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Abstract: 
High Efficiency Video Coding (HEVC) inverse transform for residual coding uses 2-D 4x4 to 32x32 

transforms with higher precision as compared to H.264/AVC’s 4x4 and 8x8 transforms resulting in an 

increased hardware complexity. In this paper, an energy and area-efficient VLSI architecture of an HEVC-

compliant inverse transform and dequantization engine is presented. We implement a pipelining scheme to 
process all transform sizes at a minimum throughput of 2 pixel/cycle with zero-column skipping for 

improved throughput. We use data-gating in the 1-D Inverse Discrete Cosine 

Transform engine to improve energy-efficiency for smaller transform sizes. A high-density SRAM-based 
transpose memory is used for an area-efficient design. This design supports decoding of 4K Ultra-HD 

(3840x2160) video at 30 frame/sec. The inverse transform engine takes 98.1 kgate logic, 16.4 kbit SRAM 

and 10.82 pJ/pixel while the dequantization engine takes 27.7 kgate logic, 8.2 kbit SRAM and 1.10 pJ/pixel 

in 40 nm CMOS technology. Although larger transforms require more computation per coefficient, they 
typically contain a smaller proportion of non-zero coefficients. Due to this trade-off, larger transforms can be 

more energy-efficient. 
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I. Introduction 

The High Efficiency Video Coding (HEVC) 
standard is the most recent joint video project of 

the ITU-T Video Coding Experts Group (VCEG) 

and the ISO/IEC Moving Picture Experts Group 
(MPEG) standardization organizations, working 

together in a partnership known as the Joint 

Collaborative Team on Video Coding (JCT-VC) 

[1]. The first edition of the HEVC standard is 
expected to be finalized in January 2013, resulting 

in an aligned text that will be published by both 

ITU-T and ISO/IEC. Additional work is planned 
to extend the standard to support several 

additional application scenarios, including 

extended-range uses with enhanced precision and 
color format support, scalable video coding, and 

3-D/stereo/multiview video coding. In ISO/IEC, 

the HEVC standard will become MPEG-H Part 2 

(ISO/IEC 23008-2) and in ITU-T it is likely to 
become ITU-T Recommendation H.265. 

Video coding standards have evolved primarily 

through the development of the well-known ITU-
T and ISO/IEC standards. The ITU-T produced 

H.261 [2] and H.263 [3], ISO/IEC produced 

MPEG-1 [4] and MPEG-4 Visual [5], and the two 
organizations jointly produced the H.262/MPEG-2 

Video [6] and H.264/MPEG-4 Advanced Video 

Coding (AVC) [7] standards. The two standards 

that were jointly produced have had a particularly 
strong impact and have found their way into a 

wide variety of products that are increasingly 

prevalent in our daily lives. Throughout this 
evolution, continued efforts have been made to 

maximize compression capability and improve 

other characteristics such as data loss robustness, 

while considering the computational resources that 
were practical for use in products at the time of 

anticipated deployment of each standard. 

The Discrete cosine transform (DCT) plays a vital 
role in video compression due to its near-optimal 

de correlation efficiency [1]. Several variations of 

integer DCT have been suggested in the last two 
decades to reduce the computational complexity. 

The new H.265/High Efficiency Video Coding 

(HEVC) standard has been recently finalized and 

poised to replace H.264/AVC [8]. Some hardware 
architectures for the integer DCT for HEVC have 

also been proposed for its real-time 

implementation. Ahmed et al. [9] decomposed the 
DCT matrices into sparse sub-matrices where the 

multiplications are avoided by using the lifting 

scheme. Shenet al used the multiplier less multiple 
constant multiplication (MCM) approach for four-

point and eight-point DCT, and have used the 

normal multipliers with sharing techniques for 16 

and 32-point DCTs. Park et al. [11] have used 
Chen’s factorization of DCT where the butterfly 

operation has been implemented by the processing 

element with only shifters, adders, and 
multiplexors. Budagavi and Sze [12] proposed a 

unified structure to be used for forward as well as 

inverse transform after the matrix decomposition. 
One key feature of HEVC is that it supports DCT 

of different sizes such as 4, 8, 16, and 32. 

