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Abstract:  

Numerous pollutants have exerted a major impact on water quality in recent years, and the health of all living 

organisms and the environment is directly affected. The most effective water management indicator is Water 

Quality Index (WQI) developed by BIS (2004). The prediction and modelling of water quality are essential in 

finding the pollution source and treating it effectively.  This study aims to build an efficient river water quality 

indicator prediction model and classify indicator values according to the Indian Drinking Water Standards (BIS 

2004). Data were collected from 11 sampling stations at different points on the Bhavani River in Kerala and 

Tamil Nadu. The Water Quality Index is computed by using the 28 different parameters that affect the quality 

of water. The feature selection and data normalisation are applied to develop an efficient river water quality 

dataset. The WQI prediction model is built using deep learning architectures such as GRU, LSTM, and RNN. 

The performance of the deep learning based WQI prediction models are compared with traditional machine 

learning based models. The performance analysis indicates that the GRU-based prediction model shows 

promising results in predicting water quality. 
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1. Introduction 

The survival and existence of life on earth require 

water, and the main source of it are rivers and 

streams, but they are being polluted day by day as 

a result of hazardous wastes and pollutants. Water 

pollution is becoming a dangerous issue for the 

entire life on earth. Due to the scarcity of fresh 

water, a large portion of the population today 

depends on groundwater for drinking, agriculture 

and industry. Many people rely on groundwater 

sources such as hand pumps, bore wells and dug 

wells for water. Groundwater quality is currently 

declining due to various factors such as host rock 

composition, rock-water interactions, soil matrix, 

climate change, and groundwater depth. The use of 

contaminated water increases the risk of infants 

developing diarrheal sickness, which raises child 

mortality rates. According to the World Health 

Organisation (WHO) (Wang et al., 2017a), an 

estimated 1.1 billion people worldwide require 

access to clean drinking water, and 2.6 billion 

require basic sanitation. The main reason for water 

contamination is because of the increase in 

population, automobile, and industry growth. 

Water purity factors including temperature, 

turbidity, pH, and other factors are impacted by 

sewage waste from pollution sources. This 

increases the spread of illnesses that are transmitted 

through water and results in the demise of aquatic 

creatures and plants. In the current situation, 

pollution disrupts the food chain and wrecks the 

ecology. People have used a variety of research 

methods to assess and monitor the water quality, 

labelling the water quality index. Several 

researchers spent the majority of their time finding 

the best model for determining the quality of water. 

 

The prediction of water quality (Wang et al., 

2018b) is a primary research topic in water 

environmental issues, as well as the foundation of 

water resource management and water pollution 

prevention and control. Continuous water 

monitoring can be costly and time-consuming. 

Water quality monitoring is estimated in various 

regions through a time-consuming process. By 

using a mathematical model to anticipate the 

concentration of key contaminants in river water, it 

is possible to understand the recent trends in river 

water quality and provide a standard for managing 

water quality as well as developing and utilising 

water resources (Slaughter et al., 2017). 

Forecasting water quality has promise for effective 

water management. 

The water quality index (WQI), which is based on 

water quality levels, was recommended by the 

research community as a global monitoring 

standard for water quality. WQI ratings vary from 

1 to 200; a lower number denotes better water 

quality. Generally, a WQI level of 30 indicates 

clean water, a level of 30 to 80 indicates slightly 

polluted water in a river, and a score of 100 or more 

indicates that the water is deemed polluted. This 

first phase of building a WQI prediction model 

consists of the collection of water samples from 

proper storage, the site and transportation of these 

samples to laboratories for testing. Machine 

learning techniques for water quality forecasting 

have gained the interest of the research community 

due to their ability to learn water quality patterns 

over time. 

 

Artificial neural networks, support vector 

regression, ARIMA model, deep learning methods 

such as LSTM, Deep Bi-SSRU Learning Network, 

recurrent neural network, and many other 

techniques have also been introduced. According to 

the published, dissolved oxygen (DO) is important 

because it provides information about the 

compound, physical, and biotic properties of water. 

DO, for example, represents the presence of 

oxygen (O2) molecules in water in terms of mg/L 

concentration. DO concentration is an important 

parameter in predicting water quality. 

 

Several studies on water quality prediction in 

Indian rivers have recently been published. (Kisi & 

Parmar, 2016) used SVM and an adaptive 

regression model to predict water pollution in the 

Yamuna River. The prediction of water quality is 

important in the current scenario, to diagnose the 

actual problem it is essential to predict the future 

pollution level. 

(Dohare et al., 2014) conducted a groundwater 

study in and around Indore. WQI was determined 

by collecting samples from all wards in the study 

area for physicochemical analysis. They concluded 

that during the wet season, most water quality 

parameters are slightly higher than during the dry 

season. 

