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Abstract

This  paper  presents  a  theoretical  analysis  of  the rheological  behaviour  of  graphene-filled  polystyrene 
nanocomposites using an existing FENE (finitely extensible non-linear elastic) model based on the stochastic 
differential equations. A series of these nanocomposites were prepared by in situ polymerization of styrene 
monomer. During polymerization, graphene was added and a number of composites were prepared by varying 
the percentage of graphene in the step of 0.25wt % Nanocomposite samples were hot pressed as discs and then 
characterised for their rheological behaviour. Experimentally, it was observed that rheological properties such 
as  storage  modulus  (G′)  loss  modulus  (G′′)  and  complex  viscosity  η∗ increased  with  increasing  graphene 
weight  percentage.  Using  the  FENE  model  it  was  predicted  that  graphene  as  a  filler  either  affected  the 
extension  of  the  springs  or  spring  constant.  Consequently,  a  larger  force  was  required  to  deform  which

improved the rheological properties of the polymer nanocomposites.
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1 Introduction 

Polymer nanocomposites are advanced materials 

which have found numerous applications in 

various sectors. Consequently, a lot of research 

work has been done on these materials to 

characterize and understand their behaviour using 

mathematical models. Studies on the dynamic 

behaviour of polymeric solutions and melts have 

been done based on various molecular theories 

using mathematical models [1]. A dumbbell model 

having spherical beads connected with finitely 

extensible non-linear elastic (FENE) springs is 

used to simulate polymer molecules and 

intermolecular chains. The molecular dynamics 

(MD) simulations are done using numerical 

integration of the equations of the motion of the 

beads, which in the presence of Brownian forces 

become stochastic differential equations (SDE). 

Rheology of polymers in small amplitude 

oscillatory flow have been studied using such 

dumbbell models in the past [2,3]. These 

dumbbells assumed to be Hookean were then 

replaced by nearly Hookean dumbbell to calculate 

the stress tensor [4]. Same models were modified 

to study flow behaviour of concentrated solution 

and melts using anisotropic Brownian and 

hydrodynamic forces [5,6]. Subsequently 

probability distribution function was introduced in 

the model to understand the rheological behaviour 

[7]. It has also been reported that a non-inertial 

Hookean dumbbell could not estimate the polymer 

coil [8]. A combination of all these models was 

used to obtain viscosity at low shear rates [9,10]. 

Compared to pure polymers, very few studies on 

theoretical modelling of rheological properties of 

nanocomposites have been reported. 

Comprehensive review and studies on rheology of 

polymer nanocomposites are available in the 

literature [11-15] and cross references therein. In 

this study, rheological properties of graphene-

polystyrene nanocomposites were mathematically 

analysed using an existing FENE dumbbell model 

and matched with the experimental data obtained 

on the same composites.  

 

2.0 Experimental 

2.1 Materials and methods 

Details about the samples and their preparation can 

be found elsewhere [16]. The strain amplitude 

sweep and frequency sweep measurements on the 

nanocomposite samples (circular discs of 25 mm in 

diameter and 1 mm in thickness) were carried out 

using a parallel plate rheometer (Bohlin C-VOR 

instrument). Strain and frequency dependent 

storage modulus  (G´),  loss  modulus  (G¨),  tan δ  

and  complex  viscosity  (η) were measured at a 

strain amplitude sweep at 200oC at a fixed 

frequency of 1 Hz. This was done to determine the 

linear viscoelastic region (LVR). Frequency sweep 

of nanocomposites was conducted at a fixed strain 

of 0.01 at 200oC in the frequency range of 0.01 − 

100Hz. 

 

2.2 Theory of stochastic differential equations 

(SDEs) 

The mathematical theory of stochastic variable and 

stochastic differential equations has found a large 

number of applications in understanding materials 

behaviour. These equations use a small time-

increment of a stochastic variable which comprises 

a deterministic increment and a completely 

uncorrelated stochastic contribution. In the case of 

polymer, SDEs have been used to solve kinetic 

equations in rheology [9, 10]. A typical SDE 

consists of Gaussian Stochastic variable, Wiener 

Process and Brownian forces [17]. It has been 

shown that the summation of uncorrelated 

stochastic variables gives rise to a stochastic 

variable with Guassian distribution. Likewise, it 

has also been shown that the Weiner process W(t) 

is a time dependent Gaussian variable. 

∆Wi = W(ti+∆ti) – W(ti) are uncorrelated i.e.  

∆Wi∆Wj = ij∆ti  

Hence, the time increment of a Wiener process 

varies as ∆t since ∆W2=∆t which implies that it is 

non differentiable since (∆W/∆t) diverges for ∆t 

tends to zero. 

Thus, a typical stochastic differential equation is 

written as  

dX = A.dt + B.dW  

where X denotes the position of a Brownian 

particle and A provides a drift term and second 

term (stochastic) represents the Brownian motion 

(B is diffusion tensor). Since the Weiner process is 

non differentiable, it is expressed as 

 
 

2.2.1 SDE for a dumb-bell model  

For a combination of stochastic-probabilistic 

method, time evolution of the stochastic variable 

(pi, Xi) is given by  

 
where Vi = (dXi /dt) − A(Xi) 

Using this method, stochastic equation for 1D 

FENE dumb bell is written as 
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where ε˙ = dε/dt is the rate of elongation, Q is the 

length between two beads (or connector vector), 

and Qmax is the maximum spring can extend. The 

first expression on the RHS of equation gives the 

deformation by virtue of flow, the second 

expression is by virtue of entropic elastic force and 

the last expression is due to Brownian motion. 