Therefore, the hardware architecture should be 

flexible enough for the computation of DCT of 
any of these lengths. The existing designs for 

conventional DCT based on constant matrix 

multiplication (CMM) and MCM can provide 
optimal solutions for the computation of any of 

these lengths, but they are not reusable for any 

length to support the same throughput processing 
of DCT of different transform lengths. 

Considering this issue, we have analyzed the 

possible implementations of integer DCT for 

HEVC in the context of resource requirement and 
reusability, and based on that, we have derived the 

proposed algorithm for hardware implementation. 

We have designed scalable and reusable 
architectures for 1-D and 2-D integer DCTs for 

HEVC that could be reused for any of the 

prescribed lengths with the same throughput of 
processing irrespective of transform size. 

 

II. HEVC Coding Design and Feature 

Highlights 
The HEVC standard is designed to achieve 

multiple goals, including coding efficiency, ease 

of transport system integration and data loss 
resilience, as well as implementability using 

parallel processing architectures. The following 

subsections briefly describe the key elements of 

the design by which these goals are achieved, and 
the typical encoder operation that would generate 

a valid bitstream. 

 

A. Video Coding Layer 

The video coding layer of HEVC employs the 

same hybrid approach (inter-/intrapicture 
prediction and 2-D transform coding) used in all 

video compression standards since H.261. Fig. 1 

depicts the block diagram of a hybrid video 

encoder, which could create a bitstream 
conforming to the HEVC standard. 

An encoding algorithm producing an HEVC 

compliant bit stream would typically proceed as 
follows. Each picture is split into block-shaped 

regions, with the exact block partitioning being 

conveyed to the decoder. The first picture of a 
video sequence (and the first picture at each clean 

random access point into a video sequence) is 

coded using only intra picture prediction (that uses 

some prediction of data spatially from region-to-
region within the same picture, but has no 
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dependence on other pictures). For all remaining 

pictures of a sequence or between random access 
points, interpicture temporally predictive coding 

modes are typically used for most blocks. The 

encoding process for inter picture prediction 
consists of choosing motion data comprising the 

selected reference picture and motion vector (MV) 

to be applied for predicting the samples of each 

block. The encoder and decoder generate identical 
inter picture prediction signals by applying motion 

compensation (MC) using the MV and mode 

decision data, which are transmitted as side 
information. 

The residual signal of the intra- or interpicture 

prediction, which is the difference between the 
original block and its prediction, is transformed by 

a linear spatial transform. The transform 

coefficients are then scaled, quantized, entropy 

coded, and transmitted together with the 
prediction information. The encoder duplicates the 

decoder processing loop (see gray-shaded boxes in 

Fig. 1) such that both will generate identical 
predictions for subsequent data. Therefore, the 

quantized transform coefficients are constructed 

by inverse scaling and are then inverse 
transformed to duplicate the decoded 

approximation of the residual signal. The residual 

is then added to the prediction, and the result of 

that addition may then be fed into one or two loop 
filters to smooth out artifacts induced by block-

wise processing and quantization. The final 

picture representation (that is a duplicate of the 
output of the decoder) is stored in a decoded 

picture buffer to be used for the prediction of 

subsequent pictures. In general, the order of 

encoding or decoding processing of pictures often 
differs from the order in which they arrive from 

the source; necessitating a distinction between the 

decoding order (i.e., bitstream order) and the 
output order (i.e., display order) for a decoder. 

Video material to be encoded by HEVC is 

generally expected to be input as progressive scan 
imagery (either due to the source video originating 

in that format or resulting from deinterlacing prior 

to encoding). No explicit coding features are 

present in the HEVC design to support the use of 
interlaced scanning, as interlaced scanning is no 

longer used for displays and is becoming 

substantially less common for distribution. 
However, a metadata syntax has been provided in 

HEVC to allow an encoder to indicate that 

interlace-scanned video has been sent by coding 
each field (i.e., the even or odd numbered 

lines of each video frame) of interlaced video as a 

separate picture or that it has been sent by coding 

each interlaced frame as an HEVC coded picture. 
This provides an efficient method of coding 

interlaced video without burdening decoders with 

a need to support a special decoding process for it. 
 

