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Abstract 

 

Aim: The main aim of the research work is to create and build a novel fraud detection approach for Streaming 

Transaction Data, with the goal of analyzing historical customer transaction details and extracting behavioural 

patterns. Cardholders are divided into groups based on the volume of their transactions.  

Materials and Methods: The categorizing is performed by adopting a sample size of n = 10 in K-Nearest 

Neighbour  and sample size n = 10 in Gaussian Naive Bayes algorithms with G power in 80% and threshold 0.05%, 

CI 95% mean and standard deviation . For the implementation, the FraudTest dataset was used.  

Results : The analysis of the results shows that the K-Nearest Neighbor  has a high accuracy of (99.53) in 

comparison with Gaussian Naive Bayes algorithm (81.95). There is a statistically significant difference between the 

two groups with value p=0.005 (p< 0.05).  

Conclusion: The results show that the K-Nearest Neighbor algorithm for detecting fraud in credit card transactions 

appears to generate better accuracy than Gaussian Naive Bayes algorithm. 
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1. Introduction 
 

The purpose of the research work is to design and 

develop a novel fraud detection method for 

Streaming Transaction Data, to extract the 

behavioural patterns of customers by analyzing 

customers previous transaction records (Li et al. 

2021). Credit card can be defined as a  card that is 

given to customers by the banks which allows them 

to make payments within the credit limit and the 

customers  can also withdraw cash in advance, for 

which they have to repay the bank within a given 

time. Credit card fraud can be defined as a fraud 

committed during the payment using this card. Credit 

card fraud can also lead to identity theft. This project 

is to propose a credit card fraud detection system 

using supervised learning algorithms (Dal Pozzolo et 

al. 2018). Credit card fraud can be done in a variety 

of ways. Fraudsters are highly skilled and quick-

thinking individuals. This study uses the traditional 

approach to identify Application Fraud, which occurs 

when a person provides false information about 

himself in order to obtain a credit card. There's also 

unlawful use of Lost and Stolen Cards, which 

accounts for a sizable portion of credit card fraud 

(Dal Pozzolo et al. 2018; Seeja and Zareapoor 2014). 

The number of legitimate streaming transaction data 

greatly outnumbers the number of fraudulent 

transactions. To reduce their losses, banks and 

financial institutions have turned to novel fraud 

detection methods. Fraud detection systems can be 

used to detect fraudulent transactions in a variety of 

industries (Borzykowski 2013). 

There are around 35 IEEE, Sciencedirect, Springer 

articles, and 30 Google scholar papers published in 

this domain over the past few years. For fraud 

detection, a variety of supervised and semi-

supervised machine learning approaches are applied 

(Lamba 2020). However, we want to address three 

major issues with the card fraud dataset: severe class 

imbalance, the inclusion of labelled and unlabelled 

samples, and the ability to handle a large number of 

transactions. To detect fraudulent transactions in real-

time datasets, several Supervised machine learning 

methods such as Decision Trees, Naive Bayes 

Classification, Least Squares Regression, Logistic 

Regression, and SVM are utilized. To train the 

behavioural aspects of normal and aberrant 

transactions, two approaches under random forests  

are utilized. Even while random forest produces 

decent results on small sets of data, it has certain 

issues when dealing with unbalanced data (Goyal and 

Sharma 2020). Potential fraud instances must be 

recognised in real time and labelled before the 

transaction is allowed or rejected, which is a typical 

uncertain domain. The incorporation of uncertainty 

aspects has an impact on an event processing engine's 

architecture and logic at all levels (Dal Pozzolo et al. 

2018). The goal of this research is to develop a 

reliable and thorough deception financial detection 

model. The number of internet transactions has 

increased dramatically in recent years. Credit card 

transactions account for a significant share of these 

transactions. On the other hand, the growth of 

internet fraud is remarkable, which is mostly due to 

everyone's easy access to cutting-edge technology 

(Seeja and Zareapoor 2014). When compared to 

previous transactions made by the customer, card 

transactions are always unfamiliar. In the actual 

world, this unfamiliarity is known as concept drift 

problems, and it is a challenging problem to solve. 

