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Abstract

Let G be a non-abelian group and Q < G. The Non-Commuting graph T =
(G, Q), has Q as its vertex set with two distinct elements of Q joined by an
edge when they do not commute in G. In this article, we investigate among
some properties of Non-Commuting graphs and the degree of all vertices in T
We also study a necessary and sufficient condition for I" to be Eulerian.
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1 Introduction

The study of algebraic structures, using the properties of graphs, becomes an
exciting research topic in the last twenty years, leading to many fascinating results
and questions. For example, the study zero-divisor graphs, total graph of
commutative rings and commuting graph of groups has attracted many researchers
towards this dimension. One can refer [2, 3] for such studies. The concept of non-
commuting graph has been studied in [1], where as the concept of commuting graph
has been found in [4]. For basic defns one can refer [5, 6, 7, 9]. Before
starting let us introduce some necessary notation and definitions.

Let G be a group. The center of a group G is denoted by Z(G). Let Q be any
nonempty subset of G. The centralizer of Q in G is the set of elements of G which
commutes with every element of Q and it is denoted by Cq(G). Here we consider
the following way: Take G \ Z(G) as the vertices of G and join two distinct vertices x
and y whenever x and y do not commute with each others. Note that if G is
abelian, then I" is the null graph. For any integer n > 3, theDihedral group 2n is
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given by Do = (r,s : s> =r"=1,rs = sr %).
In this article, we consider the Non-Commuting graphs in the context of
dihedral group D, For any subset Q of D,,, the Non-Commuting graph

I' = (G, Q) has Q as its vertex set G \ Z(G) with two distinct vertices in Q are
adjacent if they do not commute with each other in D,.

We consider simple connected undirected graphs, with no loops or multiple edges.
For any graph I', we denote the sets of the vertices and the edges of by V (I') and
E(I"), respectively. The degree degr(v) of a vertex v in I" is the number of edges
incident to v and if the graph is understood, then we denoted {I"}(v) simply by degr.
The order of T is defined |V (I')| and its maximum and its minimum degrees will
be denoted, respectively, by A(I") and 6(I"). Agraph I is regular if the degrees of
all vertices of I are the same. A subset X ofthe vertices of " is called a clique if the
induced subgraph on X is a complete graph. The maximum size of a clique in a
graph I is called the clique number of I" and denoted by w(I).

A path P is a sequence vgeivie; . . . exvx Whose terms are alternately distinct vertices
and distinct edges, such that for any i, 1 < i <k, the ends of g; arevi; and v;. In
this case P is called a path between vy and vx. The number kis called the length
of P. If vo and v¢ are adjacent in I" by an edge ex1, thenP U {ex:1} is called a
cycle. The length of a cycle defined the number of its edges. The length of the
shortest cycle in a graph I" is called girth of I' and denoted by girth (I'). A
Hamilton cycle of T" is a cycle that contains every vertex of I'. If v and w are
vertices in T', then d(v, w) denotes the length ofthe shortest path between v and w.
The largest distance between all pairs of the vertices of I" is called the diameter of
I', and is denoted by diam(I"). A graph I" is connected if there is a path between
each pair of the vertices of I'. A planar graph is a graph that can be embedded in
the plane so that no two edges intersect geometrically except at a vertex which
both are incident.

It is well known that any compact surface is either homeomorphic to a sphere,
or to a connected sum of g tori, or to a connected sum of k projective planes
(see [8], Theorem 5.1). We denote by Sy the surface formed by a connected sum of
g tori. The number g is called the genus of the surface Sy. Also a graph I" is called
planar if y(G) = 0, and it is called toroidal if y(G) = 1.Note that, a graph G is
perfect if neither G nor G contains any induced odd cycle of degree at least five.

In Section 2 of the paper, we study some graph properties of the non-
commuting graph T" of D,,. We see that I" is always connected, its diame-
ter,perfect matching, number of triangles and number of C,. We also study a
necessary and sufficient condition for I" to be Eulerian.

