
Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4574

IMPLEMENTATION OF INTEGER DCT

ARCHITECTURES FOR HEVC IN FPGA

TECHNOLOGY

Anam Srinivas Reddy1*, K Rammohan Rao2, Ch Anjan Kumar3, B Madhukar4

Abstract:
High Efficiency Video Coding (HEVC) inverse transform for residual coding uses 2-D 4x4 to 32x32

transforms with higher precision as compared to H.264/AVC’s 4x4 and 8x8 transforms resulting in an

increased hardware complexity. In this paper, an energy and area-efficient VLSI architecture of an HEVC-

compliant inverse transform and dequantization engine is presented. We implement a pipelining scheme to
process all transform sizes at a minimum throughput of 2 pixel/cycle with zero-column skipping for

improved throughput. We use data-gating in the 1-D Inverse Discrete Cosine

Transform engine to improve energy-efficiency for smaller transform sizes. A high-density SRAM-based
transpose memory is used for an area-efficient design. This design supports decoding of 4K Ultra-HD

(3840x2160) video at 30 frame/sec. The inverse transform engine takes 98.1 kgate logic, 16.4 kbit SRAM

and 10.82 pJ/pixel while the dequantization engine takes 27.7 kgate logic, 8.2 kbit SRAM and 1.10 pJ/pixel

in 40 nm CMOS technology. Although larger transforms require more computation per coefficient, they
typically contain a smaller proportion of non-zero coefficients. Due to this trade-off, larger transforms can be

more energy-efficient.

Keywords- HEVC, Inverse Discrete Cosine Transform, Transpose Memory, Data Gating.

1*Assistant Professor, Department of Electronics and Communication Engineering, Pallavi Engineering

College, Hayathnagar_Khalsa, Hyderabad, Telangana 501505
2 Associate Professor, Department of Electronics and Communication Engineering, Sri Indu College of
Engineering and Technology, Hyderabad , Telangana
3Assistant Professor, Department of Electronics and Communication Engineering, Pallavi Engineering

College, Hayathnagar_Khalsa, Hyderabad, Telangana 501505

4Assistant Professor, Department of Electronics and Communication Engineering, Pallavi Engineering
College, Hayathnagar_Khalsa, Hyderabad, Telangana 501505

DOI:10.53555/ecb/2022.11.12.430

Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4575

I. Introduction

The High Efficiency Video Coding (HEVC)
standard is the most recent joint video project of

the ITU-T Video Coding Experts Group (VCEG)

and the ISO/IEC Moving Picture Experts Group
(MPEG) standardization organizations, working

together in a partnership known as the Joint

Collaborative Team on Video Coding (JCT-VC)

[1]. The first edition of the HEVC standard is
expected to be finalized in January 2013, resulting

in an aligned text that will be published by both

ITU-T and ISO/IEC. Additional work is planned
to extend the standard to support several

additional application scenarios, including

extended-range uses with enhanced precision and
color format support, scalable video coding, and

3-D/stereo/multiview video coding. In ISO/IEC,

the HEVC standard will become MPEG-H Part 2

(ISO/IEC 23008-2) and in ITU-T it is likely to
become ITU-T Recommendation H.265.

Video coding standards have evolved primarily

through the development of the well-known ITU-
T and ISO/IEC standards. The ITU-T produced

H.261 [2] and H.263 [3], ISO/IEC produced

MPEG-1 [4] and MPEG-4 Visual [5], and the two
organizations jointly produced the H.262/MPEG-2

Video [6] and H.264/MPEG-4 Advanced Video

Coding (AVC) [7] standards. The two standards

that were jointly produced have had a particularly
strong impact and have found their way into a

wide variety of products that are increasingly

prevalent in our daily lives. Throughout this
evolution, continued efforts have been made to

maximize compression capability and improve

other characteristics such as data loss robustness,

while considering the computational resources that
were practical for use in products at the time of

anticipated deployment of each standard.

The Discrete cosine transform (DCT) plays a vital
role in video compression due to its near-optimal

de correlation efficiency [1]. Several variations of

integer DCT have been suggested in the last two
decades to reduce the computational complexity.