(Kannan et al., 2005) investigated recent 

groundwater quality in the Thanjavur district, 

determining the spatial distribution of groundwater 

quality parameters such as TDS, pH, TH, EC, Cl, 

and NO3, and generating a groundwater quality 

region map. The majority of the collected samples 

were insufficient to meet the WHO and ISI 

drinking water quality standards. 

 

(Zhang et al., 2014) examined the chemical 

properties of water samples collected from 39 

sampling stations prior to the 2011 summer season 

irrigation period employing geostatistical methods 
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and multivariate statistical analysis. Principal 

Component Analysis (PCA) and two modes of 

cluster analysis were used to identify the factors 

that influence the composition of groundwater. 

PCA was used to discover the factors influencing 

the evaporation effect and the parameters that 

influence it. 

 

(Krishan et al., 2016) calculated the Ground Water 

Quality Index (WQI) using data from 27 samples 

collected in the Rajkot district of Gujarat and seven 

parameters such as pH, Chlorides, Total Hardness, 

Total Dissolved Solids, Fluoride, Nitrate, and 

Sulphate. The study area's maximum and minimum 

WQI values were 98 and 27, respectively. 

According to the calculated WQI, 51.8% of 

groundwater samples were good and 48.2% of 

groundwater samples fell into the poor category, 

indicating that they were unfit for human 

consumption and would require treatment. After 

the appropriate treatment, the water can be used for 

human consumption. 

 

(Ezhilarasi & Senthilkumar, 2018) assessed 

groundwater quality and carried out the analysis in 

different wards of Coimbatore City using GIS and 

WQI. The Water Quality Index assists them in 

understanding the condition of groundwater in the 

area. 

 

The focus of this research work is to predict the 

river water quality index of the Bhavani River 

which flows through two states such as Kerala and 

Tamilnadu using the deep learning approaches. The 

research work aims to predict the water quality 

index using the daily average values of the river 

water parameters such as turbidity, pH, COD, 

temperature, BOD, boron, etc collected from 

monitoring stations from 2016 to 2020.  The WQI 

prediction is modelled as a regression task in this 

research work and is investigated by employing 

GRU, LSTM, and RNN deep learning 

architectures. 

 

2. Water Quality Standards and the Prediction 

Forecasting water quality is essential for preserving 

the ecosystem. Both point sources and nonpoint 

sources are used to discharge pollution into the 

river. A typical strategy for managing point source 

discharges is to impose regulations that outline the 

maximum permissible pollutant loads or 

concentrations in runoffs from point sources like 

stormwater outfalls, municipal wastewater plants, 

or industry. The most challenging issue is to control 

nonpoint sources, as it includes agricultural runoff 

or atmospheric deposition, making it challenging to 

apply effluent limits to these pollutants. When 

compared to loadings from point sources, 

pollutants from non-point sources are significantly 

higher. 

 

In order to ensure the water quality criteria are met, 

an ambient water quality management programme 

strives to develop acceptable water quality 

standards in water bodies absorbing pollution 

loads. The river basin’s hydrologic, biological, and 

land use circumstances, the receiving water 

source’s potential uses, and the ability to establish 

and sustain water quality standards. 

 

Computation of WQI 

The cumulative effect of water quality standards on 

the overall quality of the water is represented by the 

Water Quality Index (WQI). Converting complex 

water quality data into information that is clear and 

useful is the main objective of the WQI. 

 

The parameters for evaluating water quality must 

be determined in accordance with a defined 

standard, such as the Indian Standard for Drinking 

Water Specification (BIS 2004). 

The computation of water quality index is 

calculated using the following steps. 

1. Assign weights to all water quality parameters 

based on their relative importance. The 

computation of the relative weight (Wi) of each 

parameter using the following equation: Wi = 

K/Si 

where Wi is the relative weight, K is the weight of 

each parameter and Sn is the permissible limit. 

 

2. Assign the quality of water rating (Qi) for each 

parameter: Qi = (Vi / Si) x 100 

where Qi is the quality of water rating, Vi is the 

mean concentration value for each parameter and 

Sn is the desirable limit as given in the Indian 

drinking water standard (BIS 2004). 

 

3. The WQI is calculated by first determining the 

sub-index (SI) for each water quality parameter: 

Wi x Qi = SI 

SI is the sub-index of the parameter; Qi is the 

rating based on the parameter concentration. 

 

4. The summation of the SI of each water quality 

parameter is the WQI. 

 

The characteristics of the water quality parameter 

are analysed in accordance with BIS drinking water 

quality requirements. Table.1 displays the BIS 

water quality parameters permitted limits as well as 

the formula used to calculate the water quality 
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index. 