Lemma 1.1. /8] The following statements hold:
1. v(Ky) = —1%(7‘1 —3)(n — -l” if n > 3;
2. WWKma)= —%(m —2)(n — '.2?)1 if m,n > 2.

Note that Kuratowski’s Theorem [[10], Theorem 6.2.2] says that a graph is

planar if and only if 1t contains no subdivision of K5 or K33.
Theorem 1.2. [10] A graph G is a claw-free graph if G does not contain a
K13 as an mduced subgraph.
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2 Main Results

'lhroughout this section, n > 3 is an integer and Dy, =<1, 5 : s> =1" I

rs = sr— ! >. Let I" be the simple undirected graph with vertex set Da,\ Z/( Don)

in which two distinct vertices are adjacent if and only if they do not commute.
In the first lemma, we obtain the degree of all the vertices the graph I

Lemma 2.1. Let n > 3 be an integer.
(i). For 1 <i# % <n when n is even and for 1 <i < n when n is odd, then
degr(rt) = n;

(ii). For 1 <i < n, then degr(sr') = {

2n—4 ifn is even;

2n—3 ifn is odd.

Proof. (i) Let x = r* for some i, 1 < i # 2 < n when n is even or for
i, 1 <7 < n when n is odd. Then z is only adjacent to every element from
{s,sr,sr, ...,s7" '} in T and so degp(z) = n.

(ii) Suppose 7 is even. Let V4 = {r,r2,...,.r" .7, ....7" 1} and Vs =
{s.sr,sr?,...,sr"1}. Then V([') =V, UV, and |V(T)| =2n — 2.
Let z = sr' for 1 < ¢ < n. Then z is adjacent to every other vertex from
V(T)\ {sr’} in T’ where if j > 4, then j —i =% (i > j.i—j = 5) and so
degr(z) = 2n — 4.
Suppose n is odd and z = sr* for 1 < i < n. Then z is adjacent to every other
vertex in I' and so degr(z) = 2n — 3. (I

One can have the following corollary from the above lemma.

Corollary 2.2. Let n > 3 be an integer. For 1 <i < n, then
1. diam(T") = 2;
2. gr(T') =

3. T is connected.

In the following theorem, we find the number of edges in the graph I'.

Theorem 2.3. Let n > 3 be an integer. Then the number of edges

3n(n—-2) x = .
f(F) = 3."(3__1) an l.s ——"
—5— ifn is odd.
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Proof. Case (i). Let n be even, Let V; = {r,r?,..., i ., 1} and
Vo = {s,sr,sr%,...,sr™ '}, Let z € V4. Then z adjacent to every element

to Va in I'. This gives ' contains (n — 2)n edges. Every element sr' in V5 is
adjacent to every element from Va\ {sr’, s’}, where if j > i, then j—i = 3 (i >
j.i—j = %). This yields I' contains 1‘-’1—11 2 edges. Since < V) >~ K, 5 in
[, I' contains only n(n — 2) + Lom PR % — 3"("_2) edges.

Case (ii). Let n be odd. Let V1 = {r,7%,..., r" 1} and Vo = {s, sr,sr?, ...,

r"~1}. Every element of x € V] is adjacont to every element from V5 in
F This gives I' contains n(n — 1) edges. Every element in VB 1s adjacent to

every other element from V5 in I'. This implies I' contains = 1’ edges. Since

< Vi >2 K, inT, T contains only n(n — 1) + "(nz D — 3"(" D edges. O

In the following theorem, we find the number of triangles in the graph I'.

Theorem 2.4. Let n > 3 be an integer. Then the number of triangles in
{n(n—?)(13n—‘28) if n is even;
F= . = e

me- 008 i dsodd

6
Proof. Suppose n is even. Let Vj = {r, r') ol e U 1Y and Vi =
{s,sr, sr? r" 1), Let Hy = {s,sr,sr2,...,s77" 1)} and H) {sr™, srEtl

P el l} Then HyUHy = Vs and |Hy| = |Ho| = 2. Also < Hy >=< Hy >=
I\% ml i
Case (1). < {z,y,2} >2 K3 in ' with z € V}.