The new H.265/High Efficiency Video Coding

(HEVC) standard has been recently finalized and

poised to replace H.264/AVC [8]. Some hardware
architectures for the integer DCT for HEVC have

also been proposed for its real-time

implementation. Ahmed et al. [9] decomposed the
DCT matrices into sparse sub-matrices where the

multiplications are avoided by using the lifting

scheme. Shenet al used the multiplier less multiple
constant multiplication (MCM) approach for four-

point and eight-point DCT, and have used the

normal multipliers with sharing techniques for 16

and 32-point DCTs. Park et al. [11] have used
Chen’s factorization of DCT where the butterfly

operation has been implemented by the processing

element with only shifters, adders, and
multiplexors. Budagavi and Sze [12] proposed a

unified structure to be used for forward as well as

inverse transform after the matrix decomposition.
One key feature of HEVC is that it supports DCT

of different sizes such as 4, 8, 16, and 32.

Therefore, the hardware architecture should be

flexible enough for the computation of DCT of
any of these lengths. The existing designs for

conventional DCT based on constant matrix

multiplication (CMM) and MCM can provide
optimal solutions for the computation of any of

these lengths, but they are not reusable for any

length to support the same throughput processing
of DCT of different transform lengths.

Considering this issue, we have analyzed the

possible implementations of integer DCT for

HEVC in the context of resource requirement and
reusability, and based on that, we have derived the

proposed algorithm for hardware implementation.

We have designed scalable and reusable
architectures for 1-D and 2-D integer DCTs for

HEVC that could be reused for any of the

prescribed lengths with the same throughput of
processing irrespective of transform size.

II. HEVC Coding Design and Feature

Highlights
The HEVC standard is designed to achieve

multiple goals, including coding efficiency, ease

of transport system integration and data loss
resilience, as well as implementability using

parallel processing architectures. The following

subsections briefly describe the key elements of

the design by which these goals are achieved, and
the typical encoder operation that would generate

a valid bitstream.

A. Video Coding Layer

The video coding layer of HEVC employs the

same hybrid approach (inter-/intrapicture
prediction and 2-D transform coding) used in all

video compression standards since H.261. Fig. 1

depicts the block diagram of a hybrid video

encoder, which could create a bitstream
conforming to the HEVC standard.

An encoding algorithm producing an HEVC

compliant bit stream would typically proceed as
follows. Each picture is split into block-shaped

regions, with the exact block partitioning being

conveyed to the decoder. The first picture of a
video sequence (and the first picture at each clean

random access point into a video sequence) is

coded using only intra picture prediction (that uses

some prediction of data spatially from region-to-
region within the same picture, but has no

Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4576

dependence on other pictures). For all remaining

pictures of a sequence or between random access
points, interpicture temporally predictive coding

modes are typically used for most blocks. The

encoding process for inter picture prediction
consists of choosing motion data comprising the

selected reference picture and motion vector (MV)

to be applied for predicting the samples of each

block. The encoder and decoder generate identical
inter picture prediction signals by applying motion

compensation (MC) using the MV and mode

decision data, which are transmitted as side
information.

The residual signal of the intra- or interpicture

prediction, which is the difference between the
original block and its prediction, is transformed by

a linear spatial transform. The transform

coefficients are then scaled, quantized, entropy

coded, and transmitted together with the
prediction information. The encoder duplicates the

decoder processing loop (see gray-shaded boxes in

Fig. 1) such that both will generate identical
predictions for subsequent data. Therefore, the

quantized transform coefficients are constructed

by inverse scaling and are then inverse
transformed to duplicate the decoded

approximation of the residual signal. The residual

is then added to the prediction, and the result of

that addition may then be fed into one or two loop
filters to smooth out artifacts induced by block-

wise processing and quantization. The final

picture representation (that is a duplicate of the
output of the decoder) is stored in a decoded

picture buffer to be used for the prediction of

subsequent pictures. In general, the order of

encoding or decoding processing of pictures often
differs from the order in which they arrive from

the source; necessitating a distinction between the

decoding order (i.e., bitstream order) and the
output order (i.e., display order) for a decoder.

Video material to be encoded by HEVC is

generally expected to be input as progressive scan
imagery (either due to the source video originating

in that format or resulting from deinterlacing prior

to encoding). No explicit coding features are

present in the HEVC design to support the use of
interlaced scanning, as interlaced scanning is no

longer used for displays and is becoming

substantially less common for distribution.
However, a metadata syntax has been provided in

HEVC to allow an encoder to indicate that

interlace-scanned video has been sent by coding
each field (i.e., the even or odd numbered

lines of each video frame) of interlaced video as a

separate picture or that it has been sent by coding

each interlaced frame as an HEVC coded picture.
This provides an efficient method of coding

interlaced video without burdening decoders with

a need to support a special decoding process for it.

