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Abstract 

The interest of this paper is in the tracking of rhythmic biomedical signals from electronic sensor systems. The 

known and noisy biomedical signals and the underlying unknown clinical features like the frequency and 

phase can be modelled using a first order hidden Markov state space model. It is known the Bayesian filtering 

is the most widely used solution for track such models. The Kalman filter is known to be a powerful Bayesian 

estimator. However, it is limited to linear and Gaussian systems. The particle filter, on the other hand, can be 

applied to a general class of nonlinear non - Gaussian systems. However, the filter involves high computational 

complexity due to resampling and the need to guide particles into regions that are important to the posterior 

probability density. This paper proposes a Monte Carlo based Kalman filter, which is a mixed implementation 

of the Kalman filter and the particle filter, to effectively track biomedical signals. The simulation results show 

that the proposed method is superior both in terms of speed and tracking accuracy than the conventional 

methods. 
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I. INTRODUCTION 

Most clinical features of a human body, like the 

heartbeat and blood pressure, are rhythmic or 

sinusoidal in nature and hence can be characterized 

by parameters like the frequency, phase and 

amplitude. Electronic sensor systems produce a 

time varying rhythmic biomedical signal by which 

is a direct but noisy reflection of the said clinical 

features. A change in these clinical parameters 

causes a change in the biomedical signal recording 

over time. The extraction of these time varying 

clinical parameters from the rhythmic biomedical 

signals is critical in biomedical diagnosis and 

prognosis [1]–[3]. 

 

The interest of this paper is the estimation of the 

unknown underlying clinical quantities, generally 

called the target state, using known noisy rhythmic 

biomedical signals. Most scientific systems such as 

the biomedical signal estimation system can be 

described using a state space model that includes 

(a) a state transition model that governs how the 

state unknown target state evolves over time and 

(b) a measurement model that governs how a noisy 

measurement is observed from the state. The 

Bayes’ filter is known to be the solution for 

scientific applications that require recursive 

estimation (or tracking) of a hidden time varying 

target state using noisy sensor measurements [4]. 

This is because sequential Bayesian estimation 

provides a rigorous platform to construct a 

probability (belief) density function (pdf) of the 

target state using the noisy observations from 

which the target state can be estimated. 

 

A prominent Bayesian tracking algorithm for linear 

Gaussian state space models is the Kalman filter 

[5]. The filter provides an optimal Bayesian 

solution for state space models characterised by 

linear dynamics and additive Gaussian noise. This 

is because the first and second moments (mean and 

covariance) of the posterior pdf can be analytically 

computed for linear Gaussian systems. However 

biomedical signal models are nonlinear (rhythmic 

or sinusoidal) in nature and hence the Kalman filter 

cannot be straightforwardly applied. A popular 

Bayesian solution for nonlinear and non-Gaussian 

systems is the particle filter (PF) [6], [7]. The PF 

performs Monte Carlo approximation of the 

posterior pdf using a set of weighted particles. 

These particles span and explore the target state 

space using the target dynamics and weighted using 

the measurement density. The states of the particles 

and their corresponding weights aids in making a 

probabilistic inference of the true target state. 

 

It is known that if the particles are indeed located 

in regions of importance, that is in the region of the 

pdf with high density value, then the Monte Carlo 

estimate would be accurate. However, the particles 

drawn from the state transition model leverage only 

the target dynamics but not on the incoming 

observation. Hence it is not guaranteed that the 

drawn particles will lie in regions of importance. 

This eventually results in the degeneracy problem 

[8]. This problem is overcome by resampling the 

particles and their weights in a way that eliminates 

particles having low weights, i.e., those that do not 

lie in regions of importance and replace them by 

copies of others having higher weights [8], [9].  

 

The popularly used stochastic resampling approach 

operates by first evaluating the cumulative sum of 

the normalised particle weights and then finding a 

value of the sum greater than a random sample 

drawn from U(0,1) [6]. Sampling from the full 

interval (0,1) leads to large Monte Carlo error 

variance. This problem was overcome in the 

stratified [10], the residual [11] and the systematic 

[7] resamplers. However, resampling is a 

computationally intensive procedure that involves 

intensive communication overhead within the 

particles. Several methods have been proposed to 

alleviate the complexity with regard to hardware 

realization in [12]–[15]. However, these methods 

are algorithmically still computation intensive. 

