
Process Modeling And Simulation For Selective Laser Sintering: Optimization And

Quality Prediction In Sly Manufacturing Section A-Research paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 2669 – 2678 2669

REDUCING DATA REDUNDANCY IN 3D LIDAR POINT CLOUD

USING OCTREE-BASED CODEC

Dr. PL. Chithra1*, S. Lakshmi Bala2

Abstract:

Efficient data compression techniques are increasingly necessary for processing LiDAR (Light Detection and

Ranging) data. To address this need, a 3D point cloud data compression methodology based on Octree

coding is presented in this paper. This codec involves quantizing the point clouds and compressing the 3D

point cloud data using arithmetic encoding. Decompression is the reverse process used to reconstruct the

original point cloud data. 3D LiDAR point cloud compression using Octree codec is a lossless technique that

reduces the size of the data by identifying and removing less relevant data points while preserving the

accuracy of the point cloud data. This approach enables easier storage and processing of the data, and the

compression time for 3D point cloud data is calculated during the compression process. The proposed

method is compared with the run-length compression method and Huffman coding method. It is found that

the Octree codec with quantization and Arithmetic encoding outperforms existing Huffman coding and run-

length coding.

Keywords:- Arithmetic coding, Decoding, Encoding, Huffman coding, LiDAR, Octree, Point Cloud Data,

Quantization, Run-length coding.

1*Department of Computer Science, University of Madras, Chennai, India,

E-mail:- chitrasp2001@yahoo.com
2Department of Computer Science, University of Madras, Chennai, India,

E-mail:- lakshmibala.sj@gmail.com

*Corresponding Author: - Dr. PL. Chithra

*Department of Computer Science, University of Madras, Chennai, India,

Email:- chitrasp2001@yahoo.com

DOI: - 10.48047/ecb/2023.12.si5a.0153

mailto:chitrasp2001@yahoo.com
mailto:lakshmibala.sj@gmail.com
mailto:chitrasp2001@yahoo.com

Reducing Data Redundancy In 3d Point Cloud Using Octree-Based Codec Section A-Research paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 2669 – 2678 2670

I. INTRODUCTION:

Point clouds are a valuable data representation

that accurately and comprehensively captures

spatial information about the surrounding

environment [1]. To reduce the size of point

cloud data without sacrificing its essential

information, the technique of 3D LiDAR point

cloud compression is employed [1]. For

compressing static and dynamic point clouds, a

two-stage deep learning system called Voxel

Context-Net is used, with voxel-based and octree-

based methods. In this methodology, the octree

codec is utilized to compress the octree-structured

data using voxel context [2]. While the file-based

octree is powerful for sizable 3D point clouds, it

slows down significantly when processing longer

objects such as tunnels and corridors, compared to

a memory-based approach [3]. To address this

issue, a novel method for predicting the

probability of geometry coding is used, which

employs a denoising neural network on a "noisy"

context cube containing both surrounding

decoded voxels and uncoded voxels. A

convolution-based technique is used to up-sample

the decoded point cloud on the decoder side at a

coarse resolution [4]. A "truncated octree"

structure, which replaces the deep octree with a

collection of shallow sub-octrees, can improve the

compression ratio while maintaining the original

structure. This approach reduces storage

requirements without compromising the quality of

the data. A variable length addressing technique is

involved, which allows for the selection of the

node address length of an octree based on the

degree of truncation [5]. The embedded wavelet

image compression method has been discussed. It

tracks the significant pixels in multiple directions

within the LL sub-band and uses quad-tree

partitioning to locate the scattered significant

clusters in other sub-bands [6]. The truncated

octree is (T-Octree) used for encoding

unstructured point clouds. A variable length

addressing scheme is used for providing efficient

query performance and storage savings for sparse

data has been described [7]. In image

compression method for nonlinear analysis

transformation, uniform quantizer, and nonlinear

synthesis transformation. The convolution linear

filters and nonlinear activation functions are

applied in three stages. It performs in the visual

quality of all images has been used [9]. The

methodology for performance assessment in the

compression of dynamic point clouds for

streaming and broadcast in mixed and virtual

reality applications has been used in point cloud

coding to enable consistent comparison [10]. The

deep compression algorithm is used for reducing

the memory footprint of LiDAR point cloud data.

