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Abstract. For a class of advancedthird-order neutral typenonlineardifference equations, we 

improved the notion of oscillation and asymptotic criterion. The findings are unique, and 

they improve and complement previous findings in the literature. We propose some new 

criteria for ensuring that every solution is oscillatory by applying extended Ricatti type 

transformation. The importance of the primary results is demonstrated by certain instances. 

INTRODUCTION 

Here we investigate the oscillatory and asymptotic behaviorconditionsfor third-order nonlinear difference 

equation. 

∆ 𝛼(𝜂) ∆2 𝛾(𝜂) + 𝛽(𝜂)𝛾(𝜂 − 𝜎)  
𝜌
 + 𝛿(𝜂)𝛾𝜌(𝜂 − 𝜇) = 0, 𝜂 ≥ 𝜂0                                                    (1.1) 

where 𝛼(𝜂)  is a positive real sequence with  
1

𝛼(𝜂)
1
𝜌

< ∞∞
𝜂=𝜂0

for all 𝜂 ≥ 𝜂0 , {𝛿(𝜂)}is a nonnegative real 

sequence and {𝛾(𝜂)} is a bounded nonnegative real sequence. 

(ℎ 1){𝛼(𝜇)}𝜇=𝜇0
∞ and{𝛾(𝜇)}𝜇=𝜇0

∞ are sequences of real numbers  

  
1

𝛼 𝜂 
 

∞

𝜂=𝜂0

=   
1

𝛾(𝜂)
 

∞

𝜂=𝜂0

= ∞,                                                                                                            (1.2) 

 

(ℎ 2)0 ≤ 𝛽 𝜂 < 1, 𝛿(𝜂) ≥ 0and  𝛿(𝜇)}𝜂=𝜂0
∞ has a positive subsequence 

 ℎ3 𝛾𝜌 : 𝑋 → 𝑋is continuous function such that  𝛾𝜌 𝜂 − 𝜇 ≥ 𝑅 > 0 

 ℎ4 𝜌is a ratio of odd positive integers and 𝜎 and 𝜇 are nonnegative integers. 

 

Let 𝜑 =   𝑚𝑎𝑥 𝜎, 𝜇 , be the maximum value. A real classification{𝛾(𝜂)} defined for every 𝜂 ≥ 1 − 𝜑in (1.1) for 

all 𝜂 ∈ 𝑁. If a nontrivial solution of (1.1) is neither gradually positive nor finally negative, it is said to be oscillatory; 

otherwise, it is said to be nonoscillatory. If all of the conditions of (1.1) are oscillatory or approach to zero as𝜂 → ∞, 

it is said to be virtually oscillatory. 

 

The majority of findings for the oscillation and asymptoticconditionsof third order 

nonlinearneutraltypedifference equations are derived under the assumption −1 < 𝛽 𝜂 < 1, according to a survey of 

the literature. As a result, it's fascinating to investigate the oscillatory behaviour (1.1) under the condition 0 ≤
𝛽 𝜂 ≤ 𝛽 < ∞. The equation (1.1) must meet certain characteristics in order to be considered virtually oscillatory.A 
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lot of interest exposed in the asymptotic and oscillatory behaviour of solutions to nonlinear neutral type difference 

equations during the last three decades; see, for example, [1, 2, 8, 10, 11, 13, 15] and the publications mentioned 

therein for recent results of this sort. However, only a few results on the oscillation of advanced type difference 

equations have been published (see [3, 5–7, 9, 12]).According to a review of the literature, all of the results 

established in [14, 10, 12, 13] for the difference equations of neutral type guarantees that every solution is 

eitheroscillatory or tends to zero monotonically. As a consequence, the results obtained in this study are superior to 

those reported in [10, 12, 14, 15]. The following is a breakdown of how this article is structured. The major results 

are deduced in Section 2, and some examples are provided in Section 3 to demonstrate the significance of the 

primary conclusions. 

