and kinetic energy 
(m2/2) can be calculated from their zero value, then only the 
last element is modified in Eqn. (4). 

The character of the change in the potential energy value 
U was analyzed by its sign for various potential fields and 
the results are given in Table 1. From the table it is seen that 
the values U and accordingly +A (positive work) 
correspond to the interactions taking place along the potential 
gradient, and +U and A (negative work) occur during the 
interactions against the potential gradient. 

The solution of two-particle task of the interaction of two 
material points with masses m1 and m2, obtained under the 
condition of the absence of external forces, corresponds to the 
interactions flowing along the gradient, the positive work is 
performed by the system (similar to the attraction process in 
the gravitation field).  

The solution of this equation via the reduced mass ()
 
is the 

Lagrange equation for the relative motion of the isolated 
system of two interacting material points with masses m1 and 
m2, which are related to х in the following way:  

 

𝜇 ∙ 𝑥" = −
𝜕𝑈

𝜕𝑥
       (10) 

  

Here U is the  mutual potential energy of material points,  is 
the  reduced mass. At the same time, х″ = a (feature of the 
system acceleration). For elementary portions of the 
interactions ∆х can be taken as follows: 

 

 
𝜕𝑈

𝜕𝑥
≈

∆𝑈

∆𝑥
 

  

 
That is ax =U, therefore 

 
 

1

1/(𝑎∆𝑥)

1

(
1

𝑚1
+

1
𝑚2

)
≈ −∆𝑈, 

 
1

1/(𝑚1𝑎∆𝑥) + 1/(𝑚2𝑎∆𝑥)
≈ −∆𝑈 

or 

 
1

∆𝑈
≈

1

∆𝑈1

+
1

∆𝑈2

 

          (11) 

 

where ∆U1 and ∆U2 are the potential energies of material 
points on the elementary portion of interactions and ∆U is the 
resulting (mutual) potential energy of this interactions. 
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Table 1. Direction of the interaction processes . 

No. Systems Potential 

field 

Process U Relations of 

parameters  

Sign of  Process 

direction  
U A 

1 opposite 

electrical 

charges  

electrostatic  attraction 

r

qq
k 21  12 rr   U2>U1 - + along the 

gradient 

repulsion 

r

qq
k 21  12 rr   U2<U1 + - against the 

gradient 

2 similar electrical 

charges 

electrostatic attraction 

r

qq
k 21  12 rr   U2>U1 + - against the 

gradient 

repulsion 

r

qq
k 21  12 rr   U2>U1 - + along the 

gradient 

3 elementary 

masses (m1, m2) 

gravitational  attraction 

r

mm 21  12 rr   U2>U1 - + along the 

gradient 

repulsion 

r

mm 21  12 rr   U2>U1 + - against the 

gradient 

4 spring deforma-

tion  

elastic forces compre-

ssion 
2

2x
k


 
12 xx 

 

U2>U1 + - against the 

gradient 

extension 

2

2x
k


 
12 xx 

 

U2>U1 + - against the 

gradient 

5 photoeffect  electrostatic repulsion 

r

qq
k 21  12 rr   U2<U1 - + along the 

gradient 

 

 

Thus: 

1. In the systems in which the interactions proceed along 
the potential gradient (positive performance) the resulting 
potential energy is found based on the principle of adding 
reciprocals of the corresponding energies of subsystems.5 
Similarly, the reduced mass for the relative motion of two-
particle system is calculated.  

2. In the systems in which the interactions proceed against 
the potential gradient (negative performance) the algebraic 
addition of their masses as well as the corresponding energies 
of subsystems is performed (by an analogy with Hamiltonian). 

Spatial-energy parameter (P-parameter) 

From the equation (11) it is seen that the resulting energy 
characteristic of the system of two material points interaction 
is found based on the principle of adding reciprocals of initial 
energies of interacting subsystems.  

Electron with the mass m moving near the proton with the 
mass М is equivalent to the particle with the mass  

 = mM/(m + M)6. 