Table 1.  Computation of Water Quality Index with Permissible Limits 
Parameters BIS Standard 

(Si) 

1/Si K= ⅟∑⅟Si Wi= K/Si Ideal 

Value 

Mean Value 

(Vi) 

Qi= Vi/Si 

*100 

SI= Wi*Qi 

Temp 28 0.03 0.118 0.004 0 28 40 0.169 

pH 8.5 0.11 0.118 0.013 7 7.3 85.88 1.202 

Conductivity 150 0.006 0.11897 0.00079 0 65 43.33 0.03437 

Hardness 100 0.01 0.118979 0.00118 0 9 9 0.010708 

Sodium 200 0.005 0.118979 0.00059 0 7 3.5 0.002082 

TSS 300 0.0034 0.11897 0.00039 0 300 100 0.03965 

BOD 3 0.334 0.118979 0.03965 0 2.3 76.667 3.04059 

Nitrate-N 0.503 1.98807 0.11897 0.23654 0 0.902 179.3 42.4173 

TC 100 0.01 0.11897 0.00118 0 60 60 0.071387 

 

The impact of each parameter on water quality and 

health implications must be considered while 

choosing the water quality parameter and the water 

quality index range which is given in Table 2. 

 

Table 2: BIS (2004) Water Quality Standards 
Water Quality Index Value Water Quality Index Class Water Quality Label 

>121 E Unsuitable 

91-120 D Very Poor 

61-90 C Poor 

31-60 B Good 

0-30 A Excellent 

 

The water quality prediction requires sufficient 

quality data for building the prediction model. The 

standard parameters determining water quality 

index such as temperature, conductivity, turbidity, 

total alkalinity, pH, chloride, phenolph thalein 

alkalinity, ammonia, total Kjeldahl nitrogen, 

chemical oxygen demand, hardness, mg. hardness, 

ca. hardness, sulphate, sodium, ca. hardness, total 

dissolved solids, phosphate, total suspended solids, 

fixed dissolved solids, boron, potassium, biological 

oxygen demand and predicted dissolved oxygen are 

used in this research. They have been collected 

from the monitoring stations to prepare the river 

water quality dataset. 

 

3. Data Acquisition and Preparation 

Water quality assessment is an effective way to 

identify and address water contamination. Water 

quality is assessed and to determine the water 

quality index depends on the physical, chemical 

and biological parameters of water. Hence, in this 

study, the data to predict the water quality are 

collected from sampling stations of river Bhavani. 

 

3.1   Data Collection 

The Bhavani River flows through Tamilnadu and 

Kerala, India. The river originates from Nilgiri 

hills, then enters silent valley national park, Kerala 

and flows through Tamilnadu. The data are 

collected from eleven sampling stations of the 

Bhavani River which include Thavalam, 

Kottathara, Elachi Vazhi, Chalayur, Cheerakuzhy, 

Karathur, Badrakaliamman kovil, Bhavanisagar, 

Sirumugai, Bhavani, Sathyamangalam.  

 

The data collected from eleven stations include 

temperature, conductivity, turbidity, total alkalinity 

pH, chloride phenolphthalein alkalinity, ammonia, 

total Kjeldahl nitrogen, chemical oxygen demand, 

hardness, mg. hardness, sulphate, sodium, ca. 

hardness, total dissolved solids, phosphate, total 

suspended solids, fixed dissolved solids, 

boron, potassium, biological oxygen demand, 

predicted dissolved oxygen, longitude and latitude 

to predict the water quality. Fig1.  The flow of 

River Bhavani is depicted below, the area covered 

for the research. 

 
Fig.1. The Flow of River Bhavani 
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The amount of oxygen dissolved in water may 

affect the aquatic living creatures, if the level of 

oxygen is very lower than the metabolic rates of 

organisms, illnesses, timing of their reproduction, 

and even migration affects badly. The number of 

suspended particles in the water is measured by 

turbidity. E. coli, total coliform bacteria, and faecal 

coliform bacteria are all to be signs of faecal matter 

contained in water. The water quality parameters 

collected from sampling stations are mainly 

categorised into physical, chemical and biological 

parameters as shown in Table 3a, Table 3b and 

Table 3c. 

 

Physical Water Quality Parameters 

The physical parameters include temperature, 

conductivity, turbidity, total suspended solids, 

fixed dissolved solids and total dissolved oxygen.  

The river water temperature is heavily influenced 

by future changes in air temperature and other 

meteorological and physical factors. The capacity 

of water to transmit or conduct an electrical current 

is determined by its electrical conductivity (EC). 