Concept drift is a variable that evolves over time and 

in unexpected ways. This allows for the flexible 

design of event-driven systems with uncertainty 

characteristics from various domains. A first 

application was created in the field of detecting credit 

card fraud. Our preliminary findings are positive, 

indicating that adding uncertainty factors into the 

area of credit card fraud detection can result in 

significant gains (Baesens, Verbeke, and Van 

Vlasselaer 2015). 

Our institution is passionate about high quality 

evidence based  research and has excelled in various 

domains (Vickram et al. 2022; Bharathiraja et al. 

2022; Kale et al. 2022; Sumathy et al. 2022; 

Thanigaivel et al. 2022; Ram et al. 2022; Jothi et al. 

2022; Anupong et al. 2022; Yaashikaa, Keerthana 

Devi, and Senthil Kumar 2022; Palanisamy et al. 

2022).Based on the literature survey,  the methods 

utilized in prior articles produce less accurate 

outcomes. Previous studies used a smaller number of 

transactions to train the system, making it less 

efficient than the existing systems. The addition of 

more transactions improved the suggested systems 

efficiency. The project's purpose is to build and 

develop a novel fraud detection approach for 

Streaming Transaction data that analyses customers' 

historical transaction details and extracts behavioural 

patterns using the K-Nearest Neighbour algorithm. 

 

2. Materials and Methods  
  

The research work was performed in the OOAD Lab, 

Department of Computer Science and Engineering, 

Saveetha School of Engineering, Saveetha Institute of 

Medical and Technical Sciences, Chennai. Basically 

it is considered that two groups of classifiers are 

used, namely K-Nearest Neighbour and Gaussian 
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Naive Bayes algorithms, which are used to classify 

the fraud in credit card transactions. Group 1 is the 

K-Nearest Neighbour algorithm with the sample size 

of N=10 and the Gaussian Naive Bayes algorithm is 

group 2  with sample size of  N=10 and they are 

compared for more accuracy score and precision 

score values for choosing the best algorithm (Goyal 

and Sharma 2020).  

The Pre- test analysis has been prepared using 

clinical.com by having a G power of 80% (Verma 

and Verma 2017) and threshold 0.05%, CI 95% mean 

and standard deviation. The fraudTest dataset was 

used in the study. This dataset was taken from the 

kaggle open source website. The K-Nearest 

Neighbour algorithm was chosen for implementation 

in this study, and it was compared to Gaussian Naive 

Bayes algorithm. 

 

K-Nearest Neighbour 

In comparison to other supervised statistical pattern 

recognition fraud detection strategies, this is a 

supervised learning methodology that consistently 

produces good performance. Distance to find the 

least distant neighbours, some criterion to deduce a 

categorization from k-nearest neighbour, and the 

count of neighbours to label the new sample are three 

important aspects that influence its performance. This 

technique classifies any streaming transaction data by 

computing the transaction's least remote neighbour, 

and if that neighbour is tagged as fraudulent, the new 

transaction is likewise labelled as fraudulent. In this 

circumstance, Euclidean distance is a solid choice for 

calculating distances. This method is quick and 

produces fault alerts. Distance metric adjustment can 

help it perform better. 

 

Algorithm for K-Nearest Neighbour 

Step 1:scaler = RobustScaler() 

Step 2: X_train = scaler.fit_transform(X_train) 

Step 3: X_test = scaler.transform(X_test) 

Step 4: param_grid = {'n_neighbors': range(1,20)} 

Step 5: clf = 

RandomizedSearchCV(KNeighborsClassifier(), 

param_grid) 

Step 6: clf.fit(X_train,y_train) 

Step 7: clf_pred = clf.predict(X_test) 

Step 8: from sklearn.model_selection import 

cross_val_score 

Step 9: scores = 

cross_val_score(clf,X_train,y_train,cv=10) 

Step 10: print("accuracy scores",scores*100) 

Step 11:Stop 

 

Gaussian Naive Bayes 

The Bayes Theorem is used in this technique to 

compute the probability of a hypothesis and 

determine whether it is true or false. A classifier is 

used to calculate conditional probabilities for all 

possible classes and then place it in the class with the 

highest conditional probability for a given value of X. 