Therefore, when modifying the equation (11), we can 
assume that the energy of atom valence orbitals (responsible 
for interatomic interactions) can be calculated5 by the 
principle of adding reciprocals of some initial energy 
components based on the following equations.  

 

1

𝑞2/𝑟i

+
1

𝑊i𝑛i

=
1

𝑃E

 

          (12) 

 

or 

   
1

𝑃0

=
1

𝑞2
+

1

(𝑊𝑟𝑛)i

 

          (13) 

 

 

𝑃E = 𝑃0/𝑟i 

          (14) 

   

where Wi is the electron orbital energy,7 ri  is the orbital radius 
of i orbital,8 q=Z*/n*,9 ni is the  number of electrons of the 
given orbital, Z* and n* is the effective nuclear charge and 
effective main quantum number, r is the bond dimensional 
characteristics.  

Р0 was called a spatial-energy parameter (SEP), and РE is 
the effective Р–parameter (effective SEP). Effective SEP has 
a physical sense of some averaged energy of valence 
electrons in the atom and is measured in energy units, 
electron-volts (eV).  

The values of Р0-parameter are the tabulated constants for 
the electrons of the given atom orbital.  
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For dimensionality SEP can be written down as follows: 

[𝑃E] = [𝑞2] = [𝐸] ∙ [𝑟] = [ℎ] ∙ [] =
kg ∙ m3

s2
= J ∙ m 

          (15) 

where [E], [h] and [υ] are the  dimensions of energy, Planck 
constant and velocity, respectively. Thus Р-parameter 
corresponds to a processes going along the potential gradient.   

The introduction of Р-parameter should be considered as 
further development of quasi-classical notions using 
quantum-mechanical data on atom structure to obtain the 
criteria of energy conditions of phase-formation. At the same 
time, for the systems of similarly charged (e.g. – orbitals in 
the given atom), homogeneous systems the principle of 
algebraic addition of such parameters is preserved: 

 

∑𝑃𝐸 = ∑(𝑃0/𝑟𝑖) 

          (16) 

 

∑𝑃E =
∑𝑃0

𝑟
 

          (17) 

or   

∑𝑃0 = 𝑃0
′ + 𝑃0

′′ + 𝑃0
′′′ + ⋯ 

           (18) 

 

𝑟∑𝑃E = ∑𝑃0 
          (19) 

 

Here Р-parameters are summed on all atom valence orbitals. 
To calculate the values of РE-parameter at the given distance 
from the nucleus, depending on the bond type, either atomic 
radius (R) or ionic radius (rI) can be used instead of r.  

Regarding the reliability of such approach, the calculations 
demonstrated that the values of РE-parameters are 
numerically equal (within 2 %) to the total energy of valence 
electrons (U) by the atom statistic model. Using the known 
correlation between the electron density () and interatomic 
potential by the atom statistic model,10 we can obtain the 
direct dependence of РE-parameter on the electron density at 
the distance ri from the nucleus. 

The rationality of such approach is confirmed by the 
calculation of electron density using wave functions of 
Clementi and its comparison with the value of electron 
density calculated via the value of РE-parameter.  

Wave equation of P-parameter 

To characterize atom spatial-energy properties two types of 
P-parameters are introduced. The relation between them is a 
simple one, PE = P0/R, where R is an atom-dimensional 
characteristic. Taking into account additional quantum 
characteristics of sublevels in the atom, this equation can be 
written down in coordinate х as follows: PE = P0/x or PE 
= P0/x, where the value ΔР equals the difference between 
Р0-parameter of ith orbital and РCD–countdown parameter 
(parameter of main state at the given set of quantum numbers).  

According to the established rule5 of adding P-parameters 
of similarly charged or homogeneous systems for two orbitals 
in the given atom with different quantum characteristics and 
according to the energy conservation rule we have:  

 

∆𝑃"E − ∆𝑃′𝐸 = 𝑃E, 

          (20) 

where РE,λ – spatial-energy parameter of quantum transition. 