Turbidity, a term used to describe the cloudiness of 

water and a metric for how easily light can pass 

through it, is caused by particles suspended in the 

water, including silt, clay, organic matter, plankton, 

and other particles. The TSS and TDS residue that 

remains after being heated to dryness for a set 

period of time and at a predetermined temperature 

is referred to as fixed solids.  Some of the physical 

parameters used in the research work are shown in 

Table 3a. 

 

Table 3a. Physical Water Quality Parameters 
Sl.no Parameters BIS Standard (Sn) 

1 Temperature 28 

2 Turbidity 5 

3 Conductivity 150 

4 TSS 300 

5 TDS 1000 

6 FDS 200 

 

Chemical Water Quality Parameters 

The chemical parameters of water quality include 

pH, ammonia, alkalinity, chloride, potassium, 

sulphate, nitrogen, fluoride, hardness, dissolved 

oxygen, biological oxygen demand, and chemical 

oxygen demand. A pH scale of 0 to 14 is used, with 

7 representing neutrality. A solution is considered 

acidic if its pH is below 7, and if its pH is above 7 

it’s a base. The ammonia concentration in river 

water is affected by the dead and decay of plants 

and animals, algal growth, and faecal matter and 

the increase in the level of ammonia increases 

water pollution. The alkalinity of water is assessed 

in order to calculate the quantity of lime and soda 

needed for water softening. It is the sum of all 

soluble solids based on acid-neutralizing capacity. 

Groundwater, lakes and streams, naturally contain 

chloride the occurrence of relatively high chloride 

concentrations in freshwater is a sign of water 

contamination. Numerous sources, such as 

agricultural runoff, wastewater, and chloride-

containing rock, can also provide chlorides to 

surface water. Magnesium or sodium sulphate 

deposits found in nature frequently leach, resulting 

in high sulphate concentrations in natural water. 

When nitrate levels in surface water are too high, 

algae can grow quickly and degrade the quality of 

water. Chemical fertilisers may discharge nitrates 

into groundwater when used in farming activities. 

The characteristics of heavily mineralized waters 

are referred to as hardness. Dissolved oxygen 

(DO), a major indicator of water pollution, is one 

of the most important components of water quality 

in rivers, streams, and lakes. The higher the 

dissolved oxygen concentration, the better the 

water quality. Some of the chemical parameters 

used for the work are included in Table 3b. 

 

Table 3b. Chemical Water Quality Parameters 
Sl.no Parameters BIS Standard (Sn) 

1 pH 8.5 

2 Ammonia 50 

3 Alkalinity 200 

4 Chloride 250 

5 Potassium 2.5 

6 Sulphate 200 

7 Nitrate 0.503 

8 Fluoride 1.5 

9 Hardness 100 

10 DO 7.5 

11 BOD 3 

12 COD 10 
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Biological Water Quality Parameters 

The biological water quality indicators include total 

coliform and faecal coliform.  The presence or 

absence of living organisms may be one of the most 

useful indicators of water quality. The human body 

maintains a normal population of microbes in the 

intestinal tract, the majority of which are coliform 

bacteria. The wastewater contains millions of 

microbes per millilitre, most of which are harmless. 

The total coliform and faecal coliform are 

measured as the total number of colony-forming 

units (CFUs) in 100 mL of water. Biological water 

quality parameters used in the research are shown 

in Table 3c. 

 

Table 3c. Biological Water Quality Parameters 

Sl.no Parameters BIS Standard (Sn) 

1 TC 100 

2 FC 60 

 

The river water quality dataset includes the 

following 26 different physicochemical 

characteristics with 10560 instances from January 

1st, 2016 to December 31st, 2020. The water 

quality index must be calculated for each parameter 

with allowed values and unit weight. The water 

quality index value for each sample was calculated 

using the Indian Standard for Drinking Water 

Specification (BIS 2004) and assigned to the 

corresponding occurrence in the dataset. After 

computing the WQI and giving class labels to each 

instance to construct labelled tuples, the water 

quality index class is established. Finally, a river 

water quality dataset containing 31 attributes 

including physiochemical parameters (26), 

longitude, latitude, station ID, date and calculated 

WQI and 10560 instances has been created to 

facilitate supervised learning. As shown in Table 4, 

time-series data are used to characterise the values 

of each water quality parameter over a period of 

time. 