 
Fig. 1. Typical HEVC video encoder (with 

decoder modeling elements shaded in light gray). 

 

III. Algorithm for Hardware Implementation 

of Integer DCT for HEVC: 

In the Joint Collaborative Team-Video Coding 

(JCT-VC), which manages the standardization of 
HEVC, Core Experiment 10 (CE10) studied the 

design of core transforms over several meeting 

cycles. The eventual HEVC transform design 
involves coefficients of 8-bit size, but does not 

allow full factorization unlike other competing 

proposals. It however allows for both matrix 

multiplication and partial butterfly 
implementation. In this section, we have used the 

partial-butterfly algorithm of for the computation 

of integer DCT along with its efficient algorithmic 
transformation for hardware implementation. 

 

A. Key Features of Integer DCT for HEVC 
TheN-point integer DCT 1 for HEVC given by 

[14] can be computed by a partial butterfly 

approach using a (N/2)-point DCT and a matrix–

vector product of (N/2)×(N/2) matrix with an 
(N/2)-point vector as 

 
and 
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where 

 
for i=0,1,···,N/2−1.X=[x(0),x(1),···,x(N−1)] is the 
input vector andY=[y(0),y(1),···,y(N−1)] isN-

point DCT of X. CN/2 is (N/2)-point integer DCT 

kernel matrix of size (N/2)×(N/2).MN/2 is also a 

matrix of size (N/2)×(N/2) and its (i, j)th entry is 
defined as 

 
Where C2i+1,j

N is the (2i +1,j)th entry of the matrix 
CN.Note that (1a) could be similarly decomposed, 

recursively, further using CN/4 and MN/4. 

B. Hardware Oriented Algorithm 
Direct implementation of (1) requiresN2/4 + 

MULN/2 multiplications,N2 /4+N/2 + ADDN/2 

additions, and 2 shifts where MULN/2and 

ADDN/2are the number of multiplications and 
additions/subtractions of (N/2)-point DCT, 

respectively. 

Computation of (1) could be treated as a CMM 
problem [15]–[17]. Since the absolute values of 

the coefficients in all the rows and columns of 

matrix Min (1b) are identical, the CMM problem 
can be implemented as a set ofN/2 MCMs that 

will result in a highly regular architecture and will 

have low-complexity implementation. The kernel 

matrices for four-, eight-, 16-, and 32-point integer 
DCT for HEVC are given in [14], and 4- and 

eightpoint integer DCT are represented, 

respectively, as 
 

 
and 

 
Based on (1) and (2), hardware oriented 

algorithms for DCT computation can be derived in 
three stages as in Table I. For 8-, 16-, and 32-point 

DCT, even indexed coefficients of 

[y(0),y(2),y(4),···y(N−2)] are computed as 4-, 8-, 

and 16-point DCTs of 
[a(0),a(1),a(2),···a(N/2−1)],respectively, 

according to (1a). In Table II, we have listed the 

arithmetic complexities of the reference algorithm 
and the MCM-based algorithm for four-, eight-, 

16-, and 32-point DCT. Algorithms for Inverse 

DCT (IDCT) can also be derived in a similar way. 

 

Proposed Architectures for Integer DCT 

Computation: 

A. Proposed Architecture for Four-Point 
Integer DCT: 

The proposed architecture for four-point integer 

DCT is shown in Fig. 1(a). It consists of an input 
adder unit (IAU), a shift-add unit (SAU), and an 

output adder unit (OAU). The IAU 

computesa(0),a(1),b(0), andb(1) according to 

STAGE-1 of the algorithm as described in Table I. 
The computations of ti,36 and ti,83 are performed 

by two SAUs according to STAGE-2 of the 

algorithm. The computation oft0,64 andt1,64 does 
not consume any logic since the shift operations 

could be rewired in hardware. The structure of 

SAU is shown in Fig. 1(b). Outputs of the SAU 
are finally added by the OAU according to 

STAGE-3 of the algorithm. 
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Fig. 1. Proposed architecture of four-point integer 

DCT. (a) Four-point DCT architecture. (b) 

Structure of SAU. 
 