The finite extensibility of a polymer is ensured 

by making the force law of the spring diverge at 

the maximum length keeping in mind the 

maximum length is not exceeded. For (L=Q) 

the evolution equation is given by  

 
Using this equation and solving for quadratic roots 

a condition is determined for L<Lmax as shown in 

Fig. 1 which shows the correlation between the 

extension of the connector vector (Q) and the 

length of the dumbbell (L). 

 

 
 

 

Fig 1: Correlation between extension of connector vector (Q) and length of dumbbell (L). 

 

Using the time evolution of Q, the polymer stress 

was calculated using the following formulae 

τp/(nkBT) = (1/N)(QFc ) – 1   

  

where the connecting spring force between beads, 

Fc = HQ. H is the spring constant, kB is the 

Boltzmann constant, T is the absolute temperature, 

n is the number of dumbbells per unit volume, N is 

the total number of dumbbells, and Q is the 

connector vector between beads. Fc can also be 

written as Fc = HQ/(1−Q2/Q2
0), where Q is the 

distance between the beads, Q0 denotes the 

maximum possible spring extension. The finite 

extensibility parameter, b = HQ2
0/(kBT) 

 

3.0 Results and Discussion 

 

Figure 2 shows an oversimplified hypothetical 

basic network of a polymer molecule as proposed 

under the FENE model wherein neighbouring 

beads are connected by finitely extensible non-

linear springs. The finite extension of the springs is 

supposed to simulate the flow behaviour of 

polymer nanocomposites when it is subjected to a 

deformation. In the case of polystyrene graphene 

nanocomposite, during in situ polymerization of 

styrene monomer, two simultaneous mechanisms 

might have occurred. 
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Fig 2: Schematic of the FENE model. Black spheres denote beads connected with springs 

 

Either graphene as a filler might have got 

physically entangled with the polymer chains or 

maybe the intercalation of polymer molecule 

within the graphene layers might have occurred. 

With the increase in graphene content, either of 

these mechanisms might have dominated. 

Visualising it through the FENE model, it can be 

assumed that graphene affected the extension of 

the springs (Q) or it might have changed the spring 

constant (H) or it might have increased the 

damping of the springs (b or maximum extension 

of the spring (Q0). Consequently, a larger force was 

required to deform the polymer. This is 

corroborated by the experimental data (Fig. 3a,b 

and Fig 4) which show that as the graphene 

percentage increases, storage modulus and loss 

modulus of nanocomposites compared with pure 

Polystyrene shows a monotonic increase[16].  

 

 
Fig 3a: Elastic modulus vs. frequency of polystyrene-graphene nanocomposites [16] 
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                           Fig 3b: Viscous modulus vs. frequency polystyrene-graphene nanocomposites [16] 

 

 
Fig 4: Complex viscosity vs. frequency of polystyrene–graphene nanocomposites [16] 

 

Using SCILAB software [18], time evolution of connector vector (Q) was calculated using Euler forward 

difference method for three different elongation rates (dε/dt) and is shown in Fig. 5. In the FENE model, finite 

extensibility parameter (b) and hence the spring constant was changed gradually and stress was calculated 

using time evolution of Q. 

 

 
Fig 5: Time evolution of polymer stress at three different elongation rates (top curve 2, middle curve 1 and 

bottom curve 0.5) 



Understanding Rheological Behaviour Of Graphene-Polystyrene Nanocomposites  

Using A Mathematical Model                                                                                                                           
Section A-Research Paper
ISSN2063-5346  

 

Eur. Chem. Bull. 2021, 10(Regular Issue 3), 271-277          276 

 

 The change in the spring constant corresponded to the change in the graphene percentage. These results are 

shown in Figure 6a-c which indicate that graphene plays a significant role in modifying the rheological 

behaviour of polystyrene (PS).  

 

 
Fig. 6a: Time evolution of polymer stress at different finite extensibility parameter, b (top curve b=25, and 

bottom curve b=300) (b corresponds to the spring constant and hence to the graphene percentage) 

 

 
Fig 6b: Variation of Polymer stress with increasing finite extensibility parameter b (which corresponds to the 

spring constant and hence to the graphene percentage) 

 

 
Fig. 6c: Variation of Polymer stress with increasing elongation rate at different finite extensibility parameter 

b (which corresponds to the spring constant and graphene percentage) 
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4.0 Conclusion 

Rheological properties of the graphene filled 

polystyrene nanocomposites were analysed using a 

theoretical model based on FENE bead-spring 

network. Material functions related to rheological 

properties were computed numerically and 

compared with experimentally measured values 

pertaining to storage modulus, loss modulus and 

complex viscosity of nanocomposites. The 

improvement in rheological properties of 

polystyrene on addition of graphene as a filler has 

been linked to the entanglement of graphene with 

polymer chains or intercalation of polymer chains 

within graphene layers. Theoretically it was 

visualised that spring constant or extension of 

springs that simulated flow was affected by the 

addition of graphene. 
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