 

Resampling aids in guiding particles into regions of 

importance but comes with additional 

computational complexity. As an alternative, 

several methods have been proposed to leverage 

the incoming observation particle sampling process 

so that they draw from regions of importance. This 

reduces the effect of degeneracy and consequently 

permits the use of fewer particles. The most 

popular in this class is the auxiliary particle filter 

(APF) [16] and the improved APF (IAPF) [17], 

[18]. The filters draw a set of particles that 

lookahead to the next time step and computes their 

weights, then resamples the resultant and uses those 

resampling indices to propagate the particles at the 

current time step to the next time step. This causes 

only those particles that could probably lie in 

regions of importance to be propagated. Other 

lookahead strategies include adapted placement 

and others [19]–[22]. These methods however 

work well when the state transition noise and the 

measurement noise are low. Moreover, they still 

employ the computationally intensive resampling 

process. 

 

An alternate to resampling are the class of Gaussian 

filters. The Gaussian particle filter (GPF) [23] and 
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the approximate Kalman filter (AKF) [24]. These 

filters approximate the posterior with a Gaussian 

pdf and propagates the samples using the mean and 

covariance estimates. Hence, they are free from 

resampling and are extremely fast. The recently 

proposed resampling free PF [25], [26] accelerated 

the PF operation substantially by virtue of 

deterministically selecting particles beyond a 

certain weight to replace the small weight ones. 

Similar methods, called the partial deterministic 

resampling PFs can be found in [27], [28]. 

However, these methods do not scale well with 

increasing noise and some also suffer from 

estimation bias. 

 

This paper proposes Monte Carlo approximated 

Kalman filtering approach for tracking rhythmic 

nonlinear biomedical signals. The state space 

model for this application involves a linear 

Gaussian state transition model and a highly 

nonlinear observation model. Hence the Kalman 

filter cannot be directly employed. The PFs have 

been successfully employed in the literature but all 

of them suffer from the aforementioned problems. 

Our proposal is as follows: we use the Kalman 

filter-based moment generation scheme to 

determine the prediction. We then draw Monte 

Carlo samples from the state transition density and 

weigh them according to the measurement density 

and then compute those samples that contribute to 

the posterior using the “proper weighting” 

condition [8]. This condition mitigates any bias 

caused due to inaccurate sampling. The samples 

that contribute to the posterior and their 

corresponding weights are then used to compute 

the final first and second moments. These moments 

are recursively used in the next state. The first 

rationale for this proposition is that since we do not 

employ PF in its traditional form, we do not require 

resampling and consequently we do not suffer from 

computational complexity. The second rationale is 

that since we use the proper weighting condition to 

determine those particles that are critical for 

estimation, we overcome estimation bias, if any, 

and also track accurately in high noise conditions. 

 

The rest of the paper is organized as follows. In 

section II we set the notation and introduce the state 

space model suitable for tracking rhythmic 

biomedical signals. Section III briefly describes 

Bayesian filtering and proposes the Monte Carlo 

based Kalman filter for a biomedical signal state 

space model. This is followed by evaluation results 

in section IV. We then conclude in section V. 

II. THE RHYTHMIC BIOMEDICAL SIGNA- 

L STATE SPACE MODEL 

In this section, we present the rhythmic biomedical 

signal state space model that is of specific interest 

to this paper. The state space model is challenging 

problem of tracking multiple harmonics in periodic 

rhythmical signals [29]. These signals are a model 

of the biomedical signals including the ECG and 

pulse variation signals. The measurement model of 

(15) for this example is formulated as 

 

                                     (1) 

 

       (2) 

 

where Nh is the known number of harmonics (Nh = 

5 in this paper), θt is the instantaneous phase of the 

fundamental frequency, y¯t is the signal mean, ak,t 

and bk,t are the sinusoidal coefficients and et ∼ 

N(0,σ2 = 5) is the additive white measurement noise 

variable. The state variables that transit over time 

are defined as 

 

 
           

for t = 1,··· ,T where ft is the fundamental 

frequency, f¯
t is the mean fundamental frequency, ts 

= 1/fs is the sampling interval, α = 0.99 is the auto-

regressive coefficient assumed to be known and the 

Markov state transition noise variables are uθ,t ∼ 

N(0,10−4), uf,t ∼ N(0,10−4), uf,t¯ ∼ N(0,10−6), uak,t ∼ 

N(0,10−6), ubk,t ∼ N(0,10−6) and uy,t¯ ∼ N(0,10−4). 