 

PRELIMINARIES  

 

In this section, we present the main improved and sufficient conditionsof oscillation and asymptotic conditions 

for (1.1) by Riccati transformation approach, which ensures that every solution {𝛾(𝜂)} of (1.1) oscillates. 

 

Lemma 2.1.Let   𝛾 𝜂  be aeventually positive solution of (1.1). Then there exist two cases for {𝑧(𝜂)} 

(i) 𝑧 𝜂 > 0, ∆𝑧 𝜂 > 0, ∆2𝑧 𝜂 > 0, ∆ 𝛼 𝜂 (∆2𝑧(𝜂)𝛼 ≤ 0; 
(ii)𝑧 𝜂 > 0, ∆𝑧 𝜂 < 0, ∆2𝑧 𝜂 > 0, ∆ 𝛼 𝜂 (∆2𝑧(𝜂)𝛼  ≤ 0; 
The proof of the lemma is trivial. 

 

MAIN RESULTS 

 

Theorem 2.1.Assume that (h1) − (h4) holds. Moreover if there exists a positive sequence {𝛽(𝜂)}𝜂=𝜂0
∞  such that, 

lim
𝜂→∞

sup   𝐶𝜗 𝑠 𝑦 𝑠 (1 − 𝑥(𝑠 − 𝜇)𝜌 −
(∆𝜗(𝑠))2

23−𝜌𝜓(𝑠 − 𝜇)𝜗(𝑠)
 

𝜂

𝑠=𝜂0

= ∞                                                               (2.1) 

Then every solution of {𝛾 𝜂 }in (1.1)satisfiesoscillatory and asymptotic conditions. 

 

Proof: Let  𝛾 𝜂  is a non-oscillatory solution of (1.1). We can assume that 𝛾(𝜂 − 𝜇) > 0 for𝜂 ≥ 𝜂1 where 𝜂1is 

selected without losing generality. We will just analyse this instance because the evidence when 𝛾 𝜂 < 0is 

equivalent. If 𝑧 𝜂 is defined as in (2.1), then 𝑧 𝜂 > 0and there are two possible cases based on Lemma 2.1. 

Consider Case (i) 𝑧 𝜂 is a positive solution to the neutral type difference inequality. By using the Riccati 

substitution, define the sequence {𝜔 𝜂 }. 

𝜔 𝜂 = 𝜗 𝜂 
𝛼 𝜂 ∆ ∆𝑧 𝜂  

𝜌

𝑧𝜌 𝜂 − 𝜇 
, 𝜂 ≥ 𝜂1                                                                                    (2.2)   

When 𝜔 𝜂 > 0 and  

∆𝜔 𝜂 = 𝛼 𝜂 + 1 ∆ ∆𝑧 𝜂 + 1  
𝜌
∆  

𝜗 𝜂 

𝑧𝜌 𝜂 − 𝜇 
 +

𝜗 𝜂 ∆ 𝛼 𝜂 ∆ ∆𝑧 𝜂  
𝜌
 

𝑧𝜌 𝜂 − 𝜇 
 

which implies 

∆𝜔 𝜂 ≤ −𝜗 𝜂 𝑋 𝜂 +
∆𝜗 𝜂 

𝜗 𝜂 + 1 
𝜔 𝜂 + 1 

−
𝜗 𝜂 𝛼 𝜂 + 1 ∆ ∆𝑧 𝜂 + 1  

𝜌
∆𝑧𝜌 𝜂 − 𝜇 

𝑧𝜌 𝜂 − 𝜇 𝑧𝜌 𝜂 − 𝜇 + 1 
                                                    (2.3) 

where 𝑋 𝜂 = 𝐶𝑥(𝜂) 1 − 𝑦 𝜂 − 𝜇  
𝜌

 . From Lemma 2.1 case(i), we have 𝑧 𝜂 − 𝜇 + 1 ≥ 𝑧 𝜂 − 𝜇 . Then from 

(2.3), we obtain 

∆𝜔 𝜂 ≤ −𝜗 𝜂 𝑋 𝜂 +
∆𝜗 𝜂 

𝜗 𝜂 + 1 
𝜔 𝜂 + 1 

−
𝜗 𝜂 𝛼 𝜂 + 1 ∆ ∆𝑧 𝜂 + 1  

𝜌
∆(𝑧𝜌 𝜂 − 𝜇 )