Taking for the dimensional characteristic of the interaction 
Δλ=Δх, we have:  

∆𝑃0
"

∆
−

∆𝑃0
′

∆
=

𝑃0

∆
 

 or 

∆𝑃0
′

∆
−

∆𝑃0
"

∆
=

𝑃0

∆
 

           (21) 

Let us again divide both sides by  term  

(
∆𝑃0

′

∆
−

∆𝑃0
"

∆
) /∆ = −

𝑃0

∆2 

           (22) 

 

where 

(
∆𝑃0

′

∆
−

∆𝑃0
"

∆
) /∆~

𝑑2𝑃0

𝑑2  

 i.e., 

𝑑2𝑃0

𝑑2 +
𝑃0

∆2 ≈ 0 

          (23) 

 

Taking into account only those interactions when 2πΔх = 
Δλ (closed oscillator), we have the following equation: 

 

𝑑2𝑃0

4π2∆2 +
𝑃0

∆2 = 0 

 or  

𝑑2𝑃0

𝑑𝑥2
+ 4π2

𝑃0

∆2 ≈ 0 

          (24) 

 

Since  

∆ =
ℎ

𝑚𝑣
 

 

then 

𝑑2𝑃0

𝑑𝑥2
+ 4π2

𝑃0

ℎ2
𝑚22 ≈ 0 

          (25) 

or  

𝑑2𝑃0

𝑑𝑥2
+

8𝜋2𝑚

ℎ2
𝑃0𝐸k = 0 

          (26) 

where Ek = mv2/2 is the electron kinetic energy. 
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Schrodinger equation for the stationery state in coordinate 
х is as follows (Eqn. 27). 

 

𝑑2

𝑑𝑥2
+

8𝜋2𝑚

ℎ2
 𝐸k = 0 

          (27) 

Comparing these two equations it can be seen that the Р0-
parameter numerically correlates with the value of -function, 
𝑃0 ≈ , and is generally proportional to it, Р0 ~ . Taking into 
account the broad practical opportunities of applying the P-
parameter methodology, we can consider this criterion as the 
materialized analog of -function. 

Since the Р0-parameters like -functions have wave 
properties, the superposition principles should be fulfilled for 
them, defining the linear character of the equations of adding 
and changing P-parameter.  

Analog comparisons of Lagrange and Hamilton functions with 

spatial-energy parameter 

Lagrange (L) and Hamilton (H) functions are the main 
provisions of analytical mechanics. Lagrange function is the 
difference between kinetic (Т) and potential (U) energies of 
the system:  

L = T – U     (28) 

For uniform functions of the second degree Hamilton 
function can be considered as the sum of potential and kinetic 
energies, i.e. as the total mechanical energy of the system:  

 
H = T + U    (29)  

From these equations and in accordance with energy 
conservation law we can visualize eqns. (30) and (31). 

 

     H + L = 2T    (30) 

H – L = 2U    (31) 

Let us try to assess the movement of an isolated system of 
a free atom as a relative movement of its two subsystems, 
nucleus and orbital. 

The structure of atom is formed of oppositely charged 
masses of nucleus and electrons. In this system, the energy 
characteristics of subsystems are the orbital energy of 
electrons (Wi) and effective energy of atom nucleus taking 
screening effects into account. 

In a free atom, its electrons move in Coulomb field of 
nucleus charge. The effective nucleus charge characterizing 
the potential energy of such subsystem taking screening 
effects into account equals q2/ri , where q = Z*/n*. 

Here Z* and n* are effective nucleus charge and effective main 
quantum number, respectively, ri is the orbital radius. It can 
be presumed that orbital energy of electrons during their 
motion in Coulomb field of atom nucleus is mainly defined 
by the value of kinetic energy of such motion.  

