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Here we extend a set of earlier articles that dealt with time-dependent irreversible processes across a thin boundary separating a system 

from its surroundings.  The entropy change for irreversible transfers of heat, work, and matter in this compound system is examined for a 

one component condensed phase for which temperature, pressure, and mole numbers are the control variables.  The required fundamental 

relations are collected and evaluated to generate an expression for the entropy change in terms of experimentally determinable variables.  

Contributions to the entropy change from heat exchange, work performance, and material transfer are evaluated for two distinct time-

dependent paths.  While contributions from each element differ for the two cases, the sum of all three elements remains identical for both 

time variations, as is consistent with entropy being a function of state.  The net entropy change upon irreversibly cycling is also assessed. 
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Introduction 

The study of irreversible processes in terms of 
thermodynamic variables1-7 generally involves identifying 
the relevant fluxes and forces, setting up the corresponding 
linear phenomenological equations, and imposing steady 
state conditions to identify the transport coefficient.  This 
method has been broadened over the last 25 years via the so-
called extended thermodynamics approach8-11 that permit 
handling greater departures from equilibrium. One of the 
problems in this latter treatment is the definition under 
nonequilibrium conditions of intensive variables such as 
temperature, pressure, or chemical potential, and the 
specification of the ordinary functions of state, such as 
energy and entropy, well away from equilibrium. 

We base the present paper on earlier work12-19 in which we 
attempt to treat the contribution of heat exchange, work 
performance, and material transfers to entropy changes in 
irreversible processes relative to those executed reversibly.  
In setting up the requisite theory we note that in the 
extended thermodynamics method so far investigated20-24 the 
temperature Θ appropriate for characterizing irreversible 
processes differed from the equilibrium temperature T by no 
more than 10%, and that the difference was frequently 
considerably smaller.   

Accordingly, in the present approach we introduce the use 
of intensive variables appropriate to equilibrium 
configurations, while   investigating   significant  departures  

from equilibrium. Here that method is applied to a one-
component system in the condensed state. 

The system under study consists of a system at 
temperature T, pressure P, and chemical potential  which is 
connected via a thin, porous, moveable boundary layer to an 
enormous reservoir – also called surroundings - whose 
intensive variables are specified by T0, P0, and 0.  The 
setup is shown in Fig. 1 with a superimposed temperature 
profile, which is uniform over virtually the entire extension 
of both the system and the reservoir, and which changes 
abruptly over the length of the junction. A similar profile 
obtains for pressure and chemical potential.  For this 
situation to be applicable, our study is restricted to 
quasistatic irreversible processes (QSIPs): these are 
assumed to occur at a rate that permits the use of intensive 
variables which change uniformly with time t.  In accord 
with standard convention, all processes  within the reservoir 
are assumed to take place reversibly, while T0, P0, and 0 
remain constant. To approach such conditions 
experimentally, the reservoir must be huge in extension, and 
one must deal with systems that are very thin in extension 
and/or for which the relaxation time for establishing 
equilibrium is exceedingly short; alternatively, one must 
surround small, separated regions of the entire system by 
their own reservoirs acting in concert. 

Fundamentals 

In the current study the control variables are temperature T, 
pressure P, and mole number n.  Consider now an 
infinitesimal step in a process involving these variables.  Let 
đ represent the path-dependent differential change in 
entropy S when this step is carried out irreversibly 
(designated as dbS0) as compared to reversibly (designate as 
daS0).  Then  

   đ = dbS0 - daS0.           (1) 
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Fig. 1. Temperature Profile Across a Thin Junction Separating a 
System from its Surroundings in the QSIP Mode of Operation 

For the reversible operation we may set daS0 = - dS(T,P,n), 
so that Eq. (1) reads 

dS(T,P,n) + dS0(T0,P0,n0) = đ.          (2) 

We now set up the differential equations for the energy of 
the system and surroundings, as applicable to reversible 
processes: 

dE(S,V,n) = TdS – PdV + dn         (3a) 

dE0(S0,V0,n0) = T0dS0 – P0dV0 + 0dn0          (3b) 

However, since E and E0 are functions of state, we may 
reconstitute the above so as to apply to irreversible 
processes, by substituting for dS0 from Eq. (2).  

