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Abstract—  

Improving connectivity between different cities requires design of highly efficient route planning models that 

can incorporate, analyze & optimize multiple routing parameters. These models analyze parameters that 

include city-to-city distance, road quality, toll booths, type of goods, capacity of vehicles, probability of 

accident on route, and intermediate hop quality. Combination of these parameters is given to an application-

specific routing model that minimizes route delay, while maximizing driver comfort and reducing probability 

of route accidents. Existing planning models utilize linear techniques for intercity route planning; thus, they 

consider only a limited number of parameters due to their reduced computational capabilities. To improve this 

efficiency, a novel intercity connectivity optimization model for transportation of goods & heavy materials is 

proposed in this text. The proposed model is able to capture & analyze parameters including route quality, 

distance between hops, quality of hopping destination, accident probability on route, vehicle capacity, total 

toll cost, and vehicle density to estimate driving quality, approximate travel time, and risk of accidents. To 

perform this task, the proposed model utilizes a particle swarm optimization (PSO) model, that assists in 

performance-based route selection. The model initially generates a random set of solutions for given route, and 

then optimizes them via cognitive and social learning phases. These optimizations are tested on Intercity Bus 

Atlas dataset, Intercity Bus Working Group dataset, Intercity bus dataset, & Rio Vista Delta dataset, and 

parametric evaluation in terms of routing delay, accident probability, driver experience, and cost of routing 

was evaluated w.r.t. different routes. This performance was compared with various state-of-the-art approaches, 

and it was observed that the proposed model showcased 9.7% lower routing delay, 6.5% lower accident 

probability, 15.8% better driver experience, and 8.3% lower routing cost. This performance was observed to 

be consistent across different vehicle and route types with minimum reconfiguration & modifications, which 

makes the model highly scalable for a large number of scenarios. Due to these improvements, the proposed 

model was observed to be applicable for a wide variety of application deployments.  
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I. Introduction 

Modeling intercity transit & logistics management 

systems is a multidomain task that involves 

application-specific data collection, preprocessing, 

feature extraction from this data, pattern analysis, 

and post-processing operations. These tasks are 

designed depending upon the application for this the 

model is being deployed. For instance, model design 

for heavy goods logistics will involve selection of 

routes with minimum level of congestion, and 

moderate road quality, while model design for food 

stuff logistics requires superior road quality, with 

moderate to low level of congestion. A typical 

intercity modeling method [1] that utilizes clustering, 

feature extraction & selection, cross validation with 

parameter tuning, comparison of data with temporal 

information for travel delay estimation is depicted in 

Fig.1, which can be used for multiple intercity route 

modeling applications. 

 

 
Fig. 1. Design of a typical intercity logistics modeling method 

 

From this flow, it can be observed that feature 

extraction, selection, and comparison with temporal 

data blocks must be designed with higher efficiency 

than other blocks, because they control travel time 

estimation & drive quality improvement. Other 

blocks like clustering, feature selection, & cross 

validation are used for fine tuning the drive 

performance, and can be implemented if 

computational resources are available with the 

processing unit [2, 3, 4]. This observation is 

validated from the next section, wherein different 

intercity path modeling models are reviewed, and 

their characteristics are discussed in terms of 

nuances, advantages, limitations and future research 

scopes. Based on this review, it was observed that 

existing models use linear techniques for route 

planning; thus, they consider only a limited number 

of parameters due to their reduced computational 

capabilities. To overcome this limitation, section 3 

discusses design of a PSO based intercity 

connectivity optimization model for transportation of 

goods & heavy materials. The proposed model 

formulates driver experience, as a fitness function, 

which includes city-to-city distance, cost of passing 

through toll booths, quality of road, type of goods, 

probability of accident on route, vehicle capacity, 

and intermediate hop quality. Performance of this 

model is evaluated in terms of routing delay, accident 

probability, driver experience, and routing cost in 

section 4, where these parameters are compared with 

various state-of-the-art approaches for performance 

validation. Finally, this text concludes with some 

interesting observations about the proposed model, 

and recommends methods to further improve its 

performance. 