Thus, it is assumed that T  W and U  q2/ri. In such an 
approach the total of the values W and q2/ri are analogous to 
Hamilton function (Н) i.e., 

𝑊 + 𝑞2 𝑟i~𝐻⁄  
                  (32) 

An analogous comparison of Р-parameter with Lagrange 
function can be carried out when investigating Lagrange 
equation for relative motion of isolated system of two 
interacting material points with masses m1 and m2 in 
coordinate х. The principle of adding reciprocals of energy 
values models their algebraic difference by Hamiltonian. If it 
is presumed that PE  L,  then Eqn. (30) becomes Eqn. (33). 

(𝑊 +
𝑞2

𝑟i

) + 𝑃E ≈ 2𝑊 

             (33) 

Using the values of electron bond energy as the orbital 
electron energy, we calculated the values of РE-parameters of 
free atoms (Table 2) by equations (12-14). When calculating 
the values of effective РE-parameter, mainly the atom radius 
values by Belov-Bokiy or covalent radii (for non-metals) 
were applied as dimensional characteristics of atom (R).  

At the same time, the average values of total energy, 
valence orbitals dividing their values by a number of valence 
electrons considered (N): 

 

(
𝑞2

𝑟𝑖

+ 𝑊)
1

𝑁
+ 𝑃E ≈ 2𝑊 

          (34) 
 

This energy in terms of one valence electron is the analogue 
of Hamilton function, Н.  

In free atoms of Iа and IIa groups of periodic system, s-
orbital is the only valence orbital, and that was considered via 
the introduction of the coefficient, K = n/n* where п is the 
main quantum number, п* is the effective main quantum 
number,  by the eqn. (35) 

 

(
𝑞2

𝑟i

+ 𝑊)
1

𝐾𝑁
+ 𝑃E ≈ 2𝑊  

          (35) 
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Table 2. Comparison of some basic energy atomic characteristics.  

Element Valence  

electrons 

W 

(eV) 

ri 

(Å) 

q2 
 

(eVÅ) 

Р0 

(eVÅ) 

R 

(Å) 

РE=Р0/R 

(eV) 

N B* 2W 

(eV) 