Fig. 1. Typical HEVC video encoder (with

decoder modeling elements shaded in light gray).

III. Algorithm for Hardware Implementation

of Integer DCT for HEVC:

In the Joint Collaborative Team-Video Coding

(JCT-VC), which manages the standardization of
HEVC, Core Experiment 10 (CE10) studied the

design of core transforms over several meeting

cycles. The eventual HEVC transform design
involves coefficients of 8-bit size, but does not

allow full factorization unlike other competing

proposals. It however allows for both matrix

multiplication and partial butterfly
implementation. In this section, we have used the

partial-butterfly algorithm of for the computation

of integer DCT along with its efficient algorithmic
transformation for hardware implementation.

A. Key Features of Integer DCT for HEVC
TheN-point integer DCT 1 for HEVC given by

[14] can be computed by a partial butterfly

approach using a (N/2)-point DCT and a matrix–

vector product of (N/2)×(N/2) matrix with an
(N/2)-point vector as

and

Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4577

where

for i=0,1,···,N/2−1.X=[x(0),x(1),···,x(N−1)] is the
input vector andY=[y(0),y(1),···,y(N−1)] isN-

point DCT of X. CN/2 is (N/2)-point integer DCT

kernel matrix of size (N/2)×(N/2).MN/2 is also a

matrix of size (N/2)×(N/2) and its (i, j)th entry is
defined as

Where C2i+1,j

N is the (2i +1,j)th entry of the matrix
CN.Note that (1a) could be similarly decomposed,

recursively, further using CN/4 and MN/4.

B. Hardware Oriented Algorithm
Direct implementation of (1) requiresN2/4 +

MULN/2 multiplications,N2 /4+N/2 + ADDN/2

additions, and 2 shifts where MULN/2and

ADDN/2are the number of multiplications and
additions/subtractions of (N/2)-point DCT,

respectively.

Computation of (1) could be treated as a CMM
problem [15]–[17]. Since the absolute values of

the coefficients in all the rows and columns of

matrix Min (1b) are identical, the CMM problem
can be implemented as a set ofN/2 MCMs that

will result in a highly regular architecture and will

have low-complexity implementation. The kernel

matrices for four-, eight-, 16-, and 32-point integer
DCT for HEVC are given in [14], and 4- and

eightpoint integer DCT are represented,

respectively, as

and

Based on (1) and (2), hardware oriented

algorithms for DCT computation can be derived in
three stages as in Table I. For 8-, 16-, and 32-point

DCT, even indexed coefficients of

[y(0),y(2),y(4),···y(N−2)] are computed as 4-, 8-,

and 16-point DCTs of
[a(0),a(1),a(2),···a(N/2−1)],respectively,

according to (1a). In Table II, we have listed the

arithmetic complexities of the reference algorithm
and the MCM-based algorithm for four-, eight-,

16-, and 32-point DCT. Algorithms for Inverse

DCT (IDCT) can also be derived in a similar way.

Proposed Architectures for Integer DCT

Computation:

A. Proposed Architecture for Four-Point
Integer DCT:

The proposed architecture for four-point integer

DCT is shown in Fig. 1(a). It consists of an input
adder unit (IAU), a shift-add unit (SAU), and an

output adder unit (OAU). The IAU

computesa(0),a(1),b(0), andb(1) according to

STAGE-1 of the algorithm as described in Table I.
The computations of ti,36 and ti,83 are performed

by two SAUs according to STAGE-2 of the

algorithm. The computation oft0,64 andt1,64 does
not consume any logic since the shift operations

could be rewired in hardware. The structure of

SAU is shown in Fig. 1(b). Outputs of the SAU
are finally added by the OAU according to

STAGE-3 of the algorithm.

Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4578

Fig. 1. Proposed architecture of four-point integer

DCT. (a) Four-point DCT architecture. (b)

Structure of SAU.