 

Table 4: Sample Physiochemical Parameter Data Collected from Monitoring Stations 
Date 10/08/2016 25/05/2017 12/10/2018 16/12/2018 23/12/2019 11/12/2019 08/03/2018 15/06/2018 11/08/2018 18/11/2018` 09/02/2018 

Temp 27 26 24 26 22 26 25 27 29 23 22 

pH 7.05 7.34 6.08 7.07 7.12 8.27 7.06 7.82 7.47 7.13 7.74 

Cl 21 21 21 11 13 9 14 33 22 52 19 

COD 4 3.9 4 4 4 4 8 8 16 24 11 

TSS 290 280 310 78 67 70 5 10 28 14 11 

Fluoride 0.12 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.18 0.18 0.18 

Nitrate-

N 
1.10 1.10 1.10 1.00 1.20 1.00 1.20 1.20 1.20 1.20 1.10 

Sodium 27.10 27.10 27.20 27.20 27.00 27.10 27.10 27.00 27.10 27.10 27.10 

TC 88 79.41 160 147 163 295 130 192 155 1700 191 

FC 80 80 80 39 51 18 27 109 56 430 150 

 

3.2 Exploratory Data Analysis and Data Pre-

processing 

The Exploratory Data Analysis (EDA) is applied to 

the river water quality dataset to understand the 

characteristics of the data and to analyse each 

parameter for its importance in determining the 

water quality index.  Various statistical approaches 

such as heatmap, boxplot analysis, pair plot 

analysis and histogram have been used to analyse 

and understand the distribution of parameter 

values. Boxplot analysis shows that conductivity 

and total coliform parameters have a wide range of 

values. Parameter such as conductivity has a range 

from 1 to 1200 and total coliform has a range of 10 

to 2500.   Hence the parameter values are 

standardised to fall within the nominal range of 

each parameter. The min-max normalisation is 

applied to conductivity and total coliform.  

 

The correlation between the parameters such as 

positive correlation and negative correlation is 

analysed by using Pearson correlation and is 

visualised using a heatmap. The parameters such as 

pH, turbidity, FDS, TSS, boron and TC are 

negatively correlated with WQI, which is depicted 

in Fig.2. The box plot analysis of chlorine, 

conductivity, dissolved oxygen and temperature are 

illustrated in Fig.3. 

 

 
Fig 2. Heatmap Analysis Using River Water Data 
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Fig 3. Box-plot Analysis of River Water Quality Data 

 

The analysis results obtained from EDA show that 

the dataset contains 12 instances with missing 

values that need to be removed, so data cleaning is 

carried out. Thus, EDA helps to understand the 

attribute distributions and correlations between 

parameters which provide viable solutions for data 

preparation and data modelling requirements. 

 

3.3. Feature Selection 

Feature selection is a crucial phase in predictive 

modelling in which the appropriate parameters 

which highly contribute to predicting the target 

variable are selected. Here the select K best 

algorithm is used to identify the features which are 

important in determining the water quality index. 

According to the select K best feature selection 

algorithm conductivity has the highest rank in 

estimating the water quality index whereas 

phenolphthalein alkalinity, ammonia, and 

phosphate are in the last ranks. Conductivity, 

phosphate, fluoride, chloride, alkalinity, sulphate, 

hardness, sodium, BOD, potassium, DO, nitrate, 

and coliform, are all important in determining the 

water quality index. From the developed time series 

dataset, three attributes were removed as they have 

no impact on calculating WQI. This feature 

selection method has resulted in improving the 

river water quality dataset which finally consists of 

10560 instances and 28 attributes for building the 

river water quality prediction model. 

 

4. WQI Prediction Model using Deep Learning 

The problem of water quality index prediction is 

formulated as a regression problem and solved 

using deep neural network architectures. Deep 

neural networks use the data inputs, weights and 

bias to accurately describe, classify and 

characterise the data. Deep neural networks have 

numerous layers of interconnected nodes, with two 

layers that are visible serving as the input and 

output layers to enhance prediction. The deep 

learning model consumes the pre-processed data at 

the input layer, and at the output layer, the final 

prediction is made. Large amounts of data can be 

used to train models, and the model gets better as 

more data is added and also high-quality 

predictions when compared to humans. 

The structure proposed to produce the WQI 

prediction model is made up of several basic 

elements, including 1. Collection of data 2. 

Exploratory data analysis and data pre-processing 

3. Constructing the WQI Prediction Model 4. 

Model analysis. The river water samples were 

collected from eleven sampling stations and created 

the river water quality dataset. The water quality 

index was calculated and added to the samples to 

model supervised learning. The exploratory data 

analysis performed on the river water dataset 

suggested a few data pre-processing requirements 

such as normalisation and data cleaning. 

 

WQI prediction models are constructed using deep 

neural network architectures like RNN, LSTM, and 

GRU. Various metrics, such as R2 Score, mean 

absolute error, root mean squared error, and mean 

squared error has been used to evaluate the 

performance of the prediction models. Fig.4 depicts 

the architecture of the proposed WQI prediction 

model. 