It is graphically represented as an acyclic directed 

graph, in which the samples are represented by the 

nodes of the graph and the dependencies between 

them are reflected by the directed edges. If there are 

no connecting edges between two variables, they are 

said to be independent. It also offers the joint 

probability distribution a specification and 

factorization. 

 

Algorithm for Gaussian Naive Bayes 

Step 1: gnb = GaussianNB() 

Step 2: gnb.fit(X_train,y_train) 

Step 3: gnb_pred = gnb.predict(X_test) 

Step 4: from sklearn.model_selection import 

cross_val_score 

Step 5: scores = 

cross_val_score(gnb,X_train,y_train,cv=10) 

Step 6: print("accuracy scores",scores*100) 

Step 7: print(confusion_matrix(y_test,gnb_pred)) 

Step 8: print(classification_report(y_test,gnb_pred)) 

Step 9:Stop 

 

The data collection of this research topic, detection 

and no detection data are observed, collected, and 

stored as a dataset. With the help of the device and 

the data, find the accuracy from the statistics tool or 

software. 

The testing setup has all the components to do our 

test process. The testing setup has 2 types of 

configurations, Hardware configuration, and 

Software configuration. The Hardware configurations 

include Intel core i3 5th generation processor, 8 GB 

RAM (Random Access Memory), 64-bit Windows 

OS. The software configuration includes Windows 

OS. The language which is used to code the program 

is Python language. 

 

Statistical Analysis 

IBM SPSS v23 is used for statistical analysis. The 

independent sample t-test calculation for analyzing 

equal variance, standard error, and levene's test are 

evaluated. The independent data sets are transaction 

id,cardholder id. The dependent values are amount, 

date, time. The independent T-test analysis is 

performed. 

 

3. Results 
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K-Nearest Neighbour  is classified as a better 

algorithm because it has high output efficiency than 

Gaussian Naive Bayes. K-Nearest Neighbour proved 

with better accuracy than Gaussian Naive Bayes. 

Analysis of accuracy rate is done by varying the size 

of the datasets in Table 1.  Table 2. shows the 

findings of the group statistics on all data variables 

with the count of N=10 and it calculates the mean, 

standard deviation, and standard error mean.Because 

it uses the clustering trick as a transformation 

approach, K-Nearest Neighbour (99.53)  acquire 

superior accuracy and standard deviation when 

compared to Gaussian Naive Bayes (81.95). As a 

result of these transformations, it obtains the best 

boundary between the viable outcomes. Because of 

the relevance of equality of variance, the probability 

value states that the results in the research effort are 

significant and correlated with each other, the table 

demonstrates the difference in accuracy of both KNN 

and Gaussian Naive Bayes.The accuracy comparison 

of KNN and Gaussian Naive Bayes algorithms is 

shown in Fig. 1. The results of the independent 

sample t-test are shown in Table 3. Because of its 

efficient classification feature based on the clustering 

trick, the algorithm outperforms the Gaussian Naive 

Bayes algorithm. 

 

4. Discussion   

 

In this study, it was discovered that the K-Nearest 

Neighbour algorithm outperforms existing Gaussian 

Naive Bayes algorithm with an accuracy of 99.53% 

due to the consideration of more number of 

transactions, whereas existing Gaussian naive bayes  

consider less transactions (81.95%). The existing 

system  considers less transactions, but the suggested 

method considers more number of transactions. 

The authors investigated the effectiveness of 

classification models in detecting credit card fraud 

and offered three classification models: decision tree, 

neural network, and logistic regression. The neural 

network and logistic regression outperform the 

decision tree among the three models (Seeja and 

Zareapoor 2014). Following a review of Bayesian 

theory, the nave bayes classifier and k-nearest 

neighbour classifier are implemented and applied to 

the credit card system dataset. Data mining 

applications, automated fraud detection, and 

adversarial detection are among the strategies used in 

this domain, according to a comprehensive survey . 