B. Proposed Architecture for Integer DCT of

Length8and Higher Length DCTs:
The generalized architecture for N-point integer

DCT based on the proposed algorithm is shown in

Fig. 2. It consists of four units, namely the IAU,

(N/2)-point integer DCT unit, SAU, and OAU.
The IAU computesa(i) and b(i) for i =0,1, ...,

N/2−1 according to STAGE-1 of the algorithm of

Section II-B. The SAU provides the result of
multiplication of input sample with DCT

coefficient by STAGE-2 of the algorithm. Finally,

the OAU generates the output of DCT from a

binary adder tree of log 2N−1 stages. Fig. 3(a)–
(c), respectively, illustrates the structures of IAU,

SAU, and OAU in the case of eight-point integer

DCT. Four SAUs are required to compute ti,89,
ti,75, ti,50, and ti,18 for i =0,1,2,and3 according to

STAGE-2 of the algorithm. The outputs of SAUs

are finally added by two-stage adder tree

according to STAGE-3 of the algorithm.

Structures for 16- and 32-point integer DCT can
also be obtained similarly.

Fig. 2. Proposed generalized architecture for

integer DCT of lengths N=8, 16, and 32.

Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4579

Fig. 3. Proposed architecture of eight-point integer

DCT and IDCT. (a) Structure of IAU. (b)
Structure of SAU. (c) Structure of OAU

C. Reusable Architecture for Integer DCT
The proposed reusable architecture for the

implementation of DCT of any of the prescribed

lengths is shown in Fig. 4(a). There are two (N/2)-

point DCT units in the structure. The input to one
(N/2)-point DCT unit is fed through (N/2) 2:1

MUXes that selects either [a(0), ..., a(N/2−1)] or

[x(0), ..., x(N/2−1)], depending on whether it is
used for N-point DCT computation or for the DCT

of a lower size. The other (N/2)-point DCT unit

takes the input [x(N/2), ..., x(N−1)] when it is used

for the computation of DCT of N/2 point or a
lower size, otherwise, the input is reset by an array

of (N/2) AND gates to disable this (N/2)-point

DCT unit. The output of this (N/2)-point DCT unit
is multiplexed with that of the OAU, which is

preceded by the SAUs and IAU of the structure.

The NAND gates before IAU are used to disable
the IAU, SAU, and OAU when the architecture is

used to compute (N/2)-point DCT computation or

a lower size. The input of the control unit,mNis

used to decide the size of DCT computation.
Specifically, for N=32,m32 is a 2-bits signal that

is set to{00}, {01}, {10}, and {11}to compute

four-, eight-, 16-, and 32-point DCT, respectively.
The control unit generates sel 1 and sel 2, where

sel 1 is used as control signals ofNMUXes and

input ofNAND gates before IAU. sel 2 is used as
the inputm(N/2) to two lower size reusable integer

DCT units in a recursive manner. The

combinational logics for control units are shown

in Fig. 4(b) and (c) for N= 16 and 32, respectively.
ForN=8,m8 is a 1-bit signal that is used as sel 1

while sel 2 is not required since fourpoint DCT is

the smallest DCT. The proposed structure can
compute one 32-point DCT, two 16-point DCTs,

four eightpoint DCTs, and eight four-point DCTs,

while the throughput remains the same as 32 DCT

coefficients per cycle irrespectiveof the desired
transform size..

Fig. 4. Proposed reusable architecture of integer

DCT. (a) Proposed reusable architecture for N= 8,

16, and 32. (b) Control unit for N= 16. (c) Control

unit for N=32

We present here a folded architecture and a full-

parallel architecture for the 2-D integer DCT,

along with the necessary transposition buffer to
match them without internal data movement.

A. Folded Structure for2-D Integer DCT
The folded structure for the computation of

(N×N)-point 2-D integer DCT is shown in Fig.

5(a). It consists of one N-point 1-D DCT module

and a transposition buffer. The structure of the
proposed 4×4 transposition buffer is shown in Fig.

5(b). It consists of 16 registers arranged in four

rows and four columns. (N×N) transposition
buffer can store N values in any one column of

registers by enabling them by one of the enable

signals ENi fori=0,1,···,N−1. One can select the

content of one of the rows of registers through the
MUXes. During the firstNsuccessive cycles, the

DCT module receives the successive columns of

(N×N) block of input for the computation of
STAGE-1, and stores the intermediate results in

Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4580

the registers of successive columns in the

transposition buffer. In the nextNcycles, contents
of successive rows of the transposition buffer are

selected by the MUXes and fed as input to the 1-D

DCT module.NMUXes are used at the input of the
1-D DCT module to select either the columns

from the input buffer (during the first Ncycles) or

the rows from the transposition buffer (during the

next Ncycles).