We next invoke energy conservation for the compound 
system by setting dE + dE0 = 0, impose volume conservation 
by setting dV + dV0 = 0, and conservation of material by 
setting dn + dn0 = 0.  Then for a sequence of elementary 
steps we write 

dS = (S/T)dT + (S/P)dP + (S/n)dn        (4a) 

dV = (V/T)dT + (V/P)dP + (V/n)dn,       (4b) 

and introduce the standard Maxwell relation, the heat 
capacity under constant pressure, CP, the isobaric coefficient 
of expansion , and isothermal coefficient of compression  
of the material to obtain by addition of the two energy 
differentials in Eq. (2) the result 

 

T0đ = 
                                                                                                                     

where quantities with the tilde represent the partial molal 
entropy and volume.  Eq. (5) is the fundamental relation 
derived earlier by a different approach16.  

We now introduce the requisite equation of state for 
condensed matter, in which higher order terms are omitted:  

   ( , ) 1V V T P V T T P Pa i i       
  (6) 

where  , .a i iV V T P  Here 



˜ V a  is the molar volume at some 
specified initial pressure Pi and temperature Ti common to 
the system and the reservoir.  However, to simplify the 
subsequent operations we adopt the truncated form 

   , 1 ,V T P V T Pai i    
          

 (7) 

which is permissible since we will show that only the first 
order terms in 



 ˜ V a  and 



 ˜ V a  are encountered in the final 
results.  When Eq. (7) is used in Eq. (5) we may specify đ 
as a sum of three terms: 

    đ = đT + đP + đn,                  (8) 

where 

đT=  

 

đP=  

 

đn=

 

  
 

The last equation requires elaboration. We need to 
determine the molar entropy and enthalpy for the system on 
the assumption that they are independent of mole number n. 
Integration of Eq. (4a) from the initial temperature and 
pressure to any intermediate temperature and pressure 
yields: 

 

 

 

    
 

The same relations obtain for the molar entropy of the 
reservoir, by replacing T and P with T0 and P0 respectively. 

The molar enthalpy is found by utilizing Eq. (7) and the 
caloric equation of state:

                                         

 

 

 

which yields the integrated form: 

 

 

where F(T) is an arbitrary function of temperature, which is 
found by setting (0, ) 3H T RT for a monatomic solid with 
no internal degrees at freedom, which is maintained at 
intermediate temperatures.  When this approximation is 
inserted back into (14), we obtain: 
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The same relation can be used for 



˜ H 0  
by replacing P and 

T with P0 and T0, respectively. Clearly, for later use, the 
above approximation restricts us to a rather narrow 
temperature range. When we insert S(T,P), S0(T0,P0), 



˜ H T ,P ,and 
0

H (T0,P0) into (11), we obtain: 

 

đn = 

 

 

Eqs. (9), (10), and (16) form the basis of all subsequent 
operations. 

Special cases 

To obtain the entropy associated with the above approach 
we must integrate Eq. (8). For this purpose, we specify two 
distinct irreversible processes that  involve:    heat  exchange  

 

 

while the temperature of  the  system  evolves,  execution  of 
work during changes in pressure exerted on the system, and 
the transfer of matter across the boundary.  To that end we 
introduce the time t as a parameter and set T = T(t), P = P(t), 
and n = n(t), while keeping the corresponding intensive 
variables of the reservoir fixed.  We then integrate Eqs. (9), 
(10), and (16) for a time interval 0 < t <  within which the 
system goes from initial temperature Ti, pressure Pi, and 
mole number ni to final values Tf, Pf, and nf.  For 
definiteness we assume that T < T0, P < P0, and n < n0, and 
we also set dT = (dT/dt)dt, dP = (dP/dt)dt, and dn = (dn/dt)dt.  
The resulting integrations are straightforward but tedious. 

Case 1 

Let    , ,
k t k tpTT t T e P t P ei i   and   ,

k tnn t n ei
 

, , ,
k kp nTT T e P Pe n n ei i if f f

k   
   where kT, kP, and 

kn are constants such that  (kP/kn) =  ln (Pf /Pi)/ln(nf /ni),  and  

(kP/kT)  = ln (Pf /Pi)/ln(Tf /Ti), and (kT/kn) = ln (Tf/Ti)/ln(nf /ni).  

Integration of (9), (10), and (16) yields, respectively: 

 

 

 

Case 2 

Case 2 differs from case 1 by the pressure and mole 
number dependence on time.  Let T(t) = TiekTt, as before,  

P(t) = Pi(1 + kPt), and n(t) = ni(1 + knt), so that (kT/kn) = ln 
(Tf/Ti)/(nf/ni – 1), (kT/kP) = ln (Tf/Ti)/(Pf/Pi – 1), (kT/kn) = 
(Pf/Pi – 1)/(nf/ni – 1).  Eqs. (20), (21), and (22) are found in 
the same manner as for case 1: 
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Despite the considerable differences encountered in the 
two cases,  the  total  entropy  change  associated  with (8), 

upon eliminating kn/kP, kn/kT, and kP/kT ratios, leads to 
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The pathway in which the system went from initial to 
final configuration across the boundary was not specified 
in the approximation. Thus, when we initially defined the 
two cases, we set up ratios for Tf/Ti, Pf/Pi, and nf/ni, which 
required kT, kP, kn, and τ to change to fit the specified 
ratios. What (17), (18), and (19) and (20), (21), and (22) 
do is to show the differences in the contributions to the 
overall entropy from the heat evolution, execution of 
work due to pressure changes, and matter transfers across 
the boundary.   