It obtains the sparsity and structural redundancy

of points to achieve a higher compression rate. In

the encoding process, the point cloud is into an

octree and employs a tree-structured conditional

entropy model is discussed [11]. Color image

compression algorithm uses a Multilayer

perceptron neural network parallelism with

compression techniques for improving the image

quality by the algorithm that divides the image

into blocks and applies either DCT or DWT for

lossy or lossless compression. The methods are

normalized by coefficients that are processed by

the MLP utilizing the Backpropagation neural

network described [12]. A method called ScanNet

for limited datasets for supervised deep learning

in RGB-D 3D scenes like object classification,

voxel, and CAD model retrieval has been

discussed [13]. An effective framework for video-

based person identification is discussed [14]. A

new geometry partition and coding scheme is

used in point cloud compression using Octree

representation. In this approach, the quad-tree and

binary-tree partitions are combined for

asymmetric kd-trees with a symmetric Octree-

based coding framework. It enables the fitting of

3D scenes with asymmetric bounding boxes and

allows for skipping unnecessary bits during

encoding [15,16]. O-CNN is an Octree-based

convolution neural network designed for 3D

shape analysis. It utilizes the octree representation

of 3D shapes normal vectors from leaf octants as

inputs and performs 3D convolution neural

network operations on occupied octants of the

shape surface [17].

This work is focused on compression for 3D

LiDAR point cloud based on Octree-codec. Thus,

using an octree codec is used for reducing the data

redundancy based on quantizing the input data

and performing an Arithmetic coding algorithm to

encode. The rest of the paper is organized as

follows: Section II describes the Methodology for

the proposed work. Section III discusses the

Performance Analysis of the proposed work.

Section IV explains the Experimental Results

compared with existing methods. And finally, the

conclusion is discussed in Section V.

II. METHODOLOGY:

This paper presents Reducing data

redundancy in a 3D LiDAR point cloud using an

Octree-based codec has been proposed. Octrees

are widely used data structures in 3D computer

vision to efficiently manipulate and represent

large collections of point cloud data. Octree-based

point cloud compression recursively divides 3D

Reducing Data Redundancy In 3d Point Cloud Using Octree-Based Codec Section A-Research paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 2669 – 2678 2671

space into smaller regions, storing only the points

that cannot be accurately represented by a simpler

representation within each region. This

significantly reduces data size, which is then

encoded and decoded using Arithmetic coding.

Fig. 1 illustrates the compression process, during

which the elapsed time is calculated. Arithmetic

coding is a lossless compression method used to

represent and compress the point cloud data. In

octree compression, arithmetic encoding is used

to encode the data stored in each octree node,

including the node's size, value, and pointers to its

child nodes. The reverse process is then used to

reconstruct the 3D point cloud data.

Fig.1. Block diagram for 3D point cloud compression based on Octree codec

A. Description of the Octree-Codec:

Octree compression is a powerful technique used

to compress 3D point cloud data. Point clouds are

collections of 3D points representing the surface

of an object, generated by LiDAR systems, and

often contain millions of points. Octree

compression works by exploiting the spatial

coherence of point cloud data and reducing the

number of points that need to be stored. To

construct the octree, the 3D space is recursively

subdivided into smaller cubes until each cube

contains a small number of points. The octree is

traversed in a depth-first manner, and each node is

processed. If a node contains a small number of

points, it is replaced with a single point located at

the centroid of the points. This reduces the

number of points in the octree and removes some

of the spatial redundancy in the point cloud. After

constructing the octree, arithmetic coding is used

to compress the resulting tree structure using a

lossless compression algorithm. The compression

is performed recursively, starting at the root of the

tree and encoding the children of each node. The

compressed data can be stored or transmitted

more efficiently than the original point cloud. To

decompress the compressed octree, the points are

reconstructed by traversing the tree in a depth-

first manner and decompressing the nodes as they

are encountered. The result is a compressed 3D

point cloud with reduced storage requirements

and improved efficiency in transmission and

processing.