Fig. 5. Folded structure of (N×N)-point 2-D

integer DCT. (a) Folded 2-D DCT architecture. (b)

Structure of the transposition buffer for input size

4×4

B. Full-Parallel Structure for2-D Integer DCT

The full-parallel structure for (N×N)-point 2-D
integer DCT is shown in Fig. 6(a). It consists of

twoN-point 1-D DCT modules and a transposition

buffer. The structure of the 4×4 transposition
buffer for full-parallel structure is shown in Fig.

6(b). It consists of 16 register cells (RC) [shown in

Fig. 6(c)] arranged in four rows and four

columns.N×N transposition buffer can store
Nvalues in a cycle either rowwise or column-wise

by selecting the inputs by the MUXes at the input

of RCs. The output from RCs can also be
collected either row-wise or column-wise. To read

the output from the buffer,Nnumber of (2N−1):1

MUXes [shown in Fig. 6(d)] are used, where
outputs of theith row and the ith column of RCs

are fed as input to theith MUX. For the

firstNsuccessive cycles, theith MUX provides

output of Nsuccessive RCs on
the ith row. In the next Nsuccessive cycles, the ith

MUX provides output ofNsuccessive RCs on the

ith column. By this arrangement, in the first
Ncycles, we can read the output of Nsuccessive

columns of RCs and in the next Ncycles,

we can read the output ofNsuccessive rows of
RCs. The transposition buffer in this case allows

both read and write operations concurrently. If for

theNcycles, results are read and stored column-

wise now, then in the nextNsuccessive cycles,
results are read and stored in the transposition

buffer row-wise. The first 1-D DCT module

receives the inputscolumn-wise from the input
buffer. It computes a column of intermediate

output and stores in the transposition buffer. The

second 1-D DCT module receives the rows of the

intermediate result from the transposition buffer
and computes the rows of 2-D DCT output row-

wise. Suppose that in the first N cycles, the

intermediate results are stored column-wise and
all the columns are filled in with intermediated

results, then in the next Ncycles, contents of

successive rows of the transposition buffer are
selected by the MUXes and fed as input to the 1-D

DCT module of the

second stage. During this period, the output of the

1-D DCT module of first stage is stored row-wise.
In the nextNcycles, results are read and written

column-wise. The alternating column-wise and

row-wise read and write operations with the
transposition buffer continues. The transposition

buffer in this case introduces a pipeline latency

ofNcycles required to fill in the transposition
buffer for the first time.

Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4581

Fig. 6. Full-parallel structure of (N×N)-point 2-D

integer DCT. (a) Fullparallel 2-D DCT

architecture.

Fig. 6. Full-parallel structure of (N×N)-point 2-D
integer DCT. (b) Structure of the transposition

buffer for input size 4×4. (c) Register cell RCij.

(d) 7-to-1 MUX for 4×4 transposition buffer.

Pruned DCT Architecture:

Fig. 7(a) illustrates a typical hybrid video encoder,

e.g., HEVC, and Fig. 7(b) shows the breakdown of

the blocks in the shaded region in Fig. 7(a) for

main profile, where the encoding and decoding
chain involves DCT, quantization, dequantization,

and IDCT based on the transform design proposed

in [14]. As shown in Fig. 7(b), a data before and
after the DCT/IDCT transform is constrained to

have maximum 16 bits regardless of internal bit

depth and DCT length. Therefore, scaling

operation is required to retain the word length of
intermediate data. In the main profile that supports

only 8-bit samples, if bit truncations are not

performed, the wordlength of the DCT output
would be log 2N+ 6 bits more than that of the

input to avoid overflow. The output wordlengths

of the first and second forward transforms are
scaled down to 16 bits by truncating least

significant log2N−1 and log2N+ 6 bits,

respectively, as shown in the figure. The resulting

coefficients from the inverse transforms are also
scaled down by the fixed scaling factor of 7 and

12. It should be noted that additional clipping of

log 2N−1 most significant bits is required to
maintain 16 bits after the first inverse transform

and subsequent scaling.

The scaling operation, however, could be
integrated with the computation of the transform

without significant impact on the coding result.

The SAU includes several left-shift operations as

shown in Figs. 1(b) and 3(b) whereas the scaling
process is equivalent to performing the right shift.

Therefore, by manipulating the shift operations in

the SAU circuit, we can optimize the complexity
of the proposed DCT structure.

Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4582

Fig. 7. Encoding and decoding chain involving

DCT in the HEVC codec. (a) Block diagram of a

typical hybrid video encoder, e.g., HEVC. Note

that the decoder contains a subset of the blocks in
the encoder, except for the having entropy

decoding instead of entropy coding. (b)

Breakdown of the blocks in the shaded region in
(a) for main profile.