 

II. Literature Review 

A wide variety of system models are available for 

low complexity, and high efficiency intercity 

routing. These models assist in reducing point-to-

point routing distance, while improving driver 

experience by consider road quality, fuel 

consumption, etc. For instance, work in [5, 6] 

propose models for intercity bus routing for 

stochastic demands, and intercity bus terminal 

&inner-city toll road development for specific areas. 

These models have limited scalability, thus cannot be 

used for wider areas. To extend this model for 
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railway networks, work in [7] proposes a novel low 

complexity multimodal alternative service 

management & infrastructure maintenance method 

to improve routing performance. This efficiency & 

scalability is further improved via the work in [8] that 

proposes an ant colony optimization (ACO) model 

for intercity travel optimizations.  

Application of such models is depicted in [9], 

wherein intercity transportation for China is 

optimized via machine learning based models. A 

case study of such routing is depicted in [10], 

wherein innovative approaches for demand 

estimation in intercity bus services for rural 

environments is studied, and analyzed. Another 

ACO based model that uses bi-objective 

optimization (BO ACO) for emergency dispatching 

&routing is discussed in [11], wherein multiple mode 

networks. This model is capable of low delay, and 

high efficiency routing for vehicles between 

different cities. An optimum use case of this model 

is discussed in [12], wherein joint fleet sizing & 

planning charging systems for electric vehicles 

(EVs) using machine learning approaches is 

discussed. Similar approaches are discussed in [13, 

14], wherein future thin-haul air mobility demand 

during routing, and eVTOL air shuttle design for 

rapid intercity transports is proposed. An application 

specific model for this approach is depicted in [15, 

16], wherein intercity traffic flow pattern is evaluated 

using linear classification (LC) models via traffic 

patterns, and travel delay optimizations. Thus, it can 

be observed that very few models are capable of 

considering multiple intercity routing metrics, which 

limits their scalability when applied to real-time 

networks. To improve this performance, next section 

proposes design of PSO model for efficient intercity 

routing via driver experience improvement. 

Performance of this model is evaluated w.r.t. various 

state-of-the-art methods for validation & control 

under different scenarios. 

Design of the proposed PSO model for efficient 

intercity routing via driver experience improvement  

Based on the literature review, it can be observed that 

existing models utilize a limited number of 

parameters while path planning, which limits their 

scalability for large-scale intercity modeling 

application scenarios. To improve this efficiency, a 

novel PSO based model is discussed in this section, 

which assists in low-complexity, and high-

performance driver experience-based path planning 

& control. Overall flow of the model is depicted in 

Fig 2, wherein city-to-city distance, cost of passing 

through toll booths, quality of road, type of goods, 

probability of accident on route, vehicle capacity, 

and intermediate hop quality are used for evaluation 

of final path. 

 

 

 
Fig. 2. Overall flow of the proposed model 

 

From the flow, it can be observed that historical 

dataset of node location, node speed, toll booth  

 

locations, their fares, road quality, vehicle types, etc. 

are stored & updated regularly by central authorities. 
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Using this data, a PSO based model is trained to 

serve routing requests. This model requires source 

city & destination city as inputs, and based on these 

inputs it evaluated multiple on-road parameters. 

These parameters include, reference distance 

between source & destination, which is evaluated via 

equation 1, 

 

𝑑𝑟𝑒𝑓 = √(𝑥𝑠 − 𝑥𝑑)
2 + (𝑦𝑠 − 𝑦𝑑)

2                 (1) 

 

Where, 𝑥, 𝑦, 𝑠 & 𝑑 represents cartesian location of 

cities & ID of source & destination cities 

respectively, while dref represents reference distance 

between these cities. Based on this distance 

evaluation, distances between all cities from source 

& destination are evaluated. Let these distances be 

represented by 𝑑𝑠,𝑖&𝑑𝑖,𝑑, where 𝑖 indicates ID of the 

reference city. All cities which satisfy equation 2, are 

grouped as on-route cities (𝐿𝑖𝑠𝑡𝑟𝑜𝑢𝑡𝑒). 
 