Let n be the number of points in the point cloud,

and let s be the size of the largest cube in the

octree. The number of cubes in the octree, N, can

be expressed as:

𝑁 = (𝑛 / 𝑠^3) + 1

After the octree has been constructed, each node

that contains a small number of points is replaced

with a single point located at the centroid of the

points. Let k be the number of points in a leaf

Reducing Data Redundancy In 3d Point Cloud Using Octree-Based Codec Section A-Research paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 2669 – 2678 2672

node, and let p be the position of the centroid. The

position of the new point, q, can be expressed as:

q = (k*p) / k

After the octree has been constructed and the

number of points has been reduced, the resulting

tree structure is compressed using a lossless

compression algorithm. L.

Let B be the number of bits required to represent a

node in the octree, and let C be the number of bits

required to represent the compressed octree. The

compression ratio, R, can be expressed as:

R = (B * N) / C

When the compressed octree is decompressed, the

points are reconstructed by traversing the tree in a

depth-first manner and decompressing the nodes

as they are encountered. Let D be the number of

bits required to represent a decompressed node,

and let M be the number of nodes in the octree.

The size of the decompressed point cloud, S, can

be expressed as:

S = (M * D) / 8

Initialize the range [l, u] to [0, 1).

For each node in the octree, compute the

probability p of the node using the number of

points in the node and the total number of points

in the octree.

For each bit of the binary code representing the

node, update the range [l, u] using the probability

p of the bit. If the bit is 0, set u = l + p * (u - l). If

the bit is 1, set l = l + p * (u - l).

After all, bits have been processed for a node,

output the lower bound l.

POINT CLOUD COMPRESSION

ALGORITHM:

Input: Point cloud data (points, color)

Output: Compressed octree representation of the

point cloud

Step: 1 Create the initial structure of the octree,

which starts with a root node that represents the

entire 3D space

Step: 2 For each point in the point cloud:

2.1 Each point in the point cloud is traversed from

the root node to the smallest node that contains

the point.

2.2 The threshold value for point cloud t = 150

2.3 If the node is a leaf node, and if the number of

points in the node exceeds the threshold value,

then the node is subdivided into 8 smaller nodes,

and the points in the node are assigned to the

corresponding child nodes.

Step: 3 Removes all the empty leaf nodes that do

not contain any points.

Step: 4 Compressing the points in each non-

empty leaf node using a lossless compression

method. Arithmetic encoding is used for encoding

the 3D point cloud data, and the resulting

bitstream is used for decoding during the

decompression process. The octree is traversed to

retrieve the original point cloud data during

decompression.

Step: 5 Stores the compressed octree structure

and the compressed data for each leaf node

Step: 6 The point cloud is in a more compact

form using the resulting tree structure of the

octree, with only the leaf nodes containing the

actual point data.

III. PERFORMANCE ANALYSIS:

The proposed work aims to compress 3D color

point cloud data using the Octree-codec method.

The input data consists of five unstructured ply

format point clouds, including Fig.2 (a) Flower,

(b) Fish, (c) Chair, (d) Tiger, and (e) Gemstone,

with a size ranging from size of 194818 × 3,

247503 × 3, 249773 × 3, 976257 × 3, 900506 × 3,

taken from [8]. The compression process focuses

on location attributes such as X-axis, Y-axis, and

Z-axis.

To adjust the level of detail in the compression,

the maximum depth and the minimum number of

points per node parameters can be modified. A

deeper octree with more levels will result in a

more detailed compression. During the

decompression process, the compressed octree

structure and compressed data for each leaf node

are decoded and decompressed. The decoded

octree structure is used to reconstruct the original

3D space partitioning, and the decompressed data

for each leaf node is used to reconstruct the

original points in the point cloud data.