The mean frequency is assumed to follow a 

nonlinear reflecting function 
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The state space is now 4 + 2Nh = 14 dimensional 

and the state vector is 

 

(10) 

 

The reader is referred to [29], [30] for more detailed 

description of the model. The state transition model 

of (14) can be formulated as 

                                (11) 

 

 
 

where the state transition noise variable at ∼ N 

(0, Q) with 

 

(13) 

 

The aim of the filter, in the context of this rhythmic 

biomedical signal model, is to track the clinical 

features like the frequency and the phase and the 

harmonics of the signal contained in xt using the 

recorded measurement yt for t = 1,··· ,T. 

 

III. BAYESIAN FILTERING FOR TRACK- 

ING BIOMEDICAL SIGNALS 

In this section, we briefly describe Bayesian 

filtering and then present our proposal for fast and 

accurate tracking of biomedical signals. 

 

A. Bayesian filtering 

Consider a state space model defined by a Markov 

state transition and observation models as defined 

in (11) and (1) as 

                                      (14) 

                                      (15) 

for t = 1,··· ,T, where xt is the real-valued hidden 

target state at time instant t ∈ N and F is the state 

transition matrix that translates the state from time 

t−1 to t. The target dynamics are modelled as a first 

order hidden Markov process governed by the state 

transition pdf p(xt|xt−1). The sensor observation yt is 

conditionally independent of previous observations 

given the state at time t and follows the observation 

density is p(yt|xt. The function h(.) is a nonlinear 

function that translates the target from the state 

space to the observation space. The random 

variables at ∼ N(0,Q) and et ∼ N(0,σ2I) are noise 

variables where the former corresponds to the 

disturbance in the state heading and the latter to the 

measurement noise. 

 

Target filtering is achieved by estimating the state 

of a target xt using the noisy sensor data y1:t = {y1,··· 

,yt}. The recursive Bayes’ filter accomplishes by 
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constructing the posterior pdf p(xt|y1:t) for t = 1,··· 

,T. If the posterior at time t−1 is known to be 

p(xt−1|y1:t−1), then the filter first computes a 

prediction pdf according to 

 

 (16) 

 

and then updates the posterior to time t using the 

incoming observation yt according to 

 

         (17) 

 

This recursion, described as 

 

(18) 

 

forms the basis for the Bayes’ filter. 

 

The Kalman filter assumes the densities governing 

the state space model are Gaussian. Hence it 

propagates the first and second moments (mean and 

covariance) of the pdf. The Bayes’ recursion in (18) 

will be 

 

(19) 

 

where E(.) denotes the expectation operator and 

Var(.) denotes the covariance operator and the filter 

provides analytic expressions for the computation 

of these moments. 

 

B. Our proposed method 

We now propose the resampling-free Monte Carlo 

based Kalman filter. Let the state space model be 

defined by (14) and 

(15). If the posterior at time t − 1 approximated by 

a Gaussian pdf using the first and second moment 

as 

 

 (20) 

 

is known, then the predicted pdf is 

 

 (21) 

 

where for the given state space model, the predicted 

mean is 

 

                                    (22) 

and the predicted covariance is 

 

 (23) 

 

To move from t−1 to t, if E(xt−1|y1:t−1) and 

Var(xt−1|y1:t−1) are known, we predict the first and 

second moments according to (22) and (23). This is 

the same as the Kalman filter prediction step. 