𝑑𝑟𝑒𝑓 > 𝑑𝑠,𝑖&𝑑𝑟𝑒𝑓 > 𝑑𝑖,𝑑&𝑑𝑟𝑒𝑓 < (𝑑𝑠,𝑖 + 𝑑𝑖,𝑑)                  (2) 

 

Based on this group of cities, road quality (𝑄𝑟), 
number of toll boots (𝑁𝑡), cost of each toll booth (𝐶𝑡), 
accident probability for each route (𝐴𝑝), and number 

of driver performance enhancement entities on the 

hop (𝑁𝑑𝑝) parameters are extracted from the 

database. These values combined with vehicle 

capacity (𝑉𝑐), and Goods capacity (𝐺𝑐) via the PSO 

model, which works using the following process, 

Initialize PSO parameters, 

Number of iterations (𝑁𝑖) 
Number of particles (𝑁𝑝) 

Error tolerance threshold (𝐸𝑡ℎ) 

Maximum number of hops required by driver 

(𝑀𝑎𝑥ℎ𝑜𝑝) 

Initialize each PSO particle via the following 

process, Select a random number of intermediate 

hopping cities via the following process, 

Generate a random number of hops via equation 3, 

 

𝑃ℎ = 𝑟𝑎𝑛𝑑𝑜𝑚(1,𝑀𝑎𝑥ℎ𝑜𝑝)                       (3) 

 

For each hop in 1 to 𝑃ℎ select a random city via 

equation 4,  

 

𝐶𝑖𝑡𝑦𝑠𝑒𝑙 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝐿𝑖𝑠𝑡𝑟𝑜𝑢𝑡𝑒)                     (4) 

 

This city is selected such that distance between 

source to the next hop reduces overall trip distance. 

Based on these cities, evaluate particle velocity via 

equation 5, and mark these velocities as local best for 

each particle. 

Find the minimum velocity via equation 6, and mark 

it as global best for the current set of particles. 

 

Pv = ∑
(

 
 
 

𝑑𝑖,𝑖+1
𝑑𝑟𝑒𝑓

+
𝑀𝑎𝑥(𝑅𝑄)

𝑅𝑄𝑖,𝑖+1
+

∑
𝐶𝑡𝑗

𝑁𝑡

𝑁𝑡
𝑗=1 ∗𝑀𝑎𝑥[⋃𝐶𝑡]

−1+𝐴𝑝+

𝑁𝑑𝑝∗𝑀𝑎𝑥[⋃𝑁𝑑𝑝]
−1

)

 
 
 

𝑃ℎ
∗
𝐺𝑐

𝑉𝑐

𝑃ℎ
𝑖=1      (5) 

 

𝐺𝑏𝑒𝑠𝑡 = 𝑀𝑖𝑛 [⋃ 𝑃𝑣𝑖
𝑁𝑝
𝑖=1 ]                       (6) 

 

This velocity is evaluated for each particle, and then 

the following process is evaluated for each iteration 

in 1 to 𝑁𝑖  Evaluate new particle velocity via equation 

7, 

 

𝑁𝑒𝑤(𝑃𝑣) = 𝑟 ∗ 𝑃𝑣 + 𝑐𝑐𝑜𝑔 ∗ [𝑃𝑣 − 𝑃𝑏𝑒𝑠𝑡] + 𝑐𝑠𝑜𝑐𝑎𝑖𝑙 ∗

[𝑃𝑣 − 𝐺𝑏𝑒𝑠𝑡]   (7) 

 

Where, 𝑟, 𝑐𝑐𝑜𝑔, &𝑐𝑠𝑜𝑐𝑖𝑎𝑙 represents a random velocity 

variable, cognitive learning factor, and social 

learning factor respectively. 

 

Using this new value of 𝑃𝑣 add or subtract city IDs 

from the current list of routes. 

Evaluate error threshold for each particle via 

equation 8, 

 

𝐸𝑡 =
𝑁𝑒𝑤(𝑃𝑣)−𝑃𝑣

𝑀𝑎𝑥(𝑁𝑒𝑤(𝑃𝑣),𝑃𝑣)
                          (8) 

 

Terminate the iteration if 𝐸𝑡 < 𝐸𝑡ℎ, else go to next 

particle 

Equate 𝑃𝑣 = 𝑁𝑒𝑤(𝑃𝑣), and evaluate 𝐺𝑏𝑒𝑠𝑡 via 

equation 6 for each iteration. 

At the end of the final iteration, select particle with 

minimum value of velocity, and use the selected hops 

for intercity routing & logistics. 