B. Proposed Architecture for Integer DCT of 

Length8and Higher Length DCTs: 
The generalized architecture for N-point integer 

DCT based on the proposed algorithm is shown in 

Fig. 2. It consists of four units, namely the IAU, 

(N/2)-point integer DCT unit, SAU, and OAU. 
The IAU computesa(i) and b(i) for i =0,1, ..., 

N/2−1 according to STAGE-1 of the algorithm of 

Section II-B. The SAU provides the result of 
multiplication of input sample with DCT 

coefficient by STAGE-2 of the algorithm. Finally, 

the OAU generates the output of DCT from a 

binary adder tree of log 2N−1 stages. Fig. 3(a)–
(c), respectively, illustrates the structures of IAU, 

SAU, and OAU in the case of eight-point integer 

DCT. Four SAUs are required to compute ti,89, 
ti,75, ti,50, and ti,18 for i =0,1,2,and3 according to 

STAGE-2 of the algorithm. The outputs of SAUs 

are finally added by two-stage adder tree 

according to STAGE-3 of the algorithm. 

Structures for 16- and 32-point integer DCT can 
also be obtained similarly. 

 

 
Fig. 2. Proposed generalized architecture for 

integer DCT of lengths N=8, 16, and 32. 
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Fig. 3. Proposed architecture of eight-point integer 

DCT and IDCT. (a) Structure of IAU. (b) 
Structure of SAU. (c) Structure of OAU 

 

C. Reusable Architecture for Integer DCT 
The proposed reusable architecture for the 

implementation of DCT of any of the prescribed 

lengths is shown in Fig. 4(a). There are two (N/2)-

point DCT units in the structure. The input to one 
(N/2)-point DCT unit is fed through (N/2) 2:1 

MUXes that selects either [a(0), ..., a(N/2−1)] or 

[x(0), ..., x(N/2−1)], depending on whether it is 
used for N-point DCT computation or for the DCT 

of a lower size. The other (N/2)-point DCT unit 

takes the input [x(N/2), ..., x(N−1)] when it is used 

for the computation of DCT of N/2 point or a 
lower size, otherwise, the input is reset by an array 

of (N/2) AND gates to disable this (N/2)-point 

DCT unit. The output of this (N/2)-point DCT unit 
is multiplexed with that of the OAU, which is 

preceded by the SAUs and IAU of the structure. 

The NAND gates before IAU are used to disable 
the IAU, SAU, and OAU when the architecture is 

used to compute (N/2)-point DCT computation or 

a lower size. The input of the control unit,mNis 

used to decide the size of DCT computation. 
Specifically, for N=32,m32 is a 2-bits signal that 

is set to{00}, {01}, {10}, and {11}to compute 

four-, eight-, 16-, and 32-point DCT, respectively. 
The control unit generates sel 1 and sel 2, where 

sel 1 is used as control signals ofNMUXes and 

input ofNAND gates before IAU. sel 2 is used as 
the inputm(N/2) to two lower size reusable integer 

DCT units in a recursive manner. The 

combinational logics for control units are shown 

in Fig. 4(b) and (c) for N= 16 and 32, respectively. 
ForN=8,m8 is a 1-bit signal that is used as sel 1 

while sel 2 is not required since fourpoint DCT is 

the smallest DCT. The proposed structure can 
compute one 32-point DCT, two 16-point DCTs, 

four eightpoint DCTs, and eight four-point DCTs, 

while the throughput remains the same as 32 DCT 

coefficients per cycle irrespectiveof the desired 
transform size.. 