However, the Kalman filter cannot be implemented 

further as the observation model is highly 

nonlinear. Hence, we resort to a Monte Carlo 

approximation by drawing particles from the 

predicted density according to 

 

 (24) 

 

These particles are then weighted using the 

observation density as 

 

             (25) 

 

The particles and the corresponding weights are 

then sorted in the descending order of weights and 

scaled according to 

 

        (26) 

 

and normalised. The parameter λ controls the 

importance on the weights determines. λ ∈ (0,1) 

and a high value gives very high weighting to the 

high weight particles and a low value do not change 

the weights. In this paper we chose λ = 0.03 so a 

minor proportion of the high weight particles are 

give very large weighting. This aids in tracking the 

mode of the posterior more accurately. 

 

At this stage, the particles and their corresponding 

weights are representative of the posterior at time t 

as shown in (21). The GPF and the AKF uses this 

set to compute the weighted mean and covariance. 

However, this is not valid as the prediction did not 
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take into account the incoming measurement yt. 

Not accounting yt could lead to the particles drawn 

from the prediction density to be located in regions 

of unimportance. This could lead to estimation 

bias. A straightforward solution to this is to 

resample the particles  

as described in the earlier section. However, this 

step adds to the computational complexity. This 

paper proposes to bypass this problem by using the 

“proper weighting” condition used as a measure for 

unbiased estimation by resampling [8]. 

 

The proper weighting condition can be explained as 

follows. Resampling aims to replace the low weight 

particles by those with high weights in such a way 

that every resampled particle is equally probable in 

representing the posterior pdf. This condition 

causes each resampling particle to have equal 

weight, meaning wt
i = 1/N,i = 1,··· ,N. This 

condition can be achieved when the number of 

times each particle is replicated follows a condition 

described as 

 

                          (27) 

 

and called the proper weighting condition, where ni
t 

is the number of replications of the ith particle. 

In this paper, we compute ni
t using (27) rounded to 

the lower integer and obtain a new set of particles 

 

(28) 

 

The new set contains only those particles for which 

ni
t > 0 meaning that all the particles that are 

guaranteed to contribute to the posterior by the 

proper weighting condition are gathered into the 

new set. Hence the new set could contain fewer 

than N weighted particles. Then the first and second 

moments of the posterior can be approximated as 

 

 (29) 
 

                                       (30) 

 

  (31) 

 

These moments form the basis for the next time 

step. The filter estimate is the mean of the posterior 

xˆt = E(p(xt|y1:t)) ≈E(xt|y1:t). 

 

The key merits of this proposed method are that it 

does not involve the computationally demanding 

resampling procedure. Moreover, it ensures 

particles are guided into regions that contribute to 

the posterior pdf and hence can show high tracking 

accuracy with fewer particles. 

 

IV. EVALUATION 

In this section, we present the evaluation of the 

proposed Monte Carlo approximated Kalman filter 

for tracking rhythmic biomedical signals. We 

compare the proposal with the standard PF (SPF) 

[7] that employs systematic resampling to push 

particles into regions of importance, the APF [16], 

the GPF [23] which uses an altogether different 

approach that does not necessarily account for 

drawing particles from importance regions and the 

OLPF [25], [26] that samples particles from regions 

of importance. 

 

In the program preliminaries, we set the number of 

harmonics to Nh = 5, the sampling frequency and 

the frequency limits to fs = 360, fmax = 1, fmin = 5 

Hertz, and the noise variance to σ2 = 5. The initial 

state values of the ground truth are set 

 

to  and  Hertz,

 and . 

The filters are initialised with θt
i
=0 ∼ N(0,1) and 

 
and bi

k,t=0 
PU(3,7) for 

 

i = 1,··· ,N. For the chosen fs = 360 Hertz, we record 

a signal with t = 1200-time samples meaning that 

the duration of 

 

N OLPF PF APF GPF Proposed 

25 0.93823 0.95500 0.92823 0.00000 0.91987 

100 0.978618 0.937231 0.890965 0.010302 0.947978 

500 0.9766519 0.9456768 0.9093298 0.0020869 0.9447219 

1000 0.97902848 0.94670209 0.87678726 0.00031074 0.94335478 

Table I: The table shows the normalised expectation E(ESS)/N for the five methods for N = 

25,100,500,1000 particles. 
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the signal is close to 3.33 seconds. 