𝑧2𝜌 𝜂 − 𝜇 + 1 
                                               (2.4) 
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Using inequality 

𝑎𝜆 − 𝑏𝜆 ≥ 21−𝜆(𝑎 − 𝑏)𝜆for all 𝑎 ≥ 𝑏 > 0 and 𝜆 ≥ 1, 

We have 

∆ 𝑧𝜌 𝜂 − 𝜇  = 𝑧𝜌 𝜂 − 𝜇 + 1 − 𝑧𝜌 𝜂 − 𝜇 ≥ 21−𝜆(𝑧 𝜂 − 𝜇 + 1 − 𝑧 𝜂 − 𝜇 )𝜌  

                                = 21−𝜆 ∆𝑧 𝜂 + 1  
𝜌

, 𝜌 ≥ 1.                                                                                                     (2.5) 

∆𝜔 𝜂 ≤ −𝜗 𝜂 𝑋 𝜂 +
∆𝜗 𝜂 

𝜗 𝜂 + 1 
𝜔 𝜂 + 1 

− 21−𝜌
𝜗 𝜂 𝛼 𝜂 + 1 ∆ ∆𝑧 𝜂 + 1  

𝜌
 ∆𝑧 𝜂 − 𝜇  

𝜌

𝑧2𝜌 𝜂 − 𝜇 + 1 
                                        (2.6) 

Where 𝜓(𝜂 − 𝜇) = ∆𝑧𝜌 𝜂 − 𝜇  

∆𝜔 𝜂 ≤ −𝜗 𝜂 𝑋 𝜂 +
∆𝜗 𝜂 

𝜗 𝜂 + 1 
𝜔 𝜂 + 1 

− 21−𝜌
𝜗 𝜂 𝛼 𝜂 + 1 ∆ ∆𝑧 𝜂 + 1  

𝜌
𝜓(𝜂 − 𝜇)

𝑧2𝜌 𝜂 − 𝜇 + 1 
                                               (2.7) 

∆𝜔 𝜂 ≤ −𝜗 𝜂 𝑋 𝜂 +
∆𝜗 𝜂 

𝜗 𝜂 + 1 
𝜔 𝜂 + 1 − 21−𝜌

𝜗 𝜂 𝜓 𝜂 − 𝜇 

𝜗2 𝜂 + 1 
𝜔2 𝜂 + 1                                                           (2.8) 

By completing the square, we get 

∆𝜔 𝜂 < −  𝜗 𝜂 𝑋 𝜂 −
 ∆𝜗 𝜂  

2

23−𝜌𝜓 𝜂 − 𝜇 𝜗 𝜂 
                                                                                            (2.9)   

Summing (2.9) from 𝜂1to 𝜂, we obtain 

−𝜔 𝜂1 < 𝜔 𝜂 + 1 − 𝜔 𝜂1 < −   𝜗 𝑠 𝑦 𝑠 −
(∆𝜗(𝑠))2

23−𝜌𝜓(𝑠 − 𝜇)𝜗(𝑠)
 

𝜂

𝑠=𝜂1

 

  𝜗 𝑠 𝑦 𝑠 −
(∆𝜗(𝑠))2

23−𝜌𝜓(𝑠 − 𝜇)𝜗(𝑠)
 

𝜂

𝑠=𝜂1

< 𝑐1                                                                                                (2.10)  

for all large 𝜂, and this is contrary to (2.1). If the Case (ii) holds.Hence the proof. 

 

Conclusion 

This paper deals the improved oscillation and asymptotic conditions for 3
rd

 order Nonlinear Neutral Type 

Difference Equations with deviation for parameter estimation under conditions. 
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