 

Recurrent Neural Network Architecture 

Recurrent neural networks are powerful and robust 



Design And Development Of Efficient Water Quality Prediction Models Using Variants Of  

Recurrent Neural Networks Section A-Research Paper 

 

Eur. Chem. Bull. 2023, 12(Special Issue 5), 1210 – 1223  1217 

neural networks which identify patterns in data and 

make predictions based on those patterns. RNNs 

operate on the tenet that the output of one layer is 

saved and fed back into the input to anticipate the 

behaviour of the next layer. RNN is perfect for 

machine learning problems requiring sequential 

input since it has internal memory and uses it to 

recall its output. RNNs are designed to work with 

sequential data and use the previous information in 

the sequence to produce the current output.  Each 

node in RNN layers has the same weights and 

biases. RNNs have issues with short-term memory 

and as a result, it causes a vanishing gradient 

problem. The fundamental challenge for RNN is 

maintaining data consistency across a large number 

of time steps, and in a vanilla RNN, the hidden state 

is constantly being updated. The vanishing gradient 

problem can be overcome using GRU (Gated 

Recurrent Unit) and LSTM (Long Short-Term 

Memory). 

 

Long Short-Term Memory Architecture 

A type of recurrent neural network that has 

extended memory and prevents disappearing 

gradients is known as a long short-term memory 

network (LSTM). A chain of repeating neural 

network modules in recurrent neural networks with 

a very simple structure whereas LSTM it has a 

different structure with four neural networks which 

interact in a special way. The cell state is the key 

component of LSTM, which flows directly down to 

the entire chain with minimal linear interactions. 

Information can easily be transferred along the cell 

state without any modification. The LSTM 

operates entirely on a voluntary basis and can 

change the cell state by adding or withdrawing 

information, which is regulated by gates. The 

LSTM model with large parameters then the model 

requires more memory and more time to train the 

model. The LSTM models are very sensitive to 

different random weight initializations. 

 

Gated Recurrent Unit Architecture 

A Gated recurrent unit is an advancement of the 

standard recurrent neural network and is similar to 

LSTM. Both LSTM and GRU use gates to regulate 

the information flow. By storing prior inputs in the 

internal state of networks and creating target 

vectors from the history of previous inputs, GRU 

can process memories of sequential data. GRU 

replaces the cell state with a hidden state to transfer 

data. Another difference between GRU and LSTM 

is that GRU only has two gates: reset and update. 

The GRU uses update gates and reset gates to solve 

the RNN vanishing gradient problem. The update 

gates help the model to determine how far into the 

future historical data from previous time steps are 

carried forward. Reset gates are used to determine 

how much past information is forgotten. 

The WQI prediction models can be built using deep 

learning architectures such as gated recurrent units, 

long short-term memory and recurrent neural 

networks, the model can be evaluated using the R2 

score, root mean squared error, mean squared error, 

and mean absolute error. 

 

 
Fig 4. The Framework of the Water Quality Prediction Model 

 

Constructing the WQI Prediction Model 

Utilizing the dataset for river water quality, the 

WQI prediction model is developed using several 

deep learning algorithms, including GRU, LSTM, 
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and RNN. Data gathered from various Bhavani 

River monitoring stations are used to construct the 

dataset. To comprehend each parameter and how it 

contributes to the calculation of WQI, exploratory 

data analysis was used for the dataset and 

constructed the river water quality dataset. Data 

normalisation was carried out to parameters such as 

conductivity and total coliform to standardise the 

value and also feature selection using SelectK best 

algorithm to select the important parameters in 

calculating WQI and removed the less ranked 

parameters. After completing the pre-processing, 

the dataset was prepared and divided into 20% of 

data for testing and 80% of data for training. 

The model training involves selecting the optimal 

hyperparameters to improve the efficiency of the 

model in mapping the input features as independent 

variables to the target variable as the dependent 

variable. 

 

Hyperparameters are variables used in model 

building to improve the accuracy and to fine-tune 

the WQI prediction model, the hyperparameters 

used in deep learning architectures are hidden 

layers, dense layers, optimizer, epoch, momentum, 

batch size, activation function and dropout. The 

layers that exist between the input and output layers 

are known as hidden layers. A dense layer is a layer 

in which each layer receives input from all layers 

in the previous and thus, it is densely connected. 

Dense layers improve overall accuracy and the 

range is set to 5 to 10 units. Optimizers are 

techniques used to modify the neural network's 

properties, such as its weights and learning rate, in 

order to minimise losses and address optimization 

issues. The epoch size determines how many 

complete iterations of the dataset must be run. 

Momentum is a special hyperparameter that allows 

the search direction to be determined by the 

accumulation of gradients from prior steps rather 

than just the gradient from the current step. 