Sub case (a). < {z,y.2} > K3 in [ with z € V] and either y,z € H; or
Y,z € Hs.

If z € Vi and y, z € Hy, then I contains (n —2)5(5 —1)/2 = —LL trlangles
If # € Vi and y,z € Hs. This gives I' contains (n — 2)5(5 /2 e ))-

triangles. In this case, [' contains L“)— triangles.

Sub case (b). < {J:,y. z} > ng mI withz € Vi, y € H and z €
Hs \ {w} where z and w are adjacent in I'. Note that every element y € H,
1s not adjacent to exactly one element w € Hy in ['. This implies ' contains

(n—2)(5-1)3 M Since < V] >~ K, 5 in I, I contains exactly ———"("4 3).

triangles. From sub cases (a) and b, I' contains (—) triangles.

Case (ii). < {z.y.z} >2 K3 in " with z,y.z € “H or z, Y.z € Hs. Since

|Hy| = |Hs| = 5, I contains "("‘)—)l("“ triangles.
From cases (i )and (11), I' contains ("2 L +"("~?,)4("_4) = "("_2)(,;3"—28) triangles.
Suppose n is odd. Let V4 = {r, ..., r" 1} and Vo = {s,sr,sr2,...,

"1}, Every element of = € V; is ad_]acent to every element from V5 in T If
< {r,y,,,} > Kz in I, then (1) z € Vi and y,z € Va or (ii) z,y, 2z € V. This
gives I' contains (n — l)n(";l) - "("“’é(""g) = "("“12(4"“5) triangles. O

2133
Eur. Chem. Bull. 2023, 12(Special Issue 4), 2130 -2140



Non-Commuting Graphs on Dihedral Groups

Section A-Research paper

In the following theorem, we find the number of induced subgraph C; in
the graph I'.
Theorem 2.5. Let n > 3 be an integer and n be even. Then I contains ezactly
w number of induced subgraph Cy.

Proof. As given n Theorem 2.4, consider the subsets Vi, Vo, Hy and Hs. Note
that every z = sr' € Hy (1 <i < 5 — 1) is not adjacent to only one element
x = sr? € Hy in [ with sr'sr? = sr/sr'. Then [ contains an induced subgraph
C4 by the vertices . y, sr’, s for every x,y € V4, sr' € Hy and s17 € H,. Since
[Vi] = n — 2, the number of Cy in I is w and also |Hy| = |Hs| = 3.
Hence, the number of induced subgraph Cy in I' is exactly "(L_g:("—_:‘l O

In the following theorem. we obtain a necessary and sufficient condition for
the graph I' to be Eulerian.

Theorem 2.6. Let n > 3 be an integer. Then ' is Fulerian if and only if n
1S even.

Proof. Proof follows from Lemma 2.1 O
In the following theorem, we discuss the Hamiltonian nature of I'.
Theorem 2.7. Let n > 3 be an integer. Then,
1. I is vertex pancyclic;

2. I' is Hamiltonian.

Proof. (1) Suppose n is even. As given in Theorem 2.4, consider the subsets
Vi, Vo, Hy and H,. Let z € V(I).
For m = 3. Since |Hi| = |Hz| > 2. every element in H; is adjacent to at least
one element from Hs in I'. If x € V4, then choose y, z € Hy U Hs such that y
and z are adjacent in I'. This gives a cycle of order 3 containing the vertex z.
If € Hi( z € Hs), then choose y € Hs (x € Hy) with = and y are adjacent in
I' and z € V}. This gives a cycle of order 3 containing the vertex z.