Fig. 8(a) shows the dot diagram of the SAU to

illustrate the pruning with an example of the
second forward DCT of length 8. Each row of dot

diagram contains 17 dots, which represents output

of the IAU or its shifted form (for 16 bits of the
input wordlength). The final sum without

truncation should be 25 bits. But, we use only 16

bits in the final sum, and the remaining 9 bits are

finally discarded. To reduce the computational
complexity, some of the least significant bits

(LSB) in the SAU [in the gray area in Fig. 8(a)]

can be pruned. It is noted that the worst-case error
by the pruning scheme occurs when all the

truncated bits are one. In this case, the sum of

truncated values amounts to 88, but it is only 17%
of the weight of LSB of the final output, 2 9 .

Therefore, the impact of the proposed pruning on

the final output is not significant. However, as we

prune more bits, the truncation error increases
rapidly. Fig. 8(b) shows the modified structure of

the SAU after pruning.

Fig. 8. (a) Dot diagram for the pruning of the SAU

for the second eight-point forward DCT. (b)

Modified structure of the SAU after pruning. (c)
Dot diagram for the truncation after the SAU and

the OAU to generatey(0) for eight-point DCT.

The output of the SAU is the product of DCT
coefficient with the input values. In the HEVC

transform design [14], 16 bit multipliers are used

for all internal multiplications. To have the same

precision, the output of SAU is also scaled down
to 16 bits by truncating 4 more LSBs, which is

shown in the gray area before the OAU in Fig.

Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4583

8(c) for the output addition corresponding to the

computation ofy(0). The LSB of the result of the
OAU is truncated again to retain 16 bits transform

output. By careful pruning, the complexity of

SAU and OAU can be significantly reduced
without significant impact on the error

performance.

IV. RESULTS AND DISCUSSIONS

A. Synthesis Results of1-D Integer DCT

We have coded the architecture derived from the

reference algorithm of as well as the proposed
architectures for different transform lengths in

VHDL, and synthesized by Synopsys Design

Compiler using TSMC 90-nm General Purpose
(GP) CMOS Library. The word length of input

samples are chosen to be 16 bits. The area,

computation time, and power consumption (at

100-MHz clock frequency). It is found that the
proposed architecture involves nearly 14% less

areadelay product (ADP) and 19% less energy per

sample (EPS) compared to the direct
implementation of reference algorithm, in average,

for integer DCT of lengths 4, 8, 16, and 32.

Additional 19% saving in ADP and 20% saving in
EPS are also achieved by the pruning scheme with

nearly the same throughput rate. The pruning

scheme is more effective for higher length DCT

since the percentage of total area occupied by the
SAUs increases as DCT length increases, and

hence

more adders are affected by the pruning scheme.

B. Comparison With the Existing

Architectures

We have named the proposed reusable integer
DCT architecture before applying pruning as

reusable architecture-1 and that after applying

pruning as reusable architecture-2. The processing
rate of the proposed integer DCT unit is 16 pixels

per cycle considering 2-D folded structure since

2-D transform of 32×32 block can be obtained in
64 cycles. In order to support 8Kultrahigh

definition (UHD) (7680×4320) at 30 frames/s and

4:2:0 YUV format that is one of the applications

of HEVC [20], the proposed reusable architectures
should work at the operating frequency faster than

94 MHz (7680×4320×30×1.5/16). The

computation times of 5.56 ns and 5.27 ns for
reusable architectures-1 and 2, respectively

(obtained from the synthesis without any timing

constraint) are enough for this application. Also,
the computation time less than 5.358 ns is needed

to support 8K UHD at 60 frames/s, which can be

achieved by slight increasein silicon area when we

synthesize the reusable architecture-1 with the
desired timing constraint. Existing architectures

for HEVC forN= 32 in erms of gate count that is

normalized by area of 2-inputNANDgate,
maximum operating frequency, processing rate,

throughput, and supporting video format. The

proposed reusable architecture-2 requires larger
area but offers much higher throughput. Also, the

proposed architectures involve less gate counts, as

well as higher throughput,

C. Synthesis Results of2-D Integer DCT

We also synthesized the the folded and full-

parallel structures for 2-D integer DCT. We have
listed total gate counts, processing rate,

throughput, power consumption, and EPS in Table

VII. We set the operational frequency to 187 MHz
for both cases to support UHD at 60 frames/s. The

2-D full-parallel structure yields 32 samples in

each cycle after initial latency of 32 cycles

providing double the throughput of the folded
structure. However, the full-parallel architecture

consumes 1.69 times more power than the folded

architecture
since it has two 1-D DCT units and nearly the

same complexity of transposition buffer while the

throughput of full-parallel design is double the
throughput of folded design. Thus, the full-parallel

design involves 15.6% less EPS.