 

The two performance measures used to evaluate the 

efficacy of the methods are the root mean squared 

error (RMSE) and the normalised mean squared 

error (NMSE) defined by 

 

(32) 

 

(33) 

 

                                          (34) 

 

whereˆ. is the estimated value. The RMSE 

corresponding to the latent variables is a well-

known measure. The NMSE, on the other hand, lies 

in (0, ∞) and a value of less than one indicates good 

harmonic tracking [29] implying that the latent 

target state containing the harmonic frequencies, 

the sinusoidal coefficients and the signal mean Are 

tracked accurately to such an extent that the 

estimate of the measurement agrees with the 

received. 

 

Firstly, we evaluate the degeneracy effect in the 

proposed filter for small to large values of N. Table 

I shows the normalised mean value of ESS/N which 

is a measure to evaluate the effect of degeneracy 

within the filter. Since the expected ESS is 

normalised by the number of particles N, E(ESS)/N 

lies in (0,1) and a value of one indicates no 

degeneracy while a zero indicates high degeneracy. 

The computation-friendly GPF considers only the 

weighted sum of the particles regardless of their 

contribution to the posterior and hence does not 

ensure that the ESS is maintained. Therefore, it can 

be observed in the table that the GPF maintains low 

ESS throughout. This also causes the filter to be 

biased and also perform poorly in high noise 

conditions. The SPF and the APF naturally do not 

suffer from degeneracy as they resample the 

particles all the time. It can be observed that for all 

cases of N, the proposed resampling-free method 

exhibits high value indicating it does not suffer 

from degeneracy because it estimates the state 

using the proper weighting condition, i.e., by way 

of using only those particles that contribute to the 

posterior pdf. 

 

Secondly, we focus on the tracking accuracy and 

the computational time. The state vector for the 

biomedical signal model is 14-dimensional as 

described in (10). We compute the RMSE for each 

of these states according to (32) and (33) and these 

values 

 

Measure N OLPF SPF APF GPF Proposed 

θRMSE 25 6.95351 2.37419 3.23042 - 3.49137 

 100 4.95351 4.84749 4.22747 3.27195 0.00244 

 500 0.01429 0.00190 0.00190 37.93506 0.00099 

 1000 0.00213 0.00111 0.00109 3.50038 0.00094 

fRMSE 25 0.36659 0.04805 0.04575 - 0.19244 

 100 0.05031 0.12741 0.11225 0.16395 0.04612 

 500 0.05770 0.01369 0.01370 0.23903 0.01292 

 1000 0.01315 0.00810 0.00803 0.05420 0.01148 

f¯RMSE 25 0.11038 0.02108 0.02746 - 0.18698 

 100 0.05220 0.13371 0.12178 0.03393 0.02461 

 500 0.03576 0.05242 0.05645 0.17490 0.01534 

 1000 0.03849 0.01192 0.01149 0.02139 0.01519 



Monte Carlo Based Kalman Filtering with Proper Weighting Estimation   Section A- Research Paper 

 

1869 Eur. Chem. Bull. 2023,12(Special Issue 1, Part-B), 1862-1872 

y¯RMSE 25 1.65594 0.03743 0.02677 - 0.47068 

 100 0.12126 0.04089 0.03914 0.06075 0.07697 

 500 0.06025 0.01413 0.01705 0.05245 0.01990 

 1000 0.05114 0.00967 0.00959 0.01202 0.01439 

aRMSE 25 2.47677 0.04875 0.04887 - 0.05669 

 100 0.23981 0.04798 0.04901 0.04921 0.04867 

 500 0.12033 0.04829 0.04782 0.04948 0.04774 

 1000 0.07840 0.04666 0.04733 0.01064 0.04762 

bRMSE 25 1.98040 0.05204 0.05384 - 0.05840 

 100 0.22809 0.05325 0.05265 0.05341 0.05313 

 500 0.06955 0.05349 0.05327 0.05329 0.05249 

 1000 0.10234 0.05222 0.05179 0.01117 0.05173 

Table II: The table shows RMSE corresponding to the latent variables for the four methods under test 

for N = 25,100,500,1000 particles. The reader may replace X in XRMSE with the latent variable, e.g., 

θRMSE denotes the RMSE of the instantaneous phase estimate θˆ1:T . 
 

are shown in Table II. At N = 25, the GPF suffers 

from a large estimation bias caused due to 

insufficient particles that may not necessarily lie in 

regions that contribute to the posterior pdf. Hence 

its values are not shown. It can be observed that the 

OLPF 

 

shows moderately higher errors in the estimation of 

the signal mean y¯1:T and the sinusoidal coefficients 

a1:Nh,1:T and b1:Nh,1:T over the conventional methods. 