(a)

Reducing Data Redundancy In 3d Point Cloud Using Octree-Based Codec Section A-Research paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 2669 – 2678 2673

(b)

(c)

(d)

(e)

Fig.2: Original and synthetic 3D point cloud data

(a) Flower, (b) Fish, (c) Chair, (d) Tiger (e)

Gemstone.

(f)

(g)

(h)

(i)

Reducing Data Redundancy In 3d Point Cloud Using Octree-Based Codec Section A-Research paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 2669 – 2678 2674

(j)

(k)

Fig:3 Levels of the compressed point cloud using

Octree codec compression (f) Level 1 (g) Level 2

(h) Level 3 (i) Level 4 (j) Level 5 (k) Level 6 for

the input 3D point cloud data.

Figure 3 illustrates the Octree codec works by

recursively dividing the 3D space into smaller and

smaller cubes called nodes until each node

contains a small number of points or no points at

all. The process starts at level 1, where the 3D

point cloud data is quantized and the octree

generation begins. As the octree is generated, the

data is divided into nodes and leaves at level 2. At

level 3, the data is split into eight child leaves,

which increases the resolution of the compression.

At level 4, all the leaf nodes that do not contain

any points are removed, which further reduces the

size of the compressed data. At level 5, the

compressed octree structure and the compressed

data for each leaf node are stored. Finally, at level

6, the resulting tree structure of the Octree

represents the point cloud in a more compact

form, with only the leaf nodes containing the

actual point data.

Table:1 Performance efficiency of octree-codec

PCD Data

No. of

Points

Original

No. of Points

Compressed

File size

(MB)

Original

File size (MB)

Compressed using

Arithmetic coding

File size (MB)

Compressed

using Huffman

coding

File size (MB)

Compressed using

Run-Length

coding

Fish 194818 175802 30.4 25.1 28.9 26.7

Flower 247503 216578 15.4 13.2 16.3 14.1

Chair 249773 208792 9.05 7.1 8.7 7.5

Tiger 976257 967812 38.2 30.9 36.8 33.4

Gemstone 900506 853264 32.6 27.4 32.9 29.1

The performance of octree compression includes

the number and distribution of points in the input

point cloud, the depth of the octree, and the size

of the nodes. The number and distribution of

points can affect the efficiency of the traversal

algorithm used for generating the octree, while the

depth of the octree and the size of the nodes can

affect both the compression ratio and the time

required for compression and decompression.

To evaluate the performance of octree

compression, various metrics have been used,

such as compression ratio, compression time,

decompression time, and distortion and error

metrics. The octree compression is provided a

balance between compression ratio and accuracy

for 3D point cloud data, parameters have a

significant impact on the performance of the

compression and decompression operations. The

level of detail and complexity in the point cloud

data can also affect the compression and

decompression speed and accuracy.

IV. EXPERIMENTAL RESULTS:

The Analysis of the performance of the proposed

work to determine the effectiveness of the

compression algorithm. Table 1 presents the

results of the performance evaluation, including

the original and compressed size of the input 3D

point cloud data, calculated in megabytes using

octree-codec. The table also shows the number of

original points and compressed points, which can

be used to calculate the compression ratio

achieved by the algorithm. By analyzing the data

in this table, it is possible to determine how

effective the proposed octree compression

Reducing Data Redundancy In 3d Point Cloud Using Octree-Based Codec Section A-Research paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 2669 – 2678 2675

algorithm is at reducing the size of the input point

cloud data while maintaining a high level of

accuracy in the decompressed data.

 (l)

 (m)

 (n)

(o)

(p)

Fig. 4. Levels based on an octree codec

compression

Figure 4 (l), (m), (n), (o), and (p) represents the

levels based on the octree codec structure. The

different levels of the decomposition for the input

3D point cloud data. As the density of the input

data increases, more levels of decomposition are

required to achieve the desired compression ratio.