For m > 4. Consider a cycle Cy : s —srT ' —srT —sr™ ! —sin I of order

For m > 4. Consider a cycle C; : s — srT ! — sr¥ —sr™ ' — s in I of order
4. Smce < H; > is a complete subgraph in I', adding one by one element
from H; \ {s,sr?71} in the order of sr,sr2,...,sr7~? in between the vertices
s and sr3~! in the cycle Cj, we have a spanning cycle in I' of order m where
4 <m < Z+2 Since < Hy > i1s a complete subgraph in I', adding one by
one element from Hy\ { STZ, sr"‘l} in the order of sr2*!, .. .. sr" 2 in between
the vertices sr2 and s ! in the cycle €y, we have a spanning cycle C; in
< H1 U Hs > of order m where 4 < m < n.
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Adding r* for 1 < i # 5 < n — 1 in between the vertices sri~1 and srf in
the cycle Cy, we have a cycle in I' of order m where 4 < m < 2n — 2. Thus,
we have a cycle of order m where 4 < m < 2n — 2 containing an element from
{s,sr27! sr2, 57" '} in I'. As the same above argument, one can have a cycle
of order m where 4 < m < 2n — 2 containing any element from H; U Hy in I'.

Let z € V;. For m = 4, consider the cycle x —s —y — sr™ ! —z in I of
order 4 where y € V) \ {z}. Notethat z = r for 1 < i # 2 < n— 1. For
m > 5. Consider cycle Cy : 1 —s —sr¥~1 — sp% — sr" ! — i in I of order
5. Proceeding the same above argument adding the elements in the order of
ST, T2, ..,573 2 gr¥tl o2y pi-lgttl . rn-lin Cb. Hence for
each vertex x in I we have a cycle of order m where 3 < m < 2n—2 containing
x and so [ is vertex pancyclic. Suppose n is odd. One can easily prove as the
same above argument.

(2) Proof follows from above (1). |

In the following theorem, we obtain a necessary and sufficient condition for
the graph I' to be chordal.

Theorem 2.8. Let n > 3 be an integer. Then I' is chordal if and only if n is
odd.
Proof. 1. Suppose n is odd.
Let Vi = frirtic.., v 2} and V4 = {s;sr57% .58 1} Then Vi UVs =
V(T'). Note that < Vg >= K,. Let S C V(') with |9'| >4.If S C Vi, then
by < Vi >= K,,_; we have < S > is not an induced cycle subgraph of order
|S| > 4. If S C Vi, then by < Vo >= K,, we have < S > is not an induced
cycle subgraph of order |S| > 4. Suppose SNV} # ¢ and SN Vs # ¢. If
SNV, > 3, then < S > contains a subgraph K3 and so < S > is not an
induced cycle subgraph of order ISNVi| > 2 and
< S > contains a subgraph K3. This gives that < § > 1s not an induced cycle
subgraph of order |S| > 4. Hence I' is chordal if n is odd.

Conversely assume that I' is chodal. Suppose n is even. By Theorem 2.3,
I' has at least one induced cycle subgraph of order 4, a contradiction. Hence

I' is chordal if one and only if n 1s odd. B

In the following theorem, we obtain a necessary and sufficient condition for
the graph I" to be claw-free.

Theorem 2.9. Let n > 3 be an integer. Then,

1. ' is claw-free if and only if G = Dg or G = Dsg;

2. T is not unicyclic.
2135
Eur. Chem. Bull. 2023, 12(Special Issue 4), 2130 -2140



Non-Commuting Graphs on Dihedral Groups

Section A-Research paper

Proof. (1) Suppose G = Dg or G = Dg. Let S C V(I') with |S| = 4. Since
< 8§ >= Ky or < § > contains a cyclic subgraph of order 4 in I', we have
degr(z) 1s at least two for every z € S and so < S ># K13 in I'. Hence I is

claw-free.
Conversely assume that I' is claw-free. Supposo n > 10. Let Vj =

{rid2 ..o 7‘2‘3—1 r T, ..., 7™ 1} and Vo = {s, sr, s s 1} Then |V;| > 4
and < V) >2 I‘i‘ 1) iIn I'. Note that every element n V) 1s adjacent to every
element from Vi in I'. This implies that I" contains an induced subgraph K 3
by the elements {a.b,c,d} where a,b.c € V] and d € V5. Hence I is claw-free
if and only if G = Dg or G = Dx.