 

Based on these hops a final path is traced, and drivers 

are informed about it. While traversing the path, a 

feedback mechanism is activated, which assists 

drivers to update about their current trip status. Based 

on this feedback mechanism, following results are 

gathered from the driver, 

Location of the driver (𝐿𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 
Number of accidents spotted at the current location 

(𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡) 
 

Accelerometer status for the current hop (𝐴𝑐𝑐𝑡𝑟𝑖𝑝) 

 

Based on these values, a feedback metric is 

evaluated, which assists in updating the current 

database. This feedback metric consists of updated 

accident probability on road (𝐴𝑢𝑝𝑑𝑎𝑡𝑒𝑑), and new 

road quality status (𝑁𝑒𝑤𝑟𝑜𝑎𝑑), which are evaluated 

via equation 9 and 10 as follows, 
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𝐴𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝐴𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 +
𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐴𝑡𝑜𝑡𝑎𝑙
                    (9) 

 

Where, 𝐴𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = −1, if no accidents were 

recorded, while 𝐴𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠&𝐴𝑡𝑜𝑡𝑎𝑙 represents 

previously stored probability of accidents, and total 

number of accidents recorded for the current route & 

road. Similarly, new road quality is evaluated via 

equation 10, as follows, 

 

𝑁𝑒𝑤𝑟𝑜𝑎𝑑 = 𝑂𝑙𝑑𝑟𝑜𝑎𝑑 +

∑
𝐴𝑐𝑐𝑖−𝑃𝑟𝑒𝑣(𝐴𝑐𝑐𝑖)

𝑀𝑎𝑥(𝐴𝑐𝑐𝑖,𝑃𝑟𝑒𝑣(𝐴𝑐𝑐𝑖))∗𝑁
𝑁
𝑖∈(𝑋,𝑌,𝑍)         (10) 

 

Where, 𝑂𝑙𝑑𝑟𝑜𝑎𝑑 , 𝐴𝑐𝑐, & 𝑃𝑟𝑒𝑣(𝐴𝑐𝑐) represents 

previous road conditions, current accelerometer 

readings on the road, and previous accelerometer 

readings recorded for the road. These values are 

updated in the database for continuous road quality 

measurements improvement. Based on these updated 

values newer evaluations for road planning are done, 

which assists in improving quality of hop selection, 

and driver experience. This model was evaluated on 

various datasets, and their results were compared 

with various state-of-the-art methods. These results 

can be observed from the next section of this text. 

 

III. Results & Performance Evaluation 

The proposed intercity routing model is capable of 

improving route quality selection by integrating 

multiple road-level, infrastructure-level, vehicle-

level, and goods-level parameters. To validate 

performance of the proposed model, the model 

routing delay (D), accident probability (AP), driver 

experience (E), & routing cost (C) were compared 

with ACO [8], BO ACO [11], and LC [15].  

 

This performance was evaluated for Intercity Bus 

Atlas dataset, Intercity Bus Working Group dataset, 

Intercity bus dataset, & Rio Vista Delta dataset, 

which are available with Open Source Licensing. All 

these datasets were combined to form a total of 1000 

city points, which were evaluated for 25 different 

drivers, with 400 different routing requests. A total 

of 100k requests were used from this set, and were 

divided in a ratio of 70:30, wherein 70% records 

were used for training the PSO model, while 

remaining 30% were used for evaluation & 

validation purposes. Based on this simulation setup, 

parametric evaluation of average routing delay (D) in 

minutes was tabulated in Table I as follows, 

 

TABLE I.  ROUTING DELAY COMPARISON FOR DIFFERENT MODELS 
Requests D (mins.) ACO [8] D (mins.) BO ACO [11] D (mins.) LC [15] D (mins.) PSO 