This is because a denser point cloud contains

more points in a smaller area, which makes it

more difficult to achieve a high compression ratio

without losing significant information. Therefore,

the octree codec structure will decompose the

input data into more levels to ensure that the

compressed data retain the necessary level of

detail.

(q)

 (r)

Reducing Data Redundancy In 3d Point Cloud Using Octree-Based Codec Section A-Research paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 2669 – 2678 2676

(s)

(t)

(u)

(v)

Fig: 5 Reconstruction of Input 3D Point Cloud

Figures 5 (q) and (t) depict the reconstructed 3D

point cloud data using Arithmetic coding, while

Figures 5 (r) and (u) illustrate the reconstructed

data using the run-length coding algorithm. Figure

5 (s) and (v) explains the reconstructed data using

the Huffman coding algorithms. The method

employs Lossless compression, meaning that the

reconstructed data retains all of the original

information. The reconstructed data has been

compared with the original 3D data to evaluate

the effectiveness of the compression algorithm.

Fig:6 Graphical Representation of Performance analysis between Arithmetic encoding with Huffman coding

algorithm and Run-length coding algorithm

0

5

10

15

20

25

30

35

40

45

Fish Flower Chair Tiger Gemstone

Original file size Compressed Arithmetic coding file size

Compressed Huffman coding file size Compressed Run length file size

Elapsed Time for ALE Elapsed Time for HC

Elapsed Time for RLE

Reducing Data Redundancy In 3d Point Cloud Using Octree-Based Codec Section A-Research paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 2669 – 2678 2677

The graph presented above in Fig. 6. displays the

performance evaluation of three lossless

compression algorithms, arithmetic encoding,

Huffman coding, and run-length coding, for

compressing 3D input point cloud data.

V. CONCLUSION:

In this paper, an Octree codec has been presented

for compressing 3D point cloud data using

Arithmetic coding, which has been compared and

contrasted with Huffman coding and run-length

coding. The experimental results indicate that

Arithmetic coding offers the best compression

ratio while minimizing the time required by the

algorithm for 3D point cloud data. The use of

Octree-based compression has proved to be an

effective technique for compressing 3D point

cloud data, achieving high compression ratios

while maintaining the spatial coherence of the

point cloud. This makes it a suitable method for

applications that require efficient storage and

transmission of 3D data. In the future, it may be

possible to extend 3D point cloud compression

using deep learning techniques within an Octree

to enhance the point cloud data further.

REFERENCES:

1. P. L. Chithra and C. Tamilmathi A., “3D Color

Point Cloud Compression with Plane fitting

and Discrete Wavelet Transform,” 2018 Tenth

International Conference on Advanced

Computing (ICoAC), Dec. 2018, doi:

https://doi.org/10.1109/icoac44903.2018.8939

106.

2. Z. Que, G. Lu, and D. Xu, “VoxelContext-Net:

An Octree-based Framework for Point Cloud

Compression,” 2021 IEEE/CVF Conference

on Computer Vision and Pattern Recognition

(CVPR), Jun. 2021, doi:

https://doi.org/10.1109/cvpr46437.2021.00598

3. S. Han, “Towards Efficient Implementation of

an Octree for a Large 3D Point

Cloud,” Sensors, vol. 18, no. 12, p. 4398, Dec.

2018, doi: https://doi.org/10.3390/s18124398.

4. Y. Mao, Y. Hu, and Y. Wang, “Learning to

Predict on Octree for Scalable Point Cloud

Geometry Coding,” 2022 IEEE 5th

International Conference on Multimedia

Information Processing and Retrieval (MIPR),

Aug. 2022, doi:

https://doi.org/10.1109/mipr54900.2022.00024

5. N. Koh, P. K. Jayaraman, and J. Zheng,

“Parallel Point Cloud Compression Using

Truncated Octree,” 2020 International

Conference on Cyberworlds (CW), Sep. 2020,

doi:

https://doi.org/10.1109/cw49994.2020.00009

6. P. L. Chithra and P. Thangavel, “A new

efficient embedded wavelet image codec based

on Multidirectional Traversal Algorithm,”

International Journal of Signal and Imaging

Systems Engineering, vol. 5, no. 3, p. 196,

2012, doi:

https://doi.org/10.1504/ijsise.2012.049852.