(2) Proof follows from Theorem 2.3. H

In the following theorem, we obtain the clique number of the graph I

Theorem 2.10. Let n > 3 be any integer. Then

oy PR fo fememn
n+1 ifn is odd

Proof. Suppose n is even. As given in Theorem 2.4, consider the subsets
Vi, Vo, Hy and Hy. Since < H; >=< Hy >= Kz in I', w(I') > 7. Since
every element in V] is adjacent to every element to V) in [ and |Vj| > 2, we
have w(T') > 3 4 1. Note that < V} >= K, and every element in Hj is not
adjacent to exactly one element to Hy in I and vice versa. If S is a maximal
complete subgraph in I', then H;y C S or Hy C

that w(') = § + 1.
Suppose n is odd. Let V; = {r, o2, ..., r"1} and V = {s,sr,sr,...,
r"~1}. Since < Vo >= K, in ', w(I") > n. Every element of z € V] is adjacent
to every element from V5 in . Then w(I') > n 4+ 1. Since < V; > K, _s.
w(l)=n+1. O
E:

In the following theorem, we obtain the chromatic number of the graph

Theorem 2.11. Let n > 3 be any integer. Then

>+1 ifn is even
x(T)=4"° 5
n+1 ifn is odd
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Proof. Suppose n is even. As given in Theorem 2.4, consider the subsets
Vi, Vo, Hy and Hs. By Theorem 2.10, w(I') =53+ 1 andso x(I') > 5 + 1. It
is enough to show that y(I') < 2 + 1. Every element in Hj is not adjacent to
exactly one element to H, in I' and vice versa. Assign one color to this pair
of vertices in < V3 >. Since < H; >= K3z in I' we have x(< V3 >) = % in I.
Since every element in V; is adjacent to every element to V5 in I' and |V;| > 2,
we have w(I') > §+ 1. Since < V} >% K2 and assigning one color to all
vertices of < V4 > in I, we have w(I') < 5 + 1. Hence w(I') =5 + 1.

Suppose n is odd. Let V; = {r,7%,...,r" '} and V4 = {s,sr,sr?,...,
sr" 1}, By Theorem 2.10, w(I') = n+ 1 and so x(I') > n + 1. It is enough
to show that y(I') < n+ 1. Note that < Vo >= K, in I' and every element
of x € Vi 1s adjacent to every element from V3 in I'. Since |Vi| > 2, we have
x(T') > n+ 1. Since < V; >2 K, 5 and sssigning one color to all vertices of

< Vi > mn I, we have x(I') < n+ 1. Hence x(I') =n + 1. O

In the following corollary, we discuss the nature of weakly perfect of I'.

Corollary 2.12. Let n > 3 be any integer. Then I is weakly perfect.
Proof. Proof follows from Theorem 2.10 and Theorem 2.11. O

In the following corollary, we discuss the nature of perfectness of I'.

Theorem 2.13. Let n > 3 be an integer. Then I' is a perfect graph.

Proof. Suppose n is even. As given in Theorem 2.4, consider the subsets
Vi. Vo, Hy and Hy. Let S C V(T') with |S| is an odd order greater than or
equal to 5. Suppose < S > is an induced cycle subgraph of I'. Suppose S C V}.
Then < S > is a totally disconnected subgraph in I' and so |[S N V5| > 1.
Suppose |S N Vi| > 2. Every element of z € V] 1s adjacent to every element
from V5 in I'. This implies < S > contains at least one vertex whose degree 1s
S|—2 > 3. This imples |SNV| < 1. If |SNV;| = 1, < § > contains one vertex
whose degree is |S| — 1 > 4. Thus S C V5. Let z € Vi. Then deg.g-(z) is
either | S| —1 or |S|—2 and so < S > contains at least one vertex whose degree
is |S| — 2 > 3, a contradiction. Hence I' contains no induced cycle subgraph
of odd order greater than or equal to 5.
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Suppose n is odd. Let Vi = {r.7% ....7" '} and Vo = {s,sr.sr. ...,
sr"_l}. Note that < V] > K,_1 and < Vo >= K, in I". Then either < S >
contains at least one vertex whose degree is |S|—2 > 3 or < S > is disconnected
in ['. Hence I contains no induced cycle subgraph of odd order greater than 5.