V. CONCLUSION
In this paper, we presented a very low-complexity

DCT approximation obtained via pruning. The

resulting approximate transform requires only 10
additions and possesses performance metrics

comparable with state-of-the-art methods,

including the recent architecture presented in [24].

By means of computational simulation, VLSI
hardware realizations, and a full HECV

implementation, we demonstrated the practical

relevance of our method as an image and video
codec.

REFERENCES
1. B. Bross, W.-J. Han, G. J. Sullivan, J.-R. Ohm,

and T. Wiegand, High Efficiency Video

Coding (HEVC) Text Specification Draft 9,

document JCTVC-K1003, ITU-T/ISO/IEC
Joint Collaborative Team on Video Coding

(JCT-VC), Oct. 2012.

2. Video Codec for Audiovisual Services at px64
kbit/s, ITU-T Rec. H.261, version 1: Nov.

1990, version 2: Mar. 1993.

3. Video Coding for Low Bit Rate
Communication, ITU-T Rec. H.263, Nov. 1995

(and subsequent editions).

4. Coding of Moving Pictures and Associated

Audio for Digital Storage Media at up to About

Implementation of Integer DCT Architectures for HEVC in FPGA Technology Section A-Research Paper

Eur. Chem. Bull. 2022, 11(Regular Issue 12), 4574- 4584 4584

1.5 Mbit/s—Part 2: Video, ISO/IEC 11172-2

(MPEG-1), ISO/IEC JTC 1, 1993.
5. Coding of Audio-Visual Objects—Part 2:

Visual, ISO/IEC 14496-2 (MPEG-4 Visual

version 1), ISO/IEC JTC 1, Apr. 1999 (and
subsequent editions).

6. Generic Coding of Moving Pictures and

Associated Audio Information— Part 2: Video,

ITU-T Rec. H.262 and ISO/IEC 13818-2
(MPEG 2 Video), ITU-T and ISO/IEC JTC 1,

Nov. 1994.

7. Advanced Video Coding for Generic Audio-
Visual Services, ITU-T Rec. H.264 and

ISO/IEC 14496-10 (AVC), ITU-T and

ISO/IEC JTC 1, May2003 (and subsequent
editions).

8. H. Samet, “The quadtree and related

hierarchical data structures,” Comput. Survey,

vol. 16, no. 2, pp. 187–260, Jun. 1984.
9. T. Wiegand, G. J. Sullivan, G. Bjøntegaard,

and A. Luthra, “Overview of the H.264/AVC

video coding standard,”IEEE Trans. Circuits
Syst. Video Technol., vol. 13, no. 7, pp. 560–

576, Jul. 2003.

10. S. Wenger, “H.264/AVC over IP,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13,

no. 7, pp. 645–656, Jul. 2003.

11. T. Stockhammer, M. M. Hannuksela, and T.

Wiegand, “H.264/AVC in wireless
environments,”IEEE Trans. Circuits Syst.

Video Technol., vol. 13, no. 7, pp. 657–673,

Jul. 2003.
12. H. Schwarz, D. Marpe, and T. Wiegand,

“Overview of the scalable video coding

extension of the H.264/AVC standard,”IEEE

Trans. Circuits Syst. Video Technol., vol. 17,
no. 9, pp. 1103–1120, Sep. 2007.

13. D. Marpe, H. Schwarz, and T. Wiegand,

“Context-adaptive binary arithmetic coding in
the H.264/AVC video compression

standard,”IEEE Trans. Circuits Syst. Video

Technol., vol. 13, no. 7, pp. 620–636, Jul.
2003.

14. G. J. Sullivan,Meeting Report for 26th VCEG

Meeting, ITU-T SG16/Q6 document VCEG-

Z01, Apr. 2005.
15. Call for Evidence on High-Performance Video

Coding (HVC), MPEG document N10553,

ISO/IEC JTC 1/SC 29/WG 11, Apr. 2009.

