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This paper reports the density of states (DOS) of chiral (4,1), armchair (4,4), and zigzag ((4,0) single-walled carbon nanotubes (SWCNTs) 

by using ab-initio Density Functional Theory (DFT). Our simulation results show the distinguishable features of three types of CNTs in 

terms of density of states (DOS), so that they can be fully exploited in nano-devices. The results are helpful for studying the working 

principles of the CNT-based electronic devices and designing new ones. 
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Introduction 

Among one-dimensional nanostructures carbon nanotubes 
(CNTs)1,2 are the most explored one and have attracted 
tremendous interest from both fundamental science and 
technological perspectives. CNT is a rolled one atom thick 
layer called graphene, where the length of the tube is larger 
than the tube diameter.3 These nanostructures are 
topologically simple and exhibit a rich variety of intriguing 
electronic properties such as metallic and semiconducting 
behaviour.3,4 Furthermore, these structures are atomically 
precise, meaning that each carbon atom is still three-fold 
coordinated without any dangling bonds. CNTs show a wide 
range of applications in the area of electronic, optics, 
medical, mechanics, and in many other industrial areas.5-11 
Therefore, much attention has been given to the 
investigation of their electrical, vibrational and thermal 
properties of CNTs.12-16 

The electronic transport properties of two-probe system of 
heterojunction formed by an (8, 0) CNT and an (8, 0) silicon 
carbide nanotube (siCNT) has been reported Liu et al.,17 
whereas Anders Blom et al.18 investigated the InAs p-i-n 
junction and calculated the transport characteristics of the 
system using two different approaches. In this work, we 
calculated the density of states (DOS)of chiral, armchair and 
zigzag SWCNTs by using density function (DFT) 
calculation of atomistic toolkit (ATK) software.  

Results and Discussions  

The carbon–carbon bond lengths of the simulated (4,1), 
(4,4) and (4,0) carbon nanotube structures are taken as 1.423 
Å whereas the lengths of the central regions of the simulated 
sections are taken as 3 periods. The geometries of the 
simulated structures are shown in Figure 1a-1c. 
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Figure 1. Geometrical structure of (a) (4,1) CNT (b) (4,4) CNT 
and (c) (4,0) CNT. 
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Figure 2.Density of states (DOS) for (a) (4,1) CNT (b) (4,4) CNT 
and (c) (4,0) CNT. 

The DFT simulation parameters are selected to be the 
following: mesh cut-off energy is taken as 150 Ry, basis set 
is double zeta polarized with 0.001 Bohr radial sampling. 
Brillouin zone integration parameters of electrodes are taken 
as (1,1,1) and electrode temperature 300 K. These 
parameters are chosen to provide accurate results as reported 
earlier.19 In DFT simulations, the electrodes are assumed to 
be repeated infinitely in the transport direction and to have 

bulk-like properties. The length of the electrodes is thus 
chosen to be sufficiently long to ensure that there is no 
interaction between the central region and the repeated 
images of the electrodes. The basis sets used the single-zeta 
polarized (SZP), and the double-zeta polarized (DZP).20,21 
The DZP is the mostly complete basis set we used, and 
therefore the one that best predicts the ground state of the 
system.21 

To understand the localization of electrons near the Fermi 
level, we have plotted the density of states profile of the 
three proposed models using the ATK-DFT. 22 ATK-DFT is 
based on density functional theory and applies a local 
atomic orbital (LAO) basis set and Perdew, Burke and 
Enrzenhofer parameterization of generalized gradient 
approximation (GGA).23The DOS profile of chiral (4,1) 
CNT is shown in Figure 2(a), whereas the DOS profile of 
armchair (4,4) CNT and zig-zag (4,0) CNT is shown in 
Figure 2b and Figure 2c respectively. Figure 2 shows that all 
these three structures have a distinct DOS in longer energy 
ranges.   

Conclusions 

In this study, three SWCNT geometries were simulated 
using DFT of Atomistic Tool Kit (virtual nanolab) to 
investigate their distinguishable density of states (DOS) in 
long energy range. The DOS near the Fermi level in case of 
chiral and armchair nanotubes are very close to each other 
which is not the case for zig-zag nanotube. Therefore this 
study clarifies the theoretical aspects of CNTs so that they 
can be fully explored in the future electronic industry.  
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