 
Fig. 4. Proposed reusable architecture of integer 

DCT. (a) Proposed reusable architecture for N= 8, 

16, and 32. (b) Control unit for N= 16. (c) Control 

unit for N=32 

 
We present here a folded architecture and a full-

parallel architecture for the 2-D integer DCT, 

along with the necessary transposition buffer to 
match them without internal data movement. 

 

A. Folded Structure for2-D Integer DCT 
The folded structure for the computation of 

(N×N)-point 2-D integer DCT is shown in Fig. 

5(a). It consists of one N-point 1-D DCT module 

and a transposition buffer. The structure of the 
proposed 4×4 transposition buffer is shown in Fig. 

5(b). It consists of 16 registers arranged in four 

rows and four columns. (N×N) transposition 
buffer can store N values in any one column of 

registers by enabling them by one of the enable 

signals ENi fori=0,1,···,N−1. One can select the 

content of one of the rows of registers through the 
MUXes. During the firstNsuccessive cycles, the 

DCT module receives the successive columns of 

(N×N) block of input for the computation of 
STAGE-1, and stores the intermediate results in 
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the registers of successive columns in the 

transposition buffer. In the nextNcycles, contents 
of successive rows of the transposition buffer are 

selected by the MUXes and fed as input to the 1-D 

DCT module.NMUXes are used at the input of the 
1-D DCT module to select either the columns 

from the input buffer (during the first Ncycles) or 

the rows from the transposition buffer (during the 

next Ncycles). 

 
 

 
Fig. 5. Folded structure of (N×N)-point 2-D 

integer DCT. (a) Folded 2-D DCT architecture. (b) 

Structure of the transposition buffer for input size 

4×4 
 

 

B. Full-Parallel Structure for2-D Integer DCT 

The full-parallel structure for (N×N)-point 2-D 
integer DCT is shown in Fig. 6(a). It consists of 

twoN-point 1-D DCT modules and a transposition 

buffer. The structure of the 4×4 transposition 
buffer for full-parallel structure is shown in Fig. 

6(b). It consists of 16 register cells (RC) [shown in 

Fig. 6(c)] arranged in four rows and four 

columns.N×N transposition buffer can store 
Nvalues in a cycle either rowwise or column-wise 

by selecting the inputs by the MUXes at the input 

of RCs. The output from RCs can also be 
collected either row-wise or column-wise. To read 

the output from the buffer,Nnumber of (2N−1):1 

MUXes [shown in Fig. 6(d)] are used, where 
outputs of theith row and the ith column of RCs 

are fed as input to theith MUX. For the 

firstNsuccessive cycles, theith MUX provides 

output of Nsuccessive RCs on 
the ith row. In the next Nsuccessive cycles, the ith 

MUX provides output ofNsuccessive RCs on the 

ith column. By this arrangement, in the first 
Ncycles, we can read the output of Nsuccessive  

columns of RCs and in the next Ncycles, 

we can read the output ofNsuccessive rows of 
RCs. The transposition buffer in this case allows 

both read and write operations concurrently. If for 

theNcycles, results are read and stored column-

wise now, then in the nextNsuccessive cycles, 
results are read and stored in the transposition 

buffer row-wise. The first 1-D DCT module 

receives the inputscolumn-wise from the input 
buffer. It computes a column of intermediate 

output and stores in the transposition buffer. The 

second 1-D DCT module receives the rows of the 

intermediate result from the transposition buffer 
and computes the rows of 2-D DCT output row-

wise. Suppose that in the first N cycles, the 

intermediate results are stored column-wise and 
all the columns are filled in with intermediated 

results, then in the next Ncycles, contents of 

successive rows of the transposition buffer are 
selected by the MUXes and fed as input to the 1-D 

DCT module of the 

second stage. During this period, the output of the 

1-D DCT module of first stage is stored row-wise. 
In the nextNcycles, results are read and written 

column-wise. The alternating column-wise and 

row-wise read and write operations with the 
transposition buffer continues. The transposition 

buffer in this case introduces a pipeline latency 

ofNcycles required to fill in the transposition 
buffer for the first time. 
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Fig. 6. Full-parallel structure of (N×N)-point 2-D 

integer DCT. (a) Fullparallel 2-D DCT 

architecture. 
 