7. N. Koh, P. K. Jayaraman, and J. Zheng,

“Truncated octree and its applications,” The

Visual Computer, vol. 38, no. 4, pp. 1167–

1179, Apr. 2021, doi:

https://doi.org/10.1007/s00371-021-02130-5.

8. Point Cloud Data set from:

https://www.artec3d.com/3d-models/ply

Accessed on December 18 2022.

9. Johannes Balle, Valero Laparra, and Eero P.

Simoncelli. ´ End-to-end optimized image

compression. In 5th International Conference

on Learning Representations, ICLR, 2017.

10. Rufael Mekuria, Sebastien Laserre, and

Christian Tulvan. Performance assessment of

point cloud compression. In 2017 IEEE Visual

Communications and Image Processing

(VCIP), pages 1–4. IEEE, 2017.

11. Lila Huang, Shenlong Wang, Kelvin Wong,

Jerry Liu, and Raquel Urtasun. Octsqueeze:

Octree-structured entropy model for lidar

compression. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 1, 2, 3, 5, 7,

8 [16] Tianxin Huang and Yong Liu. 3d point

cloud geometry compression on deep learning.

In Proceedings of the 27th ACM International

Conference on Multimedia, pages 890– 898,

2019.

12. PL.Chithra, A.Christoper Tamilmathi, ”

Effective lossy and lossless color image

compression using Multilayer Perceptron”,

International Journal of Engineering and

Technology, vol.7, pp. 9–14, 2018.

13. Angela Dai, Angel X Chang, Manolis Savva,

Maciej Halber, Thomas Funkhouser, and

Matthias Nießner. Scannet: Richly-annotated

3d reconstructions of indoor scenes. In

Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition,

pages 5828–5839, 2017.

14. D. Ouyang, Y. Zhang, and J. Shao, “Video-

based person re-identification via

spatiotemporal attentional and two-stream

fusion convolutional networks,” Pattern

Recognition Letters, vol. 117, pp. 153–160,

Jan. 2019, doi:

https://doi.org/10.1016/j.patrec.2018.05.009.

15. X. Zhang, W. Gao, and S. Liu, “Implicit

Geometry Partition for Point Cloud

https://doi.org/10.1109/icoac44903.2018.8939106
https://doi.org/10.1109/icoac44903.2018.8939106
https://doi.org/10.1109/cvpr46437.2021.00598
https://doi.org/10.3390/s18124398
https://doi.org/10.1109/mipr54900.2022.00024
https://doi.org/10.1109/cw49994.2020.00009
https://doi.org/10.1504/ijsise.2012.049852
https://doi.org/10.1007/s00371-021-02130-5
https://www.artec3d.com/3d-models/ply
https://doi.org/10.1016/j.patrec.2018.05.009

Reducing Data Redundancy In 3d Point Cloud Using Octree-Based Codec Section A-Research paper

Eur. Chem. Bull. 2023, 12(Special Issue 5), 2669 – 2678 2678

Compression,” Data Compression Conference,

Mar. 2020, doi:

https://doi.org/10.1109/dcc47342.2020.00015.

16. Zhang, X., et al. "Implicit geometry partition

for point cloud coding." ISO/IEC

JTC1/SC29/WG11 input document

M49231 (2019).

17. P.-S. Wang, “O-CNN: Octree-based

Convolutional Neural Networks for 3D Shape

Analysis,” doi:

https://doi.org/10.1145/3072959.3073608.

https://doi.org/10.1109/dcc47342.2020.00015
https://doi.org/10.1145/3072959.3073608