Li 2s1 5.3416 1.586·2 5.8892 3.475 1.55 2.2419 1 9.440 10.683 

Be 2s2 8.4157 1.040 13.159 7.512 1.13 6.6478 2 17.182 16.831 

В 2p1 

2s2 

8.4315 

13.462 

0.776 

0.769 

21.105 

23.890 

4.9945 

11.092 

0.91 

0.91 

5.4885 

12.189 

3 

3 

17.365 

27.032 

16.863 

26.924 

С 2p2 

2s2 

11.792 

19.201 

0.596 

0.620 

35.395 

37.240 

10.061 

14.524  

0.86 

0.77  

11.699/2 

18.862 

4 

4 

23.645 

38.824 

23.584 

38.402 

N 2p3 

2s2 

15.445 

25.724 

0.4875 

0.521 

52.912 

53.283 

15.830 

17.833 

0.71 

0.71 

22.296/3 

19.788/3 

5 

5 

32.228 

31.392 

30.890 

51.448 

O 2p1 

2s2 

17.195 

33.859 

0.4135 

0.450 

71.383 

72.620 

6.4663 

21.466 

0.66 

0.66 

9.7979/4 

32.524 

6 

6 

34.087 

65.064 

34.390 

67.718 

F 2p1 

2s2 

19.864 

42.792 

0.3595 

0.396 

93.625 

94.641 

6.6350 

24.961 

0.64 

0.64 

10.367/5 

39.002 

7 

7 

42.115 

79.257 

39.728 

85.584 

Na 3s1 4.9552 1.713·2 10.058 4.6034 1.89 2.4357 1 10.327 9.9104 

Mg 3s1 6.8859 1.279 17.501 5.8588 1.60 3.6618 2 13.946 13.772 

Al 3p1 

3s2 

5.713 

10.706 

1.312 

1.044 

26.443 

27.119 

5.840 

12.253 

1.43 

1.43 

4.084 

8.5685 

3 

3 

12.707 

20.796 

11.426 

21.412 

Si 3p1 

3s2 

8.0848 

14.690 

1.068 

0.904 

29.377 

38.462 

6.6732 

15.711 

1.17 

1.17 

5.7036  

13.428 

4 

4 

14.600 

17.737 

16.170 

29.380 

P 3p3 

3s1 

10.659 

18.951 

0.9175 

0.803 

38.199 

50.922 

16.594 

11.716 

1.30 

1.10 

12.765/3 

10.651 

3 

3 

21.686 

38.106 

21.318 

37.902 

S 3p1 

3pP2 

3p4 

11.901 

11.901 

11.904 

0.808 

0.808 

0.808 

48.108 

48.108 

48.108 

8.0143 

13.740 

21.375 

1.04 

1.04 

1.04 

7.7061 

13.215/2 

20.553/4 

4 

4 

4 

25.566 

24.468 

22.998 

23.802 

23.802 

23.808 

*B =(
𝑞2

𝑟i
+ 𝑊)

1

𝐾𝑁
+ 𝑃E 

 

Thus in Ia and IIa subgroups of short periods, K = 1 and 
then K = 4/3.7; 5/4 and 6/4.2 for 4th, 5th, and 6th periods of 
the system only for these subgroups. For all other cases K = 
1. Besides, for the elements only of 1а group of periodic 
system,  the value 2ri (i.e. the orbital radius of i-orbital) was 
used as a dimensional characteristic in the first component of 
Eqn. 35.  

Taking into account the remarks pointed out for the initial  
equation, the values of both the components of Eqn. (35) for 
65 elements were calculated and compared. Some results are 
given in Table 2. The analysis of the data given in Table 2 
reveals that the proximity of the values investigated is mostly 
within 5 %. Thus there is a certain analogy of equations (30) 
and (35), and the value of РE-parameter can be considered as 
the analog of Lagrange function and value  

(
𝑞2

𝑟𝑖

+ 𝑊)
1

𝐾𝑁
 

as an analog of Hamilton function.11 

Structural exchange spatial-energy interactions 

In the process of solid solution formation and other 
structural equilibrium-exchange interactions, the single 
electron density should be set in the points of atom-
component contact. This process is accompanied by the 
redistribution of electron density between the valence areas 
of both particles and transition of the part of electrons from 
some external spheres into the neighbouring ones. Apparently, 
frame atom electrons do not take part in such exchange. 

Obviously, when electron densities in free atom-
components are similar, the transfer processes between 
boundary atoms of particles are minimal and this will be 
favorable for the formation of a new structure. Thus the 
evaluation of the degree of structural interactions in many 
cases means the comparative assessment of the electron 
density of valence electrons in free atoms (on averaged 
orbitals) participating in the process, which can be correlated 
with the help of P-parameter model.   
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The less the difference (Р'0/r'i – P"0/r"i), more favorable is 
the formation of a new structure or solid solution from the 
energy point.  

In this regard, the maximum total solubility, evaluated via 
the coefficient of structural interaction, , is determined by 
the condition of minimum value of , which represents the 
relative difference of effective energies of external orbitals of 
interacting subsystems: 

 

𝛼 =
𝑃o

′/𝑟𝑖
′ − 𝑃o

"/𝑟i
"

(𝑃o
′/𝑟𝑖

′ + 𝑃o
"/𝑟i

")/2
100 % 

          (36) 

𝛼 =
𝑃C

′ − 𝑃C
"

𝑃C
′ + 𝑃C

"
200 % 

          (37) 

where РC – structural parameter is found by equation:  

 

1

𝑃C

=
1

𝑁1𝑃E
′ +

1

𝑁2𝑃E
"

+ ⋯ 

                (38) 

 

here N1 and N2 are the number of homogeneous atoms in 
subsystems. 

The isomorphism degree and mutual solubility are 
evaluated in many (over one thousand) simple and complex 
systems (including nanosystems). The calculation results are 
in compliance with theoretical and experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

1. The introduced spatial-energy parameter (P-parameter) 
can be considered as materialized analog of -function. 

2. The application of such methodology allows modelling 
of physical-chemical processes based on energy 
characteristics of a free atom.  
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