For T. Suppose n is even. As given in Theorem 2.4, consider the subsets
Vi, Vo, Hy and H,. Note that <V} >= K, g and < V5 >= K5 in T. Also,
no element from V; is adjacent to any element to Vs in T’ and vice-versa. This
mmplies that < S > 1s either a complete subgraph or a disconnected subgraph
of T and hence I" contains no induced cycle subgraph of odd order greater than

5.

Suppose n is odd. Let Vi = {r,r2,..., 7" 1} and Vb = {s,sr,sr2, ...,
st 1}, Note that < V; > K, ; and < V5 >= K, in I'. Also, no element
from V; i1s adjacent to any element to V5 in I' and vice-versa. This implies

that < S = is either a complete subgraph or a disconnected subgraph of T and

hence T contains no induced cycle subgraph of odd order greater than 5.

Thus neither I' nor I' contains an induced cycle subgraph of odd order
greater than 5 and I' is a perfect graph. O

In the following theorem, we obtain the clique covering number of I'.
Theorem 2.14. Let n > 3 be an integer. Then,
o(I') =

n—2 ifn is even

n—1 ifn is odd

Proof. Case (i). Let n be even.
As given in Theorem 2.4, consider the subsets Vi, Vb, Hy and Hs. Since
< Hy >=< Hy >= Kz in I' and every element in Vj is adjacent to every

element to Vo in T, < Hy U {z} >=< HoU {y} >= Kz, inI', where r and y
are distinct elements in Vj. Then < Vi \{z,y} >= UJKI. Hence 6(I') = n—2.
n-4a,

Case (ii). Let n be odd.

Let Vi = {r,72,...,r" '} and Vb = {s,sr,sr?,...,sr" 1}. Note that < V5 >=
K, in I' and every element of x € V; is adjacent to every element from V5 in I'.
Since < Vo U {z} >= K11 in " where z € V], we have < V] \ {z} >= nU‘)Kl

in I and hence §(I') = n — 1. O

In the following theorem, we discuss the genus nature of the graph I'.
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Theorem 2.15. Let n > 3 be an integer. Then,

(T) > g(Kn—9n) ifn iseven
. B g(R’n—l,n) T'fﬂv is odd.

Proof. Case (i). Let n be even.
As given in Theorem 2.4, consider the subsets V;, Vo, Then I' contains a
subgraph K, s, by the vertex partitions V;, V5. By Theorem 1.1, g(I") >

g(Kn-2n).

Case (ii). Let n be odd.

Let Vi = {r,72, ..., ™1} and Vo = {s,sr,sr2,...,.: st 1}. Then I' contains a
subgraph K, 1. by the vertex partitions Vi and Vo. By Theorem 1.1, g(I') >
g(I\—’n—l,n)- O

In the following theorem, we discuss the toroidal nature of I .

Theorem 2.16. Let n > 3 be an integer. Then I' is non toroidal.

Proof. Case (i). Let n be even,

As given in Theorem 2.4, consider the subsets Vi, Va. If G = Dy, then by
([1],Proposition 2.3, T'is planar. Suppose n > 12, then |V}| > 4 and |V3| > 6.
Now [ contams a subgraph K¢ and by Theorem 1.1, ' 1s non toroidal.
Case (i1). Let n be odd.

Let Vi ={r,r%,....r" '} and Vo = {s,sr,sr,...,sr" 1}, If G = Dy, then by
[1].Proposition 23| , I'is planar. Suppose n > 10, then V3| > 4 and |Vy > 5.
Now I contains a subgraph Ky and by Theorem 1.1, I' 1s non torodal. [
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