However, the individual contributions in the two cases 
sum to the same final result; this is consistent with 
entropy being a function of state. 

The Cyclic Process 

So far we have considered variations of temperature, 
pressure, and chemical potential only in one direction.  

Also of interest is a cyclic process in which the intensive 
variables of the system are changed in the order Ti  Tf 
 Ti, Pi Pf Pi, and ni  nf  ni.  

To accomplish this, we attach the system to another 
reservoir at temperature T1, pressure P1, and mole number 
n1, in which T1< Ti, P1< Pi, and n1< ni.   

 

While the system interacts with reservoir 0, reservoir 1 
remains sealed off, and vice versa. The interaction with 
the reservoir for the return process is handled by 
reversing the indices i and f and replacing subscript 0 by 
subscript 1 in (23).  When this newly generated 
expression is added to (23), one obtains for the cyclic 
process: 

 

24) 

 

Discussion 

Close examination of Eq. (23) shows the following: In 
accord with past experience14,19 this end result is 
independent of the time protocol that had been selected. 
Mathematically this is  related  to  the  fact  that  the  right 
hand side of Eq. (1) involves a difference in two functions 
of state. The present analysis shows, however, how the 
individual contributions T, P, and n depend on the 
selected time dependence of the control variables. 

One should note that the quantity 



˜ V a  does not appear in 
the above relation; only the first order terms 



 ˜ V a  and 



 ˜ V a are encountered in Eqs. (23) and (24).  Going back 
to Eq. (10), this implies that changes of pressure exert 
only a secondary effect on the properties of the system.  
Effectively, in zero order, the material is incompressible.  
It is for this reason that Eq. (7) rather than (6) could be 
used in the derivations. 

The leading term in Eq. (23) is of the form  
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When there is no transfer of material, nf = ni  n, the 
above reduces to  
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Numerical calculations reveal that for ratios Tf/Ti < 2 
(with Ti < Tf) the above quantity is positive.  If 
additionally there is no temperature difference between 
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This is reasonable, given the fact that when T and P are 
uniform throughout the compound system, the transfer of 
essentially incompressible material incurs no changes in 
entropy (in the approximation of Eq. (7)). In the range 
Tf/Ti > 2 the calculations involving (25) and (26) become 
increasingly unreliable, which indicates that the 
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approximation ,3
~

RCP   adopted earlier, has failed, as 
was is to be expected. One may extend the present 
approach by adopting the Debye theory for the heat 
capacity of monatomic solids to replace the current 
approximation. 

It is instructive to note how Eqs. (23) and (24) differ.  
The cyclic process refers only to what goes on in the 
system.  In actuality, heat, work, and material are 
transferred from the reservoir at temperatureT0 to the one 
at temperature T1. This is reflected in the difference 
between the leading terms in the two equations. 

The first order terms may all be grouped into 
contributions 

aV
~

  and 
aV

~
  associated with the thermal 

expansion and compressibility of the condensed phase 
respectively. These terms are small relative to the leading 
expressions that involve the gas constant R. 

If desired, one may determine dbS0 = - dS + đθ, using 
Eqs. (4), (9), (10), and (16) to determine the entropy 
change of the reservoir in response to the irreversible 
processes occurring in the system. 

Conclusions 

In conclusion, we have considered the transfer of heat, 
work, and mass across a thin junction separating a system 
from the reservoir under conditions where the intensive 
variables in the two portions of the combined unit are 
different. The principal restriction of the study of the 
irreversible processes is the adoption of QSIPs, so that the 
intensive variables still retain their meaning even under 
nonequilibrium conditions. The resulting changes in state 
were studied by using time t as a parameter to 
characterize the processes.  As anticipated, in the two 
cases studied, the entropy change is independent of the 
time protocol involved; the same should hold true for any 
other chosen time protocol. However, the individual 
contribution to the total entropy, i.e., the contributions 
due to heat flow, work exchange, and mass transfer do 
depend on the chosen path. 
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