 

 
Fig. 6. Full-parallel structure of (N×N)-point 2-D 
integer DCT. (b) Structure of the transposition 

buffer for input size 4×4. (c) Register cell RCij. 

(d) 7-to-1 MUX for 4×4 transposition buffer. 
 

Pruned DCT Architecture: 

Fig. 7(a) illustrates a typical hybrid video encoder, 

e.g., HEVC, and Fig. 7(b) shows the breakdown of 

the blocks in the shaded region in Fig. 7(a) for 

main profile, where the encoding and decoding 
chain involves DCT, quantization, dequantization, 

and IDCT based on the transform design proposed 

in [14]. As shown in Fig. 7(b), a data before and 
after the DCT/IDCT transform is constrained to 

have maximum 16 bits regardless of internal bit 

depth and DCT length. Therefore, scaling 

operation is required to retain the word length of 
intermediate data. In the main profile that supports 

only 8-bit samples, if bit truncations are not 

performed, the wordlength of the DCT output 
would be log 2N+ 6 bits more than that of the 

input to avoid overflow. The output wordlengths 

of the first and second forward transforms are 
scaled down to 16 bits by truncating least 

significant log2N−1 and log2N+ 6 bits, 

respectively, as shown in the figure. The resulting 

coefficients from the inverse transforms are also 
scaled down by the fixed scaling factor of 7 and 

12. It should be noted that additional clipping of 

log 2N−1 most significant bits is required to 
maintain 16 bits after the first inverse transform 

and subsequent scaling. 

The scaling operation, however, could be 
integrated with the computation of the transform 

without significant impact on the coding result. 

The SAU includes several left-shift operations as 

shown in Figs. 1(b) and 3(b) whereas the scaling 
process is equivalent to performing the right shift. 

Therefore, by manipulating the shift operations in 

the SAU circuit, we can optimize the complexity 
of the proposed DCT structure. 
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Fig. 7. Encoding and decoding chain involving 

DCT in the HEVC codec. (a) Block diagram of a 

typical hybrid video encoder, e.g., HEVC. Note 

that the decoder contains a subset of the blocks in 
the encoder, except for the having entropy 

decoding instead of entropy coding. (b) 

Breakdown of the blocks in the shaded region in 
(a) for main profile. 

 

Fig. 8(a) shows the dot diagram of the SAU to 

illustrate the pruning with an example of the 
second forward DCT of length 8. Each row of dot 

diagram contains 17 dots, which represents output 

of the IAU or its shifted form (for 16 bits of the 
input wordlength). The final sum without 

truncation should be 25 bits. But, we use only 16 

bits in the final sum, and the remaining 9 bits are 

finally discarded. To reduce the computational 
complexity, some of the least significant bits 

(LSB) in the SAU [in the gray area in Fig. 8(a)] 

can be pruned. It is noted that the worst-case error 
by the pruning scheme occurs when all the 

truncated bits are one. In this case, the sum of 

truncated values amounts to 88, but it is only 17% 
of the weight of LSB of the final output, 2 9 . 

Therefore, the impact of the proposed pruning on 

the final output is not significant. However, as we 

prune more bits, the truncation error increases 
rapidly. Fig. 8(b) shows the modified structure of 

the SAU after pruning. 

 

 

 

 
Fig. 8. (a) Dot diagram for the pruning of the SAU 

for the second eight-point forward DCT. (b) 

Modified structure of the SAU after pruning. (c) 
Dot diagram for the truncation after the SAU and 

the OAU to generatey(0) for eight-point DCT. 