Activation functions are used to introduce 

nonlinearity into the model. This allows deep 

learning models to learn nonlinear prediction 

bounds. The activation function can split them into 

different layers and get a reduced output of the 

density layer. The dropout layer improves in 

avoiding overfitting in training by bypassing 

randomly selected layers, limiting sensitivity to 

particular layer weights. The learning rate 

determines the speed at which a deep model 

replaces an already learned concept with a new one. 

The WQI prediction model built using deep neural 

architectures such as GRU, LSTM and RNN have 

been used and hyperparameters are employed to 

improve the efficiency of the model and the 

performance of the models is evaluated. 

 

Model Analysis 

To determine the optimal model, the effectiveness 

of the proposed models in forecasting the water 

quality index is assessed. The performance of the 

WQI prediction models is evaluated using the 

metrics such as R2 score, root mean squared error, 

mean squared error, and mean absolute error. 

The R2 score value determines the accuracy of the 

model. If the R2 score value is high then the model 

is predicting the target variable efficiently and if the 

R2 score is less than 0.5 then the model is not 

predicting accurately. The R2 score can determine 

how much better a regression line is than a mean 

line.  𝑅2𝑠𝑐𝑜𝑟𝑒 = 1 −
𝑠𝑠𝑟

𝑠𝑠𝑛
  , where ssr is the squared 

sum error of the regression line and ssn is the 

squared sum error of the mean line. 

 

The mean absolute error is a straightforward 

statistic for calculating the absolute difference 

between actual and anticipated values. 𝑀𝐴𝐸 =
1

𝑁
∑𝑎𝑏𝑠(𝑌𝑎 − 𝑌𝑏)  , where Ya is the actual output 

value and Yb is the predicted output values. 

 

The square root of the mean squared error is the 

root mean squared error. If the RMSE number is 

large, the model is not an efficient prediction 

model; a lower error rate indicates that the model is 

an efficient model for predicting the target 

variable.𝑅𝑀𝑆𝐸 = √1/𝑛∑(𝑌𝑎 − 𝑌𝑏), 
 

where Ya is the actual output value, Yb is the 

predicted output value and n is the number of data 

points. 

The mean squared error is a popular and concise 

metric with a slight difference from the mean 

absolute error. The squared difference between the 

actual and predicted values is calculated using 

mean squared error. The actual output value is Ya 

and the predicted output value is Yb as depicted, 

𝑀𝑆𝐸 = 1/𝑛∑(𝑌𝑎 − 𝑌𝑏)2, where n is the number 

of data points. 

 

The prediction models are found to be effective 

when the error rate is less with a high R2 score 

value. In this work, the performance of the WQI 

predictive models is evaluated using the above 

metrics with 20% of the dataset as the test set. 

 

5. Experiment and Results 

The experiments have been carried out by training 

the Bhavani River water dataset using deep 

learning algorithms such as GRU, LSTM, and 
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RNN, and implemented using python libraries. The 

training dataset with 80% of the instances of the 

river water dataset covering 8124 tagged samples 

has been used for training the networks. The test set 

with 2009 instances has been used for testing the 

performance of the prediction models and 

evaluated for its efficiency in forecasting the water 

quality using the R2 score, root mean squared error, 

mean squared error, and mean absolute error. 

 

The deep neural architectures GRU, LSTM, and 

RNN are defined with various hyperparameters 

such as dense layer values from 5 to 10 units, 

optimizer as Adam optimizer. The epoch size was 

given as 20, 50,100,150 and 200 epoch size. The 

momentum is set from 0.5 to 0.9, the activation 

functions are defined with both on and off. The 

batch size is fixed as either 32 or 64, the dropout 

unit is 0.2 and the learning rate is 0.1. Various 

hyperparameters used to fine-tune the WQI 

prediction model are shown in Table 5. 

 

Table 5. Hyperparameters Setting 
Hyperparameter Values 

Dense Layer 5to 10 units 

Optimizer Adam 

Epoch 20,50,100,150,200 

Momentum 0.5 to 0.9 

Activation Function On/Off 

Batch size 32, 64 

Dropout 0.2 

Learning rate 0.1 

 

The experimental results with respect to the 

deviation between the predicted values and actual 

values shown by GRU, LSTM, and RNN WQI 

prediction models are illustrated in Fig. 5a,5b and 

5c. 

From the figures, it is found that the deviation 

between the actual values and the predicted values 

in the case of the GRU prediction model is less with 

the threshold value when compared with LSTM 

and RNN. 

 
Fig.5a. WQI LSTM Prediction vs Actual Value Fig.5b. WQI RNN Prediction vs Actual Value 

 

 
Fig 5c. WQI GRU Prediction vs Actual Value 

 

The R2 score value of GRU based WQI prediction 

model shows 0.885 and is high when compared to 

other prediction models. The R2 score value of the 

RNN prediction model yields 0.828 and the LSTM 

prediction model is 0.852 with an epoch size set to 

200 which is illustrated in Fig.6a. 