500 150.6 126.4 145.8 108.9 

1000 160.9 132.9 154.6 115.5 

2000 175.8 135.8 164.0 129.8 

5000 192.3 176.4 194.1 145.6 

7500 196.4 198.3 207.7 156.8 

10k 200.8 226.5 224.9 175.0 

15k 230.5 259.4 257.8 202.3 

20k 265.8 304.8 300.3 218.4 

25k 262.7 311.6 302.3 226.9 

30k 277.4 337.5 323.6 242.4 

35k 292.1 363.4 345.0 257.9 

40k 306.8 389.3 366.3 273.3 

45k 321.5 415.2 387.7 288.8 

50k 336.1 441.1 409.1 304.3 

55k 350.8 467.0 430.4 319.8 

60k 365.5 492.9 451.8 335.3 

65k 380.2 518.8 473.1 350.8 

70k 394.9 544.7 494.5 366.3 

75k 409.6 570.6 515.9 381.7 

80k 424.2 596.5 537.2 397.2 

85k 438.9 622.4 558.6 412.7 

90k 453.6 648.3 579.9 428.2 

100k 468.3 674.1 601.3 443.7 

 

Based on this evaluation & Fig.3, it was observed 

that the proposed model had 8.5% lower delay than 

ACO [8], 19.2% lower delay than BO ACO [11], and 

15.4% lower delay than LC [15], which makes it 

useful for high-speed intercity routing applications.  
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Fig. 3. Routing delay performance for different models 

 

The main reason for reduction in delay, is the use of continuous update mechanism, which assists in finding 

shortest path with better driver experience, and minimum number of accidents. Similar evaluation was done 

for accident probability (AP), and tabulated in Table II as follows, 

 

TABLE II.  ACCIDENT PROBABILITY COMPARISON FOR DIFFERENT MODELS 
Requests AP ACO [8] AP BO ACO [11] AP LC [15] AP PSO 

500 3.01 2.53 2.92 2.18 

1000 3.22 2.66 3.09 2.31 

2000 3.52 2.72 3.28 2.60 

5000 3.85 3.53 3.88 2.91 

7500 3.93 3.97 4.15 3.14 

10k 4.02 4.53 4.50 3.50 

15k 4.61 5.19 5.16 4.05 

20k 5.32 6.10 6.01 4.37 

25k 5.25 6.23 6.05 4.54 

30k 5.55 6.75 6.47 4.85 

35k 5.84 7.27 6.90 5.16 

40k 6.14 7.79 7.33 5.47 

45k 6.43 8.30 7.75 5.78 

50k 6.72 8.82 8.18 6.09 

55k 7.02 9.34 8.61 6.40 

60k 7.31 9.86 9.04 6.71 

65k 7.60 10.38 9.46 7.02 

70k 7.90 10.89 9.89 7.33 

75k 8.19 11.41 10.32 7.63 

80k 8.48 11.93 10.74 7.94 

85k 8.78 12.45 11.17 8.25 

90k 9.07 12.97 11.60 8.56 

100k 9.37 13.48 12.03 8.87 

Based on this evaluation & Fig.4, it was observed 

that the proposed model had 0.8% lower accident 

probability than ACO [8], 5.3% lower accident 

probability than BO ACO [11], and 4.6% lower 

accident probability than LC [15], which makes it 

useful for highly safe intercity routing applications.  
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Fig. 4. Accident probability comparison for different models 

 

The main reason for reduction in accident probability is the use of continuous update mechanism with accident 

inclusion in PSO model, which assists in finding shortest path with better driver experience, and minimum 

number of accidents. Similar evaluation was done for driver experience in terms of ratings collected during 

routing process and tabulated in Table III as follows, 

 

TABLE III.  DRIVING EXPERIENCE COMPARISON FOR DIFFERENT MODELS 
Requests E (%) ACO [8] E (%) BO ACO [11] E (%) LC [15] E (%) PSO 

500 80.08 76.27 79.42 90.82 

1000 81.35 77.43 80.60 91.34 

2000 82.94 77.91 81.71 92.30 

5000 84.40 82.99 84.54 93.13 

7500 84.73 84.87 85.56 93.62 

10k 85.06 86.75 86.66 94.29 

15k 86.98 88.43 88.36 95.06 

20k 88.71 90.16 90.01 95.42 

25k 88.58 90.37 90.08 95.59 

30k 89.19 91.11 90.73 95.87 

35k 89.73 91.74 91.30 96.12 

40k 90.22 92.29 91.81 96.34 

45k 90.67 92.77 92.26 96.54 

50k 91.08 93.20 92.67 96.71 

55k 91.45 93.58 93.03 96.87 

60k 91.79 93.91 93.36 97.02 

65k 92.11 94.22 93.66 97.15 

70k 92.40 94.49 93.93 97.27 

75k 92.68 94.74 94.18 97.38 

80k 92.93 94.97 94.42 97.48 

85k 93.17 95.18 94.63 97.58 

90k 93.39 95.37 94.83 97.66 

100k 93.59 95.55 95.01 97.75 
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Based on this evaluation & Fig.5, it was observed 

that the proposed model had 4.3% better driver 

experience than ACO [8], 2.2% better driver 

experience than BO ACO [11], and 2.5% better 

driver experience than LC [15], which makes it 

useful for high-speed & high efficiency intercity 

routing applications. 