A possible reason for this is that the low weight 

particles in this filter are eliminated with unit 

probability. This problem is overcome in the 

proposed filter as it ensures that only those particles 

that contribute to the posterior, determined by using 

the proper weighting condition, are leveraged into 

the estimation process. The table also shows that 

the error reduces with increasing number of 

particles and all methods become stable with 

reliable tracking accuracy from N = 500. 

The computational time (in seconds) versus the 

average RMSE (ARMSE) (average of all the 

errors) is shown in Figure 1. It can be clearly 

observed that the proposed method exhibits lower 

ARMSE and consumes lesser computation over the 

conventional methods at both lower and higher 

values of N. This is because the Kalman based 

Monte Carlo prediction step inhibits particles from 

being drawn from regions on non-importance and 

the proper weighting condition applied on the 

drawn particles further mitigates any estimation 

error. Moreover, the method totally avoids the need 

to resample as only the first and second moments 

are propagated in time and hence gains 

tremendously in terms of computational speed. 

A measure of the combined effect of tracking 

accuracy and the computational time is the time 

scaled RMSE (TRMSE) defined by 

 

TRMSE = Tc × RMSE                                      (35) 

 

where Tc is the computational time in seconds. A 

low value of TRMSE is desired as both the 

computational time and the tracking error is desired 

to be small. Figure 1 also shows the TRMSE versus 

the number of particles and it can be observed that 

the proposed method shows an incredible 

improvement of 81.7%, 97.4%, 75.1% and 70.5% 

over the OLPF, 59.7%, 97.2%, 89.0% and 86.8% 

over the SPF and 57.4%, 98.0%, 99.5% and 92.5% 

over the APF for N = 25,100,500,1000 

respectively. 

The GPF totally fails due to high estimation error 

due to bias caused in propagating particles using 

the moments. 
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RMSE 

 
Number of particles 

Fig. 1. The top panel shows the computational time (seconds) versus the RMSE for N =25,100,500,1000 

particles. The x-axis is shown in log scale for convenience. The values at N =25 is shown using solid dot. 

The bottom panel shows the TRMSE versus the number of particles. The legend of the top panel 

applies to the bottom also. 

We finally show the NMSE versus the number of 

particles. The NMSE is a measure of how 

accurately the estimated latent target states could 

recover the observed signal. Figure 2 shows the 

NMSE for varying numbers of particles. It can be 

observed that except for the GPF, all the other 

methods achieve an NMSE of less than one, 

indicating that the signal has been recovered well. 

Figure 3 shows the measured signal and the 

estimated signal. The estimated signal is formed by 

plugging in the estimated target states into (2) 

without the noise variable. The GPF is not shown 

as the earlier results have shown the filter to totally 

diverge until N = 500. It can be observed from the 

figure that the proposed method recovers the 

measured signal accurately even with fewer 

numbers of particles. 

 

 
Number of particles 

Fig. 2. The NMSE versus the number of particles. 
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Fig. 3. The estimated and received signal versus the time step. The received signal is shown in red and 

the estimated (for different values of N) in blue. The top left panel corresponds to the OLPF, the top 

right to the SPF, the bottom left to the APF and the bottom right to the proposed filter.

 

V. CONCLUSION 

This paper proposed a Kalman filtering approach 

using mixed Monte Carlo implementation for 

tracking rhythmic biomedical signals. The 

evaluation results have shown that the proposed 

filter achieves higher tracking accuracy and speed 

than the conventionally used PFs as it computes the 

filter estimate using the proper weighting condition 

and also totally avoids the need to resample 

particles. Moreover, the filter propagates the first 

and second moments instead of the particles hence 

overcomes the problem of degeneracy as do the PF. 
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