 

The WQI prediction results showed the least mean 

absolute error value of 0.364 for the GRU 

prediction model with epoch size 200, 0.483 for the 

LSTM prediction model and 0.496 for the RNN 

prediction model. 

 

The regression model results of prediction results 

observed that the root mean squared error value of 

the GRU prediction model trained with epoch size 

200 is 0.348, the LSTM prediction model is 0.5832 

and the RNN prediction model is 0.525. 
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The comparative performance results of the deep 

learning model concerning the metrics mean 

absolute error, root mean squared error and R2 

score variation is illustrated in Fig. 6. 

 

 
Fig. 6. Performance analysis of Deep Learning Prediction Models 

 

The performance of the deep models is also 

compared with traditional machine learning 

algorithms like random forest, linear regression, 

support vector regressor, and MLP regressor. 

 

Regression model prediction results show that the 

GRU prediction model trained with the least mean 

absolute error value with epoch size 200 is 0.364 

and for MLP regressor obtains a 0.714 error value. 

The WQI prediction results showed that the least 

root means squared error value of 0.348 for the 

GRU prediction model with epoch size 200 and the 

MLP regressor acquires a 0.763 error rate. 

 

The WQI prediction models are built using the 

Bhavani River water dataset, comparing the R2 

score value of deep learning prediction models with 

traditional machine learning approaches. It is found 

that GRU based WQI prediction model shows the 

R2 score value as 0.885 and the MLP regressor 

obtains 0.7342. 

 

The results of the prediction models evaluated 

using different metrics such as mean absolute error, 

root mean squared error, mean squared error and 

R2 score are illustrated in Fig.7a, Fig. 7b and Fig.7c 

respectively. 

 
Fig.7a.  MAE of Prediction Models                               Fig. 7b. RMSE for prediction models 
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Fig. 7c. R2 score value of Prediction Models 

 

The GRU-based WQI prediction model yields less 

error rate as compared to all other prediction 

models used in predicting water quality index using 

the river water quality dataset. It is proven from the 

evaluation results that the GRU prediction model 

yields high accuracy and less error rate. The 

comparative performance results of the WQI 

prediction model are shown in Table 6 and the 

comparative performance analysis is illustrated in 

Fig 8. 

 

Table 6: Comparative Performance Results of Water Quality Index Prediction Models 
Models MAE RMSE R2 Score 

LSTM 0.483 0.5832 0.852 

GRU 0.364 0.348 0.885 

RNN 0.496 0.525 0.828 

Linear Regression 0.659 0.698 0.6375 

MLP Regressor 0.714 0.763 0.7342 

Support Vector Regressor 0.763 0.89 0.6132 

Random Forest 0.709 0.793 0.6923 

 
Fig. 8. Performance comparison of Water Quality Index Regression Models 

 

From the comparative performance analysis of 

various WQI predictive models, it is observed that 

deep learning-based WQI prediction models show 

better performance than traditional machine 

learning algorithms. The machine learning 

approach is good for building any predictive 

models like water quality index prediction, but the 

recent deep learning approach improves the 

accuracy of the prediction. More powerful deep 

neural network architectures such as GRU, LSTM 
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and RNN enhance the recognition of the correlation 

between target variables and the set of predictors 

through representation learning.   The training of 

self-learnt features in GRU, LSTM and RNN 

increases the prediction rate of models. The proper 

setting of hyperparameters for training the network 

reduces the error rate of trained models. 

 

The RNN architecture has a gradient vanishing 

problem in optimising the training, due to which 

the error rate shown by the model is higher. The 

GRU models use fewer parameters while training 

and need only less memory to execute, so it is faster 

than LSTM and RNN. The GRU-based WQI 

prediction models perform efficiently and are more 

suitable for time series-based water quality 

datasets. 

 

6.  Conclusion 

This paper demonstrates the implementation of 

water quality prediction using deep neural network 

architectures such as GRU, LSTM and RNN. 

Eleven sampling stations along the Bhavani River 

yielded river water quality data, including 

physicochemical characteristics, latitude and 

longitude were employed in building the WQI 

prediction model. EDA was applied to the river 

water dataset to understand the distribution of data 

and the importance of each water quality parameter 

in predicting WQI.  The deep learning-based WQI 

prediction models have been developed using 

GRU, LSTM, and RNN architectures. The GRU 

prediction model yields high accuracy with less 

error rate as compared to other algorithms in 

predicting WQI. In the future, the model efficiency 

can be improved by adding the seasonal data with 

the existing physio-chemical properties and fine-

tuning the deep learning architecture to predict 

WQI. 
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