 

 
Fig. 5. Driving experience comparison for different models 

 

The main reason for improvement in driver experience is the use of continuous update mechanism with 

accident reduction, toll charge reduction & distance minimization, which assists in finding shortest path with 

better driver experience, and minimum number of accidents. Similar evaluation was done for routing cost in 

terms of delay needed to find the routing path, and tabulated in Table IV as follows, 

 

TABLE IV.  ROUTING COST COMPARISON FOR DIFFERENT MODELS 
Requests C (ms) ACO [8] C (ms) BO ACO [11] C (ms) LC [15] C (ms) PSO 

500 86.77 76.33 84.64 60.13 

1000 91.38 79.07 88.56 63.24 

2000 98.19 80.30 92.79 70.05 

5000 105.87 98.47 106.70 77.71 

7500 107.80 108.70 113.17 83.17 

10k 109.88 122.14 121.37 92.10 

15k 124.06 138.08 137.32 105.66 

20k 141.20 160.37 158.16 113.69 

25k 139.70 163.73 159.12 117.92 

30k 146.88 176.57 169.69 125.67 

35k 154.10 189.46 180.29 133.45 

40k 161.34 202.39 190.93 141.23 

45k 168.61 215.36 201.60 149.03 

50k 175.89 228.35 212.29 156.84 

55k 183.20 241.37 223.00 164.66 

60k 190.51 254.41 233.73 172.49 

65k 197.84 267.46 244.47 180.32 

70k 205.19 280.53 255.23 188.15 

75k 212.54 293.61 265.99 196.00 

80k 219.90 306.71 276.77 203.84 

85k 227.27 319.81 287.56 211.69 

90k 234.65 332.92 298.35 219.55 

100k 242.04 346.04 309.15 227.40 
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Based on this evaluation & Fig.6, it was observed 

that the proposed model had 10.8% lower routing 

cost than ACO [8], 25.6% lower routing cost than 

BO ACO [11], and 20.6% lower routing cost than LC 

[15], which makes it useful for high-speed intercity 

routing applications. The main reason for reduction 

in cost, is the use of PSO, which assists in finding 

shortest path with better driver experience, and 

minimum number of accidents. Due to such a high 

performance, the proposed model is capable of being 

deployed for a wide variety of real-time intercity 

routing applications. 

 

 
Fig. 6. Routing cost comparison for different 

models 

 

IV. Conclusion and Future Work 

The proposed intercity logistics model uses a 

combination of PSO with continuous database 

updates for improving quality of goods transfer 

between different geological points. Due to use of 

PSO, the model is capable of reducing the routing 

delay by had 8.5% when compared with ACO [8], 

19.2% when compared with BO ACO [11], and 

15.4% when compared with LC [15], thus making it 

highly useful for a wide variety of low-delay routing 

applications. Due to use of continuous update 

mechanism, the proposed model is able to reduce 

accident probability by 0.8% when compared with 

ACO [8], 5.3% when compared with BO ACO [11], 

and 4.6% when compared with LC [15], thus making 

it useful for safe-driving applications. Moreover, the 

model is also capable of improving driver 

performance by 4.3% when compared with ACO [8], 

2.2% when compared with BO ACO [11], and 2.5% 

when compared with LC [15], thus making it useful 

for highly scalable deployments. Due to such a wide 

improvement in intercity routing performance, the 

proposed model is highly useful for a wide variety of 

routing applications. In future, researchers can 

integrate deep learning models in place of PSO, for 

further enhancing its real-time performance. 

Moreover, researchers can validate the model on 

larger datasets, for further estimating its long-term 

performance capabilities. 
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