Another article discussed credit card fraud detection 

approaches such as Supervised and Unsupervised 

Learning. Despite their unexpected success in some 

areas, these methods and algorithms failed to provide 

a long-term and consistent answer to fraud detection 

(Jurgovsky 2019). The research was cited for credit 

card fraud detection, and seven categorization 

algorithms were applied. To reduce the risk of the 

banks, they used decision trees and SVMs in this 

study (Dal Pozzolo et al. 2018). Artificial Neural 

Networks and Logistic Regression Classification 

Models are more useful in improving fraud detection 

ability, according to them. A similar study domain 

was reported in which they employed Outlier mining, 

Outlier detection mining, and Distance sum 

algorithms to accurately forecast fraudulent 

transactions in an emulation experiment of credit card 

transaction data from a single commercial bank 

(Goyal and Sharma 2020). There have also been 

attempts to move forward from an entirely other 

perspective. In the event of a fraudulent transaction, 

efforts have been made to improve the alert feedback 

interaction (Dorronsoro et al. 1997)). In the event of a 

fraudulent transaction, the authorized system will be 

notified, and a response will be delivered to refuse 

the current transaction. In the event of a fraudulent 

transaction, the authorized system will be notified, 

and a response will be delivered to refuse the current 

transaction (Borzykowski 2013). 

Despite the fact that the suggested KNN algorithm 

outperformed the previous approach,this study has a 

few shortcomings. To improve the accuracy of the 

suggested technique, it might be evaluated on a real 

time dataset rather than an existing dataset. To 

achieve more efficient outcomes, this system can be 

implemented utilizing a variety of existing machine 

learning methods. 

 

5. Conclusion 

 

Credit card fraud detection system was successfully 

developed . The current study focused on machine 

learning algorithms, KNN over gaussian naive bayes 

for higher classification in detecting fraud. It can be 

slightly improved based on the random data sets 

analysis in future. The outcome of the study shows 

KNN 99.53%  has higher accuracy than Gaussian 

Naive Bayes 81.95%.   
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Tables and Figures  
 

Table 1. Comparing accuracy values with the different sample sizes. It Represents the malicious activities in credit 

card transactions, the accuracy of  KNN (99.53), and the GNB algorithm (81.95). 

S.No. 
K-Nearest Neighbour 

Accuracy(%) 

Gaussian Naive Bayes 

Accuracy(%) 

1 99.27 81.71 

2 99.35 81.98 

3 99.39 83.05 

4 99.31 82.47 

5 99.09 82.84 

6 99.41 82.40 

7 99.30 82.39 

8 99.52 82.32 

9 99.50 81.95 

10 99.40 81.68 

 

Table 2. Group Statistics of K-nearest neighbor with Gaussian naive bayes  by grouping the iterations with Sample 

size 10,  Mean = 99.3540 , Standard Derivation = .12340 , Standard Error Mean = 0.03902. Descriptive Independent 

Sample Test of Accuracy and Precision is applied for the dataset in SPSS. Here it specifies Equal variances with and 

without assuming a T-Test Score of two groups with each sample size of 10. 

    Algorithm         N      Mean  Std.Deviation 
 Std.Error                 

Mean 

  Accuracy     KNN         10    99.5340    .12340    .03902 

     GNB         10    81.9530     .41625    .13163 

 

Table 3. Independent Samples T-test for accuracy of KNN shows significance value achieved is p=0.005 

(p<0.05), which shows that two groups are statistically significant. Mean Difference = 17.07500 and 

confidence interval = (.14876- 16.76248). 

  
Levene’s Test 

for Equality of 

Variances 

                          t -test for Equality of Means 
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Fig. 1. Comparison of KNN over GNB in terms of mean accuracy. It explores that the mean accuracy (99.53) is 

better than GNB (81.95) and the standard deviation is moderately improved KNN slightly lower than the GNB. 

Graphical representation of the bar graph is plotted using groupid as X-axis KNN vs GNB, Y-Axis displaying the 

error bars with a mean accuracy of detection +/- 2 SD. 

 

 

 