The output of the SAU is the product of DCT 
coefficient with the input values. In the HEVC 

transform design [14], 16 bit multipliers are used 

for all internal multiplications. To have the same 

precision, the output of SAU is also scaled down 
to 16 bits by truncating 4 more LSBs, which is 

shown in the gray area before the OAU in Fig. 
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8(c) for the output addition corresponding to the 

computation ofy(0). The LSB of the result of the 
OAU is truncated again to retain 16 bits transform 

output. By careful pruning, the complexity of 

SAU and OAU can be significantly reduced 
without significant impact on the error 

performance. 

 

IV. RESULTS AND DISCUSSIONS 

A. Synthesis Results of1-D Integer DCT 

We have coded the architecture derived from the 

reference algorithm of as well as the proposed 
architectures for different transform lengths in 

VHDL, and synthesized by Synopsys Design 

Compiler using TSMC 90-nm General Purpose 
(GP) CMOS Library. The word length of input 

samples are chosen to be 16 bits. The area, 

computation time, and power consumption (at 

100-MHz clock frequency). It is found that the 
proposed architecture involves nearly 14% less 

areadelay product (ADP) and 19% less energy per 

sample (EPS) compared to the direct 
implementation of reference algorithm, in average, 

for integer DCT of lengths 4, 8, 16, and 32. 

Additional 19% saving in ADP and 20% saving in 
EPS are also achieved by the pruning scheme with 

nearly the same throughput rate. The pruning 

scheme is more effective for higher length DCT 

since the percentage of total area occupied by the 
SAUs increases as DCT length increases, and 

hence 

more adders are affected by the pruning scheme. 
 

B. Comparison With the Existing 

Architectures 

We have named the proposed reusable integer 
DCT architecture before applying pruning as 

reusable architecture-1 and that after applying 

pruning as reusable architecture-2. The processing 
rate of the proposed integer DCT unit is 16 pixels 

per cycle considering 2-D folded structure since 

2-D transform of 32×32 block can be obtained in 
64 cycles. In order to support 8Kultrahigh 

definition (UHD) (7680×4320) at 30 frames/s and 

4:2:0 YUV format that is one of the applications 

of HEVC [20], the proposed reusable architectures 
should work at the operating frequency faster than 

94 MHz (7680×4320×30×1.5/16). The 

computation times of 5.56 ns and 5.27 ns for 
reusable architectures-1 and 2, respectively 

(obtained from the synthesis without any timing 

constraint) are enough for this application. Also, 
the computation time less than 5.358 ns is needed 

to support 8K UHD at 60 frames/s, which can be 

achieved by slight increasein silicon area when we 

synthesize the reusable architecture-1 with the 
desired timing constraint. Existing architectures 

for HEVC forN= 32 in  erms of gate count that is 

normalized by area of 2-inputNANDgate, 
maximum operating frequency, processing rate, 

throughput, and supporting video format. The 

proposed reusable architecture-2 requires larger 
area but offers much higher throughput. Also, the 

proposed architectures involve less gate counts, as 

well as higher throughput, 

 

C. Synthesis Results of2-D Integer DCT 

We also synthesized the the folded and full-

parallel structures for 2-D integer DCT. We have 
listed total gate counts, processing rate, 

throughput, power consumption, and EPS in Table 

VII. We set the operational frequency to 187 MHz 
for both cases to support UHD at 60 frames/s. The 

2-D full-parallel structure yields 32 samples in 

each cycle after initial latency of 32 cycles 

providing double the throughput of the folded 
structure. However, the full-parallel architecture 

consumes 1.69 times more power than the folded 

architecture 
since it has two 1-D DCT units and nearly the 

same complexity of transposition buffer while the 

throughput of full-parallel design is double the 
throughput of folded design. Thus, the full-parallel 

design involves 15.6% less EPS. 

 

V. CONCLUSION 
In this paper, we presented a very low-complexity 

DCT approximation obtained via pruning. The 

resulting approximate transform requires only 10 
additions and possesses performance metrics 

comparable with state-of-the-art methods, 

including the recent architecture presented in [24]. 

By means of computational simulation, VLSI 
hardware realizations, and a full HECV 

implementation, we demonstrated the practical 

relevance of our method as an image and